Noah Smith (University of Washington) “Rational Recurrences for Empirical Natural Language Processing”

When:
December 2, 2019 @ 12:00 pm – 1:15 pm
2019-12-02T12:00:00-05:00
2019-12-02T13:15:00-05:00
Where:
Hackerman Hall B17
3400 N. Charles Street
Baltimore
MD 21218
Cost:
Free

Abstract

Despite their often-discussed advantages, deep learning methods largely disregard theories of both learning and language.  This makes their prediction behavior hard to understand and explain.  In this talk, I will present a path toward more understandable (but still “deep”) natural language processing models, without sacrificing accuracy.  Rational recurrences comprise a family of recurrent neural networks that obey a particular set of rules about how to calculate hidden states, and hence correspond to parallelized weighted finite-state pattern matching.  Many recently introduced models turn out to be members of this family, and the weighted finite-state view lets us derive some new ones.  I’ll introduce rational RNNs and present some of the ways we have used them in NLP.  My collaborators on this work include Jesse Dodge, Hao Peng, Roy Schwartz, and Sam Thomson.

Biography

 

Noah Smith is a Professor in the Paul G. Allen School of Computer Science & Engineering at the University of Washington, as well as a Senior Research Manager at the Allen Institute for Artificial Intelligence. Previously, he was an Associate Professor of Language Technologies and Machine Learning in the School of Computer Science at Carnegie Mellon University. He received his Ph.D. in Computer Science from Johns Hopkins University in 2006 and his B.S. in Computer Science and B.A. in Linguistics from the University of Maryland in 2001. His research interests include statistical natural language processing, machine learning, and applications of natural language processing, especially to the social sciences. His book, Linguistic Structure Prediction, covers many of these topics. He has served on the editorial boards of the journals Computational Linguistics (2009–2011), Journal of Artificial Intelligence Research (2011–present), and Transactions of the Association for Computational Linguistics (2012–present), as the secretary-treasurer of SIGDAT (2012–2015 and 2018–present), and as program co-chair of ACL 2016. Alumni of his research group, Noah’s ARK, are international leaders in NLP in academia and industry; in 2017 UW’s Sounding Board team won the inaugural Amazon Alexa Prize. Smith’s work has been recognized with a UW Innovation award (2016–2018), a Finmeccanica career development chair at CMU (2011–2014), an NSF CAREER award (2011–2016), a Hertz Foundation graduate fellowship (2001–2006), numerous best paper nominations and awards, and coverage by NPR, BBC, CBC, New York Times, Washington Post, and Time.

Johns Hopkins University

Johns Hopkins University, Whiting School of Engineering

Center for Language and Speech Processing
Hackerman 226
3400 North Charles Street, Baltimore, MD 21218-2680

Center for Language and Speech Processing