Neural Machine Translation

Philipp Koehn

13 June 2024
Linear Models

- Linear combination of input values x_i and weights λ_i

$$y(\lambda, x) = \sum_i \lambda_i x_i$$

- Such models can be illustrated as a "network"
Limits of Linearity

- We can give each feature a weight

- But not more complex value relationships, e.g.,
 - only a critical range of the feature value matters
 - feature interactions
• Linear models cannot model XOR
Multiple Layers

• Add an intermediate ("hidden") layer of processing (each arrow is a weight)

• Have we gained anything so far?
Non-Linearity

• Instead of computing a linear combination

\[y(\lambda, x) = \sum_i \lambda_i x_i \]

• Add a non-linear function

\[y(\lambda, x) = f\left(\sum_i \lambda_i x_i\right) \]

• Popular choices

\[\tanh(x) \quad \text{sigmoid}(x) = \frac{1}{1+e^{-x}} \quad \text{relu}(x) = \max(0, x) \]

(sigmoid is also called the "logistic function")
• More layers = deep learning
What Depth Enables

- Each layer is a processing step

- Having multiple processing steps allows complex functions

- Metaphor: NN and computing circuits
 - computer = sequence of Boolean gates
 - neural computer = sequence of layers

- Deep neural networks can implement complex functions
 e.g., sorting on input values
example
Simple Neural Network

- One innovation: bias units (no inputs, always value 1)
• Try out two input values

• Hidden unit computation

\[
\text{sigmoid}(1.0 \times 3.7 + 0.0 \times 3.7 + 1 \times -1.5) = \text{sigmoid}(2.2) = \frac{1}{1 + e^{-2.2}} = 0.90
\]

\[
\text{sigmoid}(1.0 \times 2.9 + 0.0 \times 2.9 + 1 \times -4.6) = \text{sigmoid}(-1.7) = \frac{1}{1 + e^{1.7}} = 0.17
\]
Computed Hidden

- Try out two input values
- Hidden unit computation

\[
sigmoid(1.0 \times 3.7 + 0.0 \times 3.7 + 1 \times -1.5) = sigmoid(2.2) = \frac{1}{1 + e^{-2.2}} = 0.90
\]

\[
sigmoid(1.0 \times 2.9 + 0.0 \times 2.9 + 1 \times -4.6) = sigmoid(-1.7) = \frac{1}{1 + e^{1.7}} = 0.17
\]
• Output unit computation

\[
sigmoid(0.90 \times 4.5 + 0.17 \times -5.2 + 1 \times -2.0) = sigmoid(1.17) = \frac{1}{1 + e^{-1.17}} = 0.76
\]
Computed Output

Output unit computation

\[
\text{sigmoid}(0.90 \times 4.5 + 0.17 \times -5.2 + 1 \times -2.0) = \text{sigmoid}(1.17) = \frac{1}{1 + e^{-1.17}} = 0.76
\]
Output for all Binary Inputs

<table>
<thead>
<tr>
<th>Input x_0</th>
<th>Input x_1</th>
<th>Hidden h_0</th>
<th>Hidden h_1</th>
<th>Output y_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.12</td>
<td>0.02</td>
<td>0.18 → 0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.88</td>
<td>0.27</td>
<td>0.74 → 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.73</td>
<td>0.12</td>
<td>0.74 → 1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.99</td>
<td>0.73</td>
<td>0.33 → 0</td>
</tr>
</tbody>
</table>

- Network implements XOR
 - hidden node h_0 is OR
 - hidden node h_1 is AND
 - final layer operation is $h_0 - h_1$

- Power of deep neural networks: chaining of processing steps just as: more Boolean circuits → more complex computations possible
back-propagation training
• Computed output: $y = 0.76$

• Correct output: $t = 1.0$

⇒ How do we adjust the weights?
Key Concepts

• Gradient descent
 – error is a function of the weights
 – we want to reduce the error
 – gradient descent: move towards the error minimum
 – compute gradient \rightarrow get direction to the error minimum
 – adjust weights towards direction of lower error

• Back-propagation
 – first adjust last set of weights
 – propagate error back to each previous layer
 – adjust their weights
Gradient Descent

\[\text{error}(\lambda) \]

\[\text{gradient} = 1 \]

\[\text{current } \lambda \quad \text{optimal } \lambda \]
Gradient Descent

Gradient for w_1
Gradient for w_2
Optimum
Current Point
Combined Gradient
Gradient for w_2
computation graphs
Neural Network Cartoon

- A common way to illustrate a neural network
Neural Network Math

• Hidden layer

\[h = \text{sigmoid}(W_1 x + b_1) \]

• Final layer

\[y = \text{sigmoid}(W_2 h + b_2) \]
Computation Graph

\[
\begin{align*}
&s_1 = \sigma(x W_1 + b_1) \\
&s_2 = \sigma(s_1 W_2 + b_2)
\end{align*}
\]
Simple Neural Network
Computation Graph

\[
\begin{align*}
W_1 & \begin{bmatrix} 3.7 & 3.7 \\ 2.9 & 2.9 \end{bmatrix} \\
W_2 & \begin{bmatrix} 4.5 & -5.2 \\ -1.5 & -4.6 \end{bmatrix} \\
b_1 & \begin{bmatrix} -1.5 \\ -4.6 \end{bmatrix} \\
b_2 & \begin{bmatrix} -2.0 \end{bmatrix} \\
x & \begin{bmatrix} 3.7 & 3.7 \\ 2.9 & 2.9 \end{bmatrix} \cdot \begin{bmatrix} 4.5 \\ -5.2 \end{bmatrix} + \begin{bmatrix} -1.5 \\ -4.6 \end{bmatrix}
\end{align*}
\]
Processing Input

$$\begin{bmatrix} 1.0 \\ 0.0 \end{bmatrix} \quad \times \quad \begin{bmatrix} 3.7 & 3.7 \\ 2.9 & 2.9 \end{bmatrix}$$

$$\begin{bmatrix} -1.5 \\ -4.6 \end{bmatrix}$$

$$\begin{bmatrix} 4.5 & -5.2 \end{bmatrix}$$

$$\begin{bmatrix} -2.0 \end{bmatrix}$$
Processing Input

\[
\begin{bmatrix}
1.0 \\
0.0 \\
3.7 \\
2.9
\end{bmatrix}
\begin{bmatrix}
3.7 & 3.7 \\
2.9 & 2.9
\end{bmatrix}
\begin{bmatrix}
-1.5 \\
-4.6
\end{bmatrix}
\begin{bmatrix}
4.5 & -5.2
\end{bmatrix}
\begin{bmatrix}
-2.0
\end{bmatrix}
\]
Processing Input

\[
\begin{bmatrix}
1.0 \\
0.0 \\
\end{bmatrix} \cdot \begin{bmatrix}
3.7 \\
2.9 \\
\end{bmatrix} + \begin{bmatrix}
-1.5 \\
-4.6 \\
\end{bmatrix} = \begin{bmatrix}
2.2 \\
-1.7 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
3.7 & 3.7 \\
2.9 & 2.9 \\
\end{bmatrix} \cdot \begin{bmatrix}
2.2 \\
-1.7 \\
\end{bmatrix} + \begin{bmatrix}
-2.0 \\
\end{bmatrix} = \begin{bmatrix}
4.5 \\
-5.2 \\
\end{bmatrix}
\]
Processing Input
Processing Input

\[
\begin{bmatrix}
1.0 \\
0.0
\end{bmatrix}
\times
\begin{bmatrix}
3.7 & 2.9 \\
2.2 & -1.7
\end{bmatrix}
\times
\begin{bmatrix}
3.7 & 3.7 \\
2.9 & 2.9
\end{bmatrix}
\times
\begin{bmatrix}
-1.5 \\
-4.6
\end{bmatrix}
\times
\begin{bmatrix}
4.5 & -5.2 \\
-2.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
.900 \\
.168
\end{bmatrix}
\times
\begin{bmatrix}
3.18
\end{bmatrix}
\times
\begin{bmatrix}
1.18
\end{bmatrix}
\times
\begin{bmatrix}
.765
\end{bmatrix}
\times
\begin{bmatrix}
.7365
\end{bmatrix}
\]
Error Function

- For training, we need a measure how well we do

\Rightarrow Cost function
 also known as objective function, loss, gain, cost, ...

- For instance L2 norm

 \[\text{error} = \frac{1}{2}(t - y)^2 \]
Gradient Descent

- We view the error as a function of the trainable parameters $\text{error}(\lambda)$.
- We want to optimize $\text{error}(\lambda)$ by moving it towards its optimum.

- Why not just set it to its optimum?
 - we are updating based on one training example, do not want to overfit to it
 - we are also changing all the other parameters, the curve will look different
Calculus Refresher: Chain Rule

• Formula for computing derivative of composition of two or more functions
 – functions f and g
 – composition $f \circ g$ maps x to $f(g(x))$

• Chain rule

$$(f \circ g)' = (f' \circ g) \cdot g'$$

or

$$F'(x) = f'(g(x))g'(x)$$

• Leibniz’s notation

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$$

if $z = f(y)$ and $y = g(x)$, then

$$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx} = f'(y)g'(x) = f'(g(x))g'(x)$$
Chain Rule in the Computation Graph

\[f(g(x)) = f'(g(x)) \times g'(x) \]

- **\(g(x) \)**: Input value
- **\(g \)**: Function \(g \)
- **\(g'(x) \times \downarrow \)**: Apply derivative of function to forward value
- **\(f(g(x)) \)**: Output value
- **\(f' \)**: Function \(f \)
- **\(f'(g(x)) \)**: Derivative of function \(f \) with respect to \(g(x) \)

- **\(f'(g(x)) \)**: Multiply values

- **\(g'(x) \)**: Derivative of function \(g \) with respect to \(x \)

- **recurse down the graph**
Derivatives for Each Node

\[
\frac{dL2}{dsigmoid} = \frac{do}{di} = \frac{d}{di} \frac{1}{2} (i - t)^2 = t - i
\]
Derivatives for Each Node

\[
\frac{dL2}{dsigmoid} = \frac{do}{di} = \frac{d}{di} \frac{1}{2} (i - t)^2 = t - i
\]

\[
\frac{dsigmoid}{dsum} = \frac{do}{di} = \frac{d}{di} \sigma(i) = \sigma(i)(1 - \sigma(i))
\]
Derivatives for Each Node

\[\frac{dL2}{dsigmoid} = \frac{do}{di} = \frac{d}{di} \left(\frac{1}{2} (i - t)^2 \right) = t - i \]

\[\frac{dsigmoid}{dsum} = \frac{do}{di} = \frac{d}{di} \sigma(i) = \sigma(i)(1 - \sigma(i)) \]

\[\frac{dsum}{dprod} = \frac{do}{di} = \frac{d}{di} i_1 + i_2 = 1, \quad \frac{do}{di_2} = 1 \]

\[x \]

\[W_1 \]

\[prod \]

\[b_1 \]

\[sum \]

\[W_2 \]

\[prod \]

\[b_2 \]

\[t \]

\[L2 \]
Derivatives for Each Node

\[
\frac{dL^2}{dsigmoid} = \frac{do}{di} = \frac{d}{di} \frac{1}{2} (i - t)^2 = t - i
\]

\[
\frac{dsigmoid}{dsum} = \frac{do}{di} = \frac{d}{di} \sigma(i) = \sigma(i) (1 - \sigma(i))
\]

\[
\frac{dsum}{dprod} = \frac{do}{di_1} = \frac{d}{di_1} i_1 i_2 = i_2, \quad \frac{do}{di_2} = i_1
\]

\[
\frac{dsum}{dprod} = \frac{do}{di_1} = \frac{d}{di_1} i_1 + i_2 = 1, \quad \frac{do}{di_2} = 1
\]
Backward Pass: Derivative Computation

\[\begin{bmatrix} 1.0 \\ 0.0 \end{bmatrix} \]

\[\begin{bmatrix} 3.7 \\ 2.9 \end{bmatrix} \]

\[x \]

\[W_1 \begin{bmatrix} 3.7 & 3.7 \\ 2.9 & 2.9 \end{bmatrix} \]

\[b_1 \begin{bmatrix} -1.5 \\ -4.6 \end{bmatrix} \]

\[\begin{bmatrix} 2.2 \\ -1.7 \end{bmatrix} \]

\[\text{prod} \ i_2, i_1 \]

\[\begin{bmatrix} 2.2 \\ -1.7 \end{bmatrix} \]

\[\text{sum} \ 1, 1 \]

\[\begin{bmatrix} 3.7 \\ 2.9 \end{bmatrix} \]

\[\text{sigmoid} \ \sigma'(i) \]

\[\begin{bmatrix} 3.18 \\ 1.18 \\ 0.765 \end{bmatrix} \]

\[\text{prod} \ i_2, i_1 \]

\[\begin{bmatrix} 3.7 \\ 2.9 \end{bmatrix} \]

\[\text{sigmoid} \ \sigma'(i) \]

\[\begin{bmatrix} 3.18 \\ 1.18 \\ 0.765 \end{bmatrix} \]

\[\text{L2} \ i_2 - i_1 \begin{bmatrix} 0.277 \\ 0.235 \end{bmatrix} \]

\[t \begin{bmatrix} 1.0 \end{bmatrix} \]

\[\begin{bmatrix} -2.0 \end{bmatrix} \]
Backward Pass: Derivative Computation

\[
\begin{bmatrix}
1.0 \\
0.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
3.7 \\
2.9
\end{bmatrix}
\]

\[
\begin{bmatrix}
3.7 \\
3.7 \\
2.9 \\
2.9
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1.5 \\
-4.6
\end{bmatrix}
\]

\[
\begin{bmatrix}
4.5 \\
-5.2
\end{bmatrix}
\]

\[
\begin{bmatrix}
-2.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
3.7 \\
2.9
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.900 \\
0.17
\end{bmatrix}
\]

\[
\begin{bmatrix}
2.2 \\
-1.7
\end{bmatrix}
\]

\[
\begin{bmatrix}
3.18
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.18
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.765
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.0277
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.180 \\
0.235
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.0424
\end{bmatrix}
\]

\[
\begin{bmatrix}
3.7 \\
2.9
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.8 \\
1.7
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.18 \\
1.1
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.765
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.0277
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
2.2 \\
-1.7
\end{bmatrix}
\]

\[
\begin{bmatrix}
3.18
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.765
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.0277
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.180 \\
0.235
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.0424
\end{bmatrix}
\]

\[
\begin{bmatrix}
-2.0
\end{bmatrix}
\]
Backward Pass: Derivative Computation

\[x = \begin{bmatrix} 1.0 \\ 0.0 \end{bmatrix} \]
\[\mathbf{W}_1 = \begin{bmatrix} 3.7 & 3.7 \\ 2.9 & 2.9 \end{bmatrix} \]
\[b_1 = \begin{bmatrix} -1.5 \\ -4.6 \end{bmatrix} \]
\[\mathbf{W}_2 = \begin{bmatrix} 4.5 & -5.2 \end{bmatrix} \]
\[b_2 = \begin{bmatrix} -2.0 \end{bmatrix} \]

\[i_2, i_1 = \text{prod} \]
\[\begin{bmatrix} 3.7 \\ 2.9 \end{bmatrix} \]

\[\begin{bmatrix} 2.2 \\ -1.7 \end{bmatrix} = \text{sum} \begin{bmatrix} 1.1 \\ 1.1 \end{bmatrix} \]

\[\begin{bmatrix} .900 \\ .17 \end{bmatrix} = \text{sigmoid} \]

\[\begin{bmatrix} 3.18 \end{bmatrix} = \text{prod} \begin{bmatrix} i_2, i_1 \end{bmatrix} \]

\[\begin{bmatrix} 1.18 \end{bmatrix} = \text{sum} \begin{bmatrix} .765 \end{bmatrix} \]

\[\begin{bmatrix} .765 \end{bmatrix} = \text{sigmoid} \]

\[\begin{bmatrix} .0277 \end{bmatrix} = \text{L2} \begin{bmatrix} i_2 - i_1 \end{bmatrix} \]

\[\begin{bmatrix} .0277 \end{bmatrix} \times \begin{bmatrix} .180 \end{bmatrix} = \begin{bmatrix} .0424 \end{bmatrix} \]

\[\begin{bmatrix} .0277 \end{bmatrix} \times \begin{bmatrix} .235 \end{bmatrix} = \begin{bmatrix} .0424 \end{bmatrix} \]

\[\begin{bmatrix} 3.7 \\ 2.9 \end{bmatrix} = \begin{bmatrix} 3.7 \\ 2.9 \end{bmatrix} \]

\[\begin{bmatrix} 4.5 & -5.2 \end{bmatrix} = \begin{bmatrix} 4.5 & -5.2 \end{bmatrix} \]

\[\begin{bmatrix} -2.0 \end{bmatrix} = \begin{bmatrix} -2.0 \end{bmatrix} \]

\[\begin{bmatrix} 1.0 \end{bmatrix} = \begin{bmatrix} 1.0 \end{bmatrix} \]
Backward Pass: Derivative Computation

\[
\begin{bmatrix}
1.0 \\
0.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
3.7 \\
2.9
\end{bmatrix}
\]

\[
\begin{bmatrix}
3.7 \\
2.9
\end{bmatrix}
\]

\[
\begin{bmatrix}
.900 \\
.17
\end{bmatrix}
\]

\[
\begin{bmatrix}
2.2 \\
-1.7
\end{bmatrix}
\]

\[
\begin{bmatrix}
3.18
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.18
\end{bmatrix}
\]

\[
\begin{bmatrix}
.765
\end{bmatrix}
\]

\[
\begin{bmatrix}
.0277
\end{bmatrix}
\]

\[
\begin{bmatrix}
1.0
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1.5 \\
-4.6
\end{bmatrix}
\]

\[
\begin{bmatrix}
4.5 \\
-5.2
\end{bmatrix}
\]

\[
\begin{bmatrix}
-2.0
\end{bmatrix}
\]
Gradients for Parameter Update

\[W_1 = \begin{bmatrix} 3.7 & 3.7 \\ 2.9 & 2.9 \end{bmatrix} \]

\[i_2, i_1 \]

\[\text{prod} \]

\[b_1 = \begin{bmatrix} -1.5 \\ -4.6 \end{bmatrix} \]

\[W_2 = \begin{bmatrix} 4.5 & -5.2 \end{bmatrix} \]

\[i_2, i_1 \]

\[\text{prod} \]

\[t \]

\[\text{sigmoid} \]

\[\sigma'(i) \]

\[\text{sum} \]

\[1, 1 \]

\[\begin{bmatrix} 0.0171 & 0 \\ -0.0308 & 0 \end{bmatrix} \]

\[\begin{bmatrix} 0.0171 \\ -0.0308 \end{bmatrix} \]

\[\begin{bmatrix} 0.0382 & 0.00712 \\ 0.0424 \end{bmatrix} \]

\[\begin{bmatrix} -2.0 \end{bmatrix} \]

\[L2 \]

\[i_2 - i_1 \]
Parameter Update

$W_1 \begin{bmatrix} 3.7 & 3.7 \\ 2.9 & 2.9 \end{bmatrix} - \mu \begin{bmatrix} .0171 & 0 \\ -.0308 & 0 \end{bmatrix}$

$b_1 \begin{bmatrix} -1.5 \\ -4.6 \end{bmatrix} - \mu \begin{bmatrix} .0382 & .00712 \end{bmatrix}$

$W_2 \begin{bmatrix} 4.5 & -5.2 \end{bmatrix} - \mu \begin{bmatrix} .0171 \\ -.0308 \end{bmatrix}$

$b_2 \begin{bmatrix} -2.0 \end{bmatrix} - \mu \begin{bmatrix} .0424 \end{bmatrix}$

L2 $i_2 - i_1$
toolkits
Explosion of Deep Learning Toolkits

- University of Montreal: Theano (early, now defunct)
- Google: Tensorflow
- Facebook: Torch, pyTorch
- Microsoft: CNTK
- Amazon: MX-Net
- CMU: Dynet
- AMU/Edinburgh/Microsoft: Marian
- ... and many more
Toolkits

- Machine learning architectures around computations graphs very powerful
 - define a computation graph
 - provide data and a training strategy (e.g., batching)
 - toolkit does the rest
 - seamless support of GPUs
Example: PyTorch

• Installation

 pip install torch

• Usage

 import torch
Some Data Types

• PyTorch data type for parameter vectors, matrices etc., called `torch.tensor`

```python
W = torch.tensor([[3,4],[2,3]], requires_grad=True, dtype=torch.float)
b = torch.tensor([-2,-4], requires_grad=True, dtype=torch.float)
W2 = torch.tensor([5,-5], requires_grad=True, dtype=torch.float)
b2 = torch.tensor([-2], requires_grad=True, dtype=torch.float)
```

• Definition of variables includes
 – specification of their basic data type (`float`)
 – indication to compute gradients (`requires_grad=True`)

• Input and output

```python
x = torch.tensor([1,0], dtype=torch.float)
t = torch.tensor([1], dtype=torch.float)
```
Computation Graph

- Computation graph

\[s = W \cdot \text{mv}(x) + b \]
\[h = \text{torch.nn.Sigmoid()}(s) \]
\[z = \text{torch.dot}(W2, h) + b2 \]
\[y = \text{torch.nn.Sigmoid()}(z) \]
\[\text{error} = \frac{1}{2} \times (t - y)^2 \]

- Note
 - PyTorch sigmoid function `torch.nn.Sigmoid()`
 - multiplication between matrix \(W \) and vector \(x \) is \(\text{mv} \)
 - multiplication between two vectors \(W2 \) and \(h \) is \(\text{torch.dot} \).
Backward Computation

- Here it is:

  ```python
  error.backward()
  ```

- No need to derive gradients — all is done automatically.

- We can look up computed gradients

  ```python
  >>> W2.grad
  tensor([-0.0360, -0.0059])
  ```

- Note
 - when you run this code multiple times, then gradients accumulate
 - reset them with, e.g., `W2.grad.data.zero()`
Training Data

- Our training set consists of the four examples of binary XOR operations.

\[
\begin{array}{c|c|c}
 x & y & x \oplus y \\
 \hline
 0 & 0 & 0 \\
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0 \\
\end{array}
\]

- Placed into array

```python
training_data = [
    [ torch.tensor([0.,0.]), torch.tensor([0.]) ],
    [ torch.tensor([1.,0.]), torch.tensor([1.]) ],
    [ torch.tensor([0.,1.]), torch.tensor([1.]) ],
    [ torch.tensor([1.,1.]), torch.tensor([0.]) ]
]
```
Training Loop: Forward

\[\mu = 0.1 \]

for epoch in range(1000):
 total_error = \emptyset

 for item in training_data:
 x = item[0]
 t = item[1]

 # forward computation
 s = W.mv(x) + b
 h = torch.nn.Sigmoid()(s)
 z = torch.dot(W2, h) + b2
 y = torch.nn.Sigmoid()(z)
 error = 1/2 * (t - y) ** 2
 total_error = total_error + error
Training Loop: Backward and Updates

```python
# backward computation
error.backward()

# weight updates
W.data = W - mu * W.grad.data
b.data = b - mu * b.grad.data
W2.data = W2 - mu * W2.grad.data
b2.data = b2 - mu * b2.grad.data

W.grad.data.zero_()
b.grad.data.zero_()
W2.grad.data.zero_()
b2.grad.data.zero_()

print("error: ", total_error/4)
```
Batch Training

• We computed gradients for each training example, update model immediately

• More common: process examples in batches, update after batch processed

• Instead

  ```python
  error.backward()
  ```

• Run back-propagation on accumulated error

  ```python
  total_error.backward()
  ```
Training Data Batch

\[
\begin{align*}
x & = \text{torch.tensor([[0.,0.], [1.,0.], [0.,1.], [1.,1.]])} \\
t & = \text{torch.tensor([0., 1., 1., 0.]})
\end{align*}
\]

- Change to computation graph (input now a matrix, output a vector)

\[
\begin{align*}
s & = x.mm(W) + b \\
h & = \text{torch.nn.Sigmoid()}(s) \\
z & = h.mv(W2) + b2 \\
y & = \text{torch.nn.Sigmoid()}(z)
\end{align*}
\]

- Convert error vector into single number

\[
\begin{align*}
\text{error} & = 1/2 \times (t - y)^2 \\
\text{mean_error} & = \text{error.mean()} \\
\text{mean_error}.\text{backward}()
\end{align*}
\]
• Our code has explicit parameter update computations

```python
# weight updates
W.data = W - mu * W.grad.data
b.data = b - mu * b.grad.data
W2.data = W2 - mu * W2.grad.data
b2.data = b2 - mu * b2.grad.data
```

• But fancier optimizers are typically used (Adam, etc.)

• This requires more complex implementation
Neural network model is defined as class derived from `torch.nn.Module`

class ExampleNet(torch.nn.Module):
 def __init__(self):
 super(ExampleNet, self).__init__()
 self.layer1 = torch.nn.Linear(2,2)
 self.layer2 = torch.nn.Linear(2,1)
 self.layer1.weight = torch.nn.Parameter(torch.tensor([[3.,2.],[4.,3.]]))
 self.layer1.bias = torch.nn.Parameter(torch.tensor([-2.,-4.]))
 self.layer2.weight = torch.nn.Parameter(torch.tensor([[5.,-5.]]))
 self.layer2.bias = torch.nn.Parameter(torch.tensor([-2.]))

 def forward(self, x):
 s = self.layer1(x)
 h = torch.nn.Sigmoid()(s)
 z = self.layer2(h)
 y = torch.nn.Sigmoid()(z)
 return y
Optimizer Definition

- Instantiation of neural network object

\[
\text{net} = \text{ExampleNet}()
\]

- Optimizer definition

\[
\text{optimizer} = \text{torch.optim.SGD}(\text{net}.\text{parameters}(), \text{lr}=0.1)
\]
for iteration in range(1000):
 optimizer.zero_grad()
 out = net.forward(x)
 error = 1/2 * (t - out)**2
 mean_error = error.mean()
 print("error: ", mean_error.data)
 mean_error.backward()
 optimizer.step()
language models
N-Gram Backoff Language Model

• Previously, we approximated

\[p(W) = p(w_1, w_2, ..., w_n) \]

• ... by applying the chain rule

\[p(W) = \sum_i p(w_i|w_1, ..., w_{i-1}) \]

• ... and limiting the history (Markov order)

\[p(w_i|w_1, ..., w_{i-1}) \approx p(w_i|w_{i-4}, w_{i-3}, w_{i-2}, w_{i-1}) \]
First Sketch

\[
\begin{align*}
\text{Wi} & \quad \text{Softmax} \\
\text{h} & \quad \text{FF} \\
\text{Wi-4} & \quad \text{Wi-3} & \quad \text{Wi-2} & \quad \text{Wi-1} \\
\end{align*}
\]

Output Word

Hidden Layer

History
Representing Words

• Words are represented with a one-hot vector, e.g.,
 – **dog** = (0,0,0,0,1,0,0,0,0,0,....)
 – **cat** = (0,0,0,0,0,0,0,1,0,0,....)
 – **eat** = (0,1,0,0,0,0,0,0,0,0,....)

• That’s a large vector!

• Remedies
 – limit to, say, 20,000 most frequent words, rest are OTHER
 – place words in \sqrt{n} classes, so each word is represented by
 * 1 class label
 * 1 word in class label
 – splitting rare words into subwords
 – character-based models
word embeddings
Add an Embedding Layer

- Map each word first into a lower-dimensional real-valued space
- Shared weight matrix E
Details (Bengio et al., 2003)

• Add direct connections from embedding layer to output layer

• Activation functions
 – input→embedding: none
 – embedding→hidden: tanh
 – hidden→output: softmax

• Training
 – loop through the entire corpus
 – update between predicted probabilities and 1-hot vector for output word
Word Embeddings

- By-product: embedding of word into continuous space
- Similar contexts \rightarrow similar embedding
- Recall: distributional semantics
Word Embeddings
Are Word Embeddings Magic?

• Morphosyntactic regularities (Mikolov et al., 2013)
 – adjectives base form vs. comparative, e.g., good, better
 – nouns singular vs. plural, e.g., year, years
 – verbs present tense vs. past tense, e.g., see, saw

• Semantic regularities
 – clothing is to shirt as dish is to bowl
 – evaluated on human judgment data of semantic similarities
recurrent neural networks
Recurrent Neural Networks

- Start: predict second word from first
- Mystery layer with nodes all with value 1
Recurrent Neural Networks

Output Word
Hidden Layer
Embedding
History

Softmax

0
Embed

W1

W2

tanh

copy

Embed

W1

W2

Embed
Recurrent Neural Networks

- **Embedding**: Input representation
- **Hidden Layer**: Intermediate representation
- **Output Word**: Final output
- **Softmax**: Probability distribution
- **tanh**: Non-linear activation function
- **copy**: Connection for copying information

Diagram: [Recurrent Neural Network Diagram](attachment:diagram.png)
• Process first training example
• Update weights with back-propagation
Training

- Process second training example
- Update weights with back-propagation
- And so on...
- But: no feedback to previous history
Back-Propagation Through Time

- Unfolded recurrent neural network for a sentence
neural translation models
Recurrent Neural Language Model

Predict the second word of a sentence
Re-use hidden state from first word prediction

Recurrent State

Input Word Embedding

Output Word Prediction

Output Word

Input Word

Embedding

Softmax
Recurrent Neural Language Model

Predict the third word of a sentence
... and so on
Recurrent Neural Language Model

Recurrent State h_j

Input Word Embedding $E \ x_j$

Output Word y_i

Embedding x_j

Softmax t_i

Input Word $<s>$
Recurrent Neural Translation Model

- We predicted the words of a sentence
- Why not also predict their translations?
- Obviously madness

- Proposed by Google (Sutskever et al. 2014)
What is Missing?

- Alignment of input words to output words

⇒ Solution: attention mechanism
neural translation model with attention
Input Encoding

• Inspiration: recurrent neural network language model on the input side
Hidden Language Model States

- This gives us the hidden states

- These encode left context for each word

- Same process in reverse: right context for each word
• Input encoder: concatenate bidirectional RNN states

• Each word representation includes full left and right sentence context
• Input is sequence of words x_j, mapped into embedding space $\tilde{E} x_j$

• Bidirectional recurrent neural networks

$$\overleftarrow{h}_j = f(\overrightarrow{h}_{j+1}, \tilde{E} x_j)$$
$$\overrightarrow{h}_j = f(\overleftarrow{h}_{j-1}, \tilde{E} x_j)$$

• Various choices for the function $f()$: feed-forward layer, GRU, LSTM, ...
• We want to have a recurrent neural network predicting output words

Decoder

Output Word Prediction

Decoder State
Decoder

- We want to have a recurrent neural network predicting output words

- We feed decisions on output words back into the decoder state
- We want to have a recurrent neural network predicting output words

- We feed decisions on output words back into the decoder state
- Decoder state is also informed by the input context
• Decoder is also recurrent neural network over sequence of hidden states s_i

$$s_i = f(s_{i-1}, Ey_{i-1}, c_i)$$

• Again, various choices for the function $f()$: feed-forward layer, GRU, LSTM, ...

• Output word y_i is selected by computing a vector t_i (same size as vocabulary)

$$t_i = W(U s_{i-1} + V Ey_{i-1} + C c_i)$$

then finding the highest value in vector t_i

• If we normalize t_i, we can view it as a probability distribution over words

• Ey_i is the embedding of the output word y_i
• Given what we have generated so far (decoder hidden state)
• ... which words in the input should we pay attention to (encoder states)?
• Given: – the previous hidden state of the decoder \(s_{i-1} \)
 – the representation of input words \(h_j = (\overleftarrow{h_j}, \overrightarrow{h_j}) \)

• Predict an alignment probability \(a(s_{i-1}, h_j) \) to each input word \(j \)
 (modeled with a feed-forward neural network layer)
• Normalize attention (softmax)

\[\alpha_{ij} = \frac{\exp(a(s_{i-1}, h_j))}{\sum_k \exp(a(s_{i-1}, h_k))} \]
Attention

- Relevant input context: weigh input words according to attention: $c_i = \sum_j \alpha_{ij} h_j$
• Use context to predict next hidden state and output word
training
• Current model gives some probability $t_i[y_i]$ to correct word y_i
• We turn this into an error by computing cross-entropy: $-\log t_i[y_i]$
• Math behind neural machine translation defines a computation graph
• Forward and backward computation to compute gradients for model training
Unrolled Computation Graph

\[E_yi \]
\[yi \]
\[- \log t_i [yi] \]
\[ti \]
\[si \]
\[ci \]
\[\alpha_{ij} \]
\[h_j \]
\[\bar{h}_j \]
\[E x_j \]
\[x_j \]

Output Word Embeddings
Output Word
Error
Output Word Prediction
Decoder State
Input Context
Attention
Right-to-Left Encoder
Left-to-Right Encoder
Input Word Embedding
Input Word
attention
• Machine translation is a structured prediction task
 – output is not a single label
 – output structure needs to be built, word by word

• Relevant information for each word prediction varies

• Human translators pay attention to different parts of the input sentence when translating

⇒ Attention mechanism
Computing Attention

- Attention mechanism in neural translation model (Bahdanau et al., 2015)
 - previous hidden state s_{i-1}
 - input word embedding h_j
 - trainable parameters b, W_a, U_a, v_a

 $$a(s_{i-1}, h_j) = v_a^T \tanh(W_a s_{i-1} + U_a h_j + b)$$

- Other ways to compute attention
 - Dot product: $a(s_{i-1}, h_j) = s_{i-1}^T h_j$
 - Scaled dot product: $a(s_{i-1}, h_j) = \frac{1}{\sqrt{|h_j|}} s_{i-1}^T h_j$
 - General: $a(s_{i-1}, h_j) = s_{i-1}^T W_a h_j$
 - Local: $a(s_{i-1}) = W_a s_{i-1}$
Attention of Luong et al. (2015)

- Luong et al. (2015) demonstrate good results with the dot product
 \[a(s_{i-1}, h_j) = s_{i-1}^T h_j \]

- No trainable parameters

- Additional changes

- Currently more popular
General View of Dot-Product Attention

- Three element
 - **Query**: decoder state
 - **Key**: encoder state
 - **Value**: encoder state

- Intuition
 - given a query (the decoder state)
 - we check how well it matches keys in the database (the encoder states)
 - and then use the matching score to scale the retrieved value (also the encoder state)

- Computation
 \[
 \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V
 \]
Scaled Dot-Product Attention

- Refinement of query and key
- Scale it down to lower-dimensional vectors (e.g., 512 from 4096)
- Using a weight matrix for each: QW^Q, KW^K
Multi-Head Attention

• Add redundancy
 – say, 16 attention weights
 – each based on its own parameters W
 – matrix W also reduces the dimensionality

• Formally:

$$\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, V)$$

$$\text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, ..., \text{head}_h)W^O$$

• Multi-head attention is a form of ensembling
Self Attention

• Finally, a very different take at attention

• Motivation so far: need for alignment between input words and output words

• Now: refine representation of input words in the encoder
 – representation of an input word mostly depends on itself
 – but also informed by the surrounding context
 – previously: recurrent neural networks (considers left or right context)
 – now: attention mechanism

• Self attention:
 Which of the surrounding words is most relevant to refine representation?
Self Attention

- Formal definition (based on sequence of vectors h_j, packed into matrix H

 $$\text{self-attention}(H) = \text{Attention}(HW_i^Q, HW_i^K, H)$$

- Association between every word representation h_j any other context word h_k

- Resulting vector of normalized association values used to weigh context words
transformer
Self Attention: Transformer

- Self-attention in encoder
 - refine word representation based on relevant context words
 - relevance determined by self attention

- Self-attention in decoder
 - refine output word predictions based on relevant previous output words
 - relevance determined by self attention

- Also regular attention to encoder states in decoder

- Currently most successful model
 (maybe only with self attention in decoder, but regular recurrent decoder)
Encoder

Sequence of self-attention layers
Self Attention Layer

- Given: input word representations h_j, packed into a matrix $H = (h_1, ..., h_j)$

- Self attention
 \[
 \text{self-attention}(H) = \text{MultiHead}(H, H, H)
 \]

- Shortcut connection
 \[
 \text{self-attention}(h_j) + h_j
 \]

- Layer normalization
 \[
 \hat{h}_j = \text{layer-normalization} (\text{self-attention}(h_j) + h_j)
 \]

- Feed-forward step with ReLU activation function
 \[
 \text{relu}(W\hat{h}_j + b)
 \]

- Again, shortcut connection and layer normalization
 \[
 \text{layer-normalization} (\text{relu}(W\hat{h}_j + b) + \hat{h}_j)
 \]
Stacked Self Attention Layers

- Stack several such layers (say, $D = 6$)

- Start with input word embedding

$$h_{0,j} = Ex_j$$

- Stacked layers

$$h_{d,j} = \text{self-attention-layer}(h_{d-1,j})$$
Decoder computes attention-based representations of the output in several layers, initialized with the embeddings of the previous output words.
Self-Attention in the Decoder

• Same idea as in the encoder

• Output words are initially encoded by word embeddings $s_i = E y_i$.

• Self attention is computed over previous output words
 – association of a word s_i is limited to words s_k ($k \leq i$)
 – resulting representation \tilde{s}_i

$$\text{self-attention}(\tilde{S}) = \text{MultiHead}(\tilde{S}, \tilde{S}, \tilde{S})$$
Attention in the Decoder

- Original intuition of attention mechanism: focus on relevant input words

- Compute attention between the decoder states \tilde{S} and the final encoder states H

 $$\text{attention}(\tilde{S}, H) = \text{MultiHead}(\tilde{S}, H, H)$$

- Note: attention mechanism formally mirrors self-attention
Full Decoder

Input Word

Encoder Layer

Output Word

Decoder Layer

Decoder Layer

Decoder Layer

Decoder Layer

Output Word

Embedding

Decoder Layer

Softmax

Argmax

Output Word

Prediction

Output Word

Input Word

Encoder Layer

Encoder Layer

Encoder Layer

Encoder Layer

Full Decoder

- Self-attention
 \[\text{self-attention}(\tilde{S}) = \text{MultiHead}(\tilde{S}, \tilde{S}, \tilde{S}) \]
 - shortcut connections
 - layer normalization
 - feed-forward layer

- Attention
 \[\text{attention}(\tilde{S}, H) = \text{softmaxMultiHead}(\tilde{S}, H, H) \]
 - shortcut connections
 - layer normalization
 - feed-forward layer

- Multiple stacked layers
machine translation

and

large language models
The Large Language Model Wave

- Large language models have overtaken much of NLP
- So far, Machine Translation is still a hold-out: dedicated models are trained from scratch
- How long will this still be the case?
LMs as Unsupervised Learners (2018)

Language Models are Unsupervised Multitask Learners

Alec Radford * 1 Jeffrey Wu * 1 Rewon Child 1 David Luan 1 Dario Amodei ** 1 Ilya Sutskever ** 1

- Train language models on relatively clean text data (GPT-2)
- Convert any NLP problem into a text continuation problem
 - pre prompt engineering
 - goes into some detail of how each task is converted
 - impressive performance on many tasks
- Terrible at translation
 ... but all non-English text was removed from training corpus
A Closer Look at PaLM for MT (2022)

Prompting PaLM for Translation: Assessing Strategies and Performance

David Vilar, Markus Freitag, Colin Cherry, Jiaming Luo, Viresh Ratnakar, George Foster
Google Research
{vilar, freitag, colincherry, jmluo, vratnakar, fosterg}@google.com

- Exploration of examples used for prompting
- Evaluation with BLEU / BLEURT / MQM (human eval)
- WMT 2021 test set for de,zh→en, WMT 2014 for fr→en
Comparison to State of the Art

![Comparison to State of the Art](image)

BLEU

<table>
<thead>
<tr>
<th>Language Pair</th>
<th>WMT Best</th>
<th>Google Translate</th>
<th>PaLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>en-de</td>
<td>43</td>
<td>41</td>
<td>39</td>
</tr>
<tr>
<td>de-en</td>
<td>45</td>
<td>42</td>
<td>40</td>
</tr>
<tr>
<td>en-zh</td>
<td>38</td>
<td>36</td>
<td>35</td>
</tr>
<tr>
<td>zh-en</td>
<td>30</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>en-fr</td>
<td>47</td>
<td>45</td>
<td>43</td>
</tr>
<tr>
<td>fr-en</td>
<td>44</td>
<td>42</td>
<td>40</td>
</tr>
</tbody>
</table>
Human Evaluation: MQM

- Language Models makes more adequacy errors, similar fluency
- German-English, MQM error categories (count of errors)
PaLM is exposed to over 30 million translation pairs across at least 44 languages

- 1.4% of training examples are bilingual
- 0.34% have a translated sentence pair

Most bilingual content is code-switched, about 20% contains translations
Impact of Translation Data

- Sentence pairs can be extracted from bilingual samples
 - split sample into sentences
 - align English and French sentences with cross-lingual sentence embedding
 ⇒ parallel training corpus

- Training on mined parallel data (WMT fr-en): 38.1 BLEU
 Training on WMT training data: 42.0 BLEU

- Worse translation quality if bilingual content is removed from PaLM training

- Much worse translation quality with smaller (1B, 8B) PaLM models
Convergence of LM and MT

- Both Language Models and Machine Translation are built with the same Transformer architecture

<table>
<thead>
<tr>
<th>TRANSLATION</th>
<th>LANGUAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Der braune Hund is freundlich</td>
<td>The [MASK] dog is [MASK].</td>
</tr>
<tr>
<td>The brown dog is friendly</td>
<td>The brown dog is friendly</td>
</tr>
</tbody>
</table>

- This data can be mixed in any way

- Practical considerations: Large Language Models may be too big for use
questions?