This project’s goal is to improve the quality of speech synthesis for spoken dialog systems and speech-to-speech translation systems. Instead of just producing natural sounding high quality speech output from raw text, we will investigate how to make the output speech be stylistically appropriate for the text. For example speech output for the sentence “There is an emergency, please leave the building, now” requires a different style of delivery from a sentences like “Are you hurt?”. We will use both speech recorded from actors, and natural examples of emotional speech. Using new articulatory feature extraction techniques, and novel machine learning techniques we will build emotional speech synthesis voices and test them with both objective and subjective measures. This will also require developing new techniques for evaluating our results using crowdsourcing in an efficient way.
Team Members | |
---|---|
Senior Members | |
Alan Black | Carnegie Mellon University |
Tim Bunnell | University of Delaware |
Florian Metze | Carnegie Mellon University |
Kishore Prahallad | IIIT, Hyderabad |
Stefan Steidl | ICSI at Berkeley |
Graduate Students | |
Prasanna Kumar | Carnegie Mellon University |
Tim Polzehl | Technical University of Berlin |
Undergraduate Students | |
Daniel Perry | University of California, Los Angeles |
Caroline Vaughn | Oberlin College |
Affiliate Members | |
Eric Fosler-Lussier | Ohio State University |
Karen Livescu | Toyota Technical Institute at Chicago |