Hanjie Chen (University of Virginia) “Bridging Humans and Machines: Techniques for Trustworthy NLP”

When:
February 20, 2023 @ 12:00 pm – 1:15 pm
2023-02-20T12:00:00-05:00
2023-02-20T13:15:00-05:00
Where:
Hackerman Hall B17
3400 N. Charles Street
Baltimore
MD 21218
Cost:
Free

Abstract

Advanced neural language models have grown ever larger and more complex, pushing forward the limits of language understanding and generation, while diminishing interpretability. The black-box nature of deep neural networks blocks humans from understanding them, as well as trusting and using them in real-world applications. This talk will introduce interpretation techniques that bridge the gap between humans and models for developing trustworthy natural language processing(NLP). I will first show how to explain black-box models and evaluate their explanations for understanding their prediction behavior. Then I will introduce how to improve the interpretability of neural language models by making their decision-making transparent and rationalized. Finally, I will discuss how to diagnose and improve models (e.g., robustness) through the lens of explanations. I will conclude with future research directions that are centered around model interpretability and committed to facilitating communications and interactions between intelligent machines, system developers, and end users for long-term trustworthy AI.

Biography

Hanjie Chen is a Ph.D. candidate in Computer Science at the University of Virginia, advised by Prof. Yangfeng Ji. Her research interests lie in Trustworthy AI, Natural Language Processing (NLP), andInterpretable Machine Learning. She develops interpretation techniques to explain neural language models and make their prediction behavior transparent and reliable. She is a recipient of the Carlos and Esther Farrar Fellowship and the Best Poster Award at the ACM CAPWIC 2021. Her work has been published at top-tier NLP/AI conferences (e.g., ACL, AAAI, EMNLP, NAACL) and selected by the National Center for Women & Information Technology (NCWIT) Collegiate Award Finalist 2021. She (as the primary instructor) co-designed and taught the course, Interpretable Machine Learning, and was awarded the UVA CS Outstanding Graduate Teaching Award and University-wide Graduate Teaching Awards Nominee (top 5% of graduate instructors). More details can be found athttps://www.cs.virginia.edu/~hc9mx

Center for Language and Speech Processing