Wei-Ning Hsu (Meta Foundational AI Research) “Large Scale Universal Speech Generative Models”

October 9, 2023 @ 12:00 pm – 1:15 pm
Hackerman Hall B17
3400 N. Charles Street
MD 21218


Large-scale generative models such as GPT and DALL-E have revolutionized natural language processing and computer vision research. These models not only generate high fidelity text or image outputs, but also demonstrate impressive domain and task generalization capabilities. In contrast, audio generative models are relatively primitive in scale and generalization.

In this talk, I will start with a brief introduction on conventional neural speech generative models and discuss why they are unfit for scaling to Internet-scale data. Next, by reviewing the latest large-scale generative models for text and image, I will outline a few lines of promising approaches to build scalable speech models. Last, I will present Voicebox, our latest work to advance this area. Voicebox is the most versatile generative model for speech. It is trained with a simple task — text conditioned speech infilling — on over 50K hours of multilingual speech with a powerful flow-matching objective. Through in-context learning, Voicebox can perform monolingual/cross-lingual zero-shot TTS, holistic style conversion, transient noise removal, content editing, and diverse sample generation. Moreover, Voicebox achieves state-of-the-art performance and excellent run-time efficiency.


Wei-Ning Hsu is a research scientist at Meta Foundational AI Research (FAIR) and currently the lead of the audio generation team. His research focuses on self-supervised learning and generative models for speech and audio. His pioneering work includes HuBERT, AV-HuBERT, TextlessNLP, data2vec, wav2vec-U, textless speech translation, and Voicebox. 

Prior to joining Meta, Wei-Ning worked at MERL and Google Brain as a research intern. He received his Ph.D. and S.M. degrees in Electrical Engineering and Computer Science from Massachusetts Institute of Technology in 2020 and 2018, under the supervision of Dr. James Glass. He received his B.S. degree in Electrical Engineering from National Taiwan University in 2014, under the supervision of Prof. Lin-shan Lee and Prof. Hsuan-Tien Lin.

Center for Language and Speech Processing