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or, towards:

The Cocktail Party Problem?

1E.C. Cherry, Some Experiments on the Recognition of Speech, with One
and with Two Ears. The Journal of the Acoustical Society, 1953
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Speech Enhancement
(and Separation)
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What is speech enhancement?

* Recordings of speech often have a lot of
degradation and interfering sounds

4b) 4b) 4b)

* Speech enhancement is the task of removing
iInterferences or reconstructing the clean speech
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Why do we care?

* Human listening can always be the end goal

* Degraded audio often leads to degraded
performance of downstream systems

* Robust speech technology often integrates
techniques developed in enhancement
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Mathematical Formulation
Input: x(t) = s(t) +n(t)
Output: y(@®) = 3(t)

We can also treat n(t) more precisely:

Reverberation: x(t) = 5(t) * hgp(t)
Separation: x(t) = 51(t) + 5,(2)
All together: ¢ K
X(©) = ) [5c(8) #he(®)] + ) me(®)
c=1 k=1
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Performance Evaluation

* Full Reference
 SI-SDR,-SNR, (SDR, SIR, SAR), ...
- PESQ, STOI, POLQA, ... S1_SDR — 1010&0%
 No Reference for Bsts Ls—pB3
 Human listening tests! (MOS)
e ITU P.563, SRMRnorm, ...

* DNSMOS, SQAPP, ...

* Downstream Evaluation
* Impact on downstream speech tasks
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Significance of Ground Truth

Issues of ground truth are a significant
aspect of waveform-level tasks

* Non-full-reference metrics have large downsides,
full-reference (typically) require synthetic mixtures

* Neural network training targets typically require
targets and also require synthetic mixtures

 Domain mismatch can be a significant problem

* Practical approaches often avoid trying to directly
optimize the output waveform
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General Approach

* Speech enhancement methods generally fall
under the umbrella of “filtering”, with some
further broad categorizations:

temporal filtering vs. spectral filtering
estimation vs. decomposition

* These distinctions are in some sense arbitrary
and can often be considered equivalent
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Mask-Based Enhancement

Speech source ci(n, f) Speech + noise mixture z(n, f)

0 0.5 1 15 2 2.5 0 0.5 1 15 2 2.5

regression —»
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How do we estimate the filters?

* Can be learning-free, unsupervised, supervised

e Estimation of speech presence probability, noise
distribution, SNR, power spectra, etc.

 Nonnegative Matrix Factorization (NMF)

 Decompose magnitude/power spectrum into set of
distinct basis spectra

* Independent Component Analysis (ICA)

* Assumes mixture of mutually-independent stochastic
source signals
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Reverberation

* Room Impulse Response (RIR) captures room
reflections and mixes via convolution

About Reverbs

A
o Direct Sound
S
2]
0
o —
o
© '.. )
- ‘.. Early Reflections
o] s
n

.
.
A, .
-|.
aufmann, July 2007

=X
12 Image credit: Createc Beat Kaufmann i.y JOHNS HOPKINS

UNIVERSITY

Time



Spectral Effect of Reverberation

* Reverb results in spectral smearing

Frequency (kHz)
Frequency (kHz)

Time (sec) Time (sec)
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De-Reverberation

* Most successful practical approach is Weighted
Prediction Error (WPE)12 dereverberation

* The late tail reverberation is estimated and
cancelled via delayed linear prediction
* |terative procedure to continually update inverse filter

* Avoiding early reflections minimizes corruption of
direct path and issue of relative non-stationarity

* “Deep” extension via neural speech Power
Spectral Density (PSD) estimation?
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Speech Separation

e Speech separation aims to estimate single-
speaker waveforms from overlapping speech

* Relies on the spectral sparsity of speech
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Separation Pipeline
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Challenges in Training

Foundational approaches on mask-based loss:

* Deep Clustering (DPCL)
* Extract embedding for each STFT bin
* Ensure self-similarity of dominant bins from a speaker

* Permutation-Invariant Training (PIT)

 Compute minimum loss across all output
permutations, backpropagate from best permutation

e State-of-Art systems dominated by learned
spectral transforms with SI-SDR PIT loss

=X
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Target Speaker Extraction

* Given a recording and an enrollment utterance or
speaker representation, produce the clean
speech of the enrolled speaker

* Has elements of both speech separation and
speech enhancement
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Multichannel Enhancement

 Collecting audio simultaneously with multiple
microphones gives more information for the
underlying signals

e Particularly: multiple sensors allows for
localization, and multiple sources generally have
different locations
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Formulation

jUSt Cj (t)

(%
] W

X(0) = ) 6(6) Loy,

j=1 Urce (time—invariant)
spatialization ¢;(t) = a;(t) * s;(t)

T
I microphones  spatialized a;(t) = [ay; (@), ..., a;;(1)]
sources
can be RIR, delay/attenuation
Can approximate in STFT domain: “steering vector”:
a;(f) - d;(f)
a;(n, ) ~ a;(f) ! !
1 —2jmryjvs/c .
ci(n, f) = a;(f)si(n, f) Vamry; © ! e ~2mrijvs/c
d;(f) = 5 ~ :

X(Tl, f) = A(f)S(TL, f) ! / ! e~ 2jmrijvs/c L_Zj”rljvf/cl

V 4-7'[7"1]‘
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Beamforming

* “Delay and sum” beamforming aligns target
signal temporally and misaligns other signals for
constructive/destructive interference
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TDOA Estimation

* Beamforming requires the “time difference of
arrival” (TDOA)

 Generalized Cross-Correlation with Phase
Transform (GCC-PHAT)?

* Minimum Variance Distortionless Response
(MVDR) beamformer is computed in STFT domain
by minimizing the power of the interfering signal

* Weights can be computed from speech TF mask
* Amenable to neural estimation

=X
22 1C.H. Knapp (1976) i.y JOHNS HOPKINS

UNIVERSITY



23

...questions?
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(Speaker) Diarization
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What is speaker diarization?

B S

Who spoke when?

*other types of diarization exist, most notably language diarization
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Why do we care?

* Many speech systems “malfunction” in multi-
talker scenarios

* Closed captioning or meeting transcription
* Target speaker recognition

* Conversational analysis
e Biomarkers for emotional state
* Study of child language acquisition
* Social role (e.g. interruptions)
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Mathematical Formulation

e “label-free” time series multi-label classification

x[t] —| System

— y|t]

y € {O, 1}T><S

Order of speakers s; € S does not matter
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Metrics

hypothesis [NEE | HENEEEE EN En
reference - -
\ / roxt
miss fa  speaker Error

e Diarization Error Rate (DER%)

DER — false_alarm + missed_speech + speaker_error

total_speech

e Jaccard Error Rate (JER%)

S
ER = 1 false_alarm; + missed_speech;
S speech;

i=1

=X
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Approaches to Diarization

* Traditional “Clustering” Approaches
* Multi-stage pipelines with independent components
* Individually tuned
* Less conducive to overlap detection

 Neural (End-to-End) Approaches
* Trained to produce outputs directly
e Can be jointly optimized
* Resource intensive
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Traditional Approach

initial » speaker > scoring/ b ,
segmentation representation clustering resegmentation
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Initial Segmentation

* Speech Activity Detection (SAD)
e Basic speech presence classifier
* Generally neural, statistical has been used

* Less commonly can be more sophisticated
e Speaker change detection
e Overlap detection
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Speaker Representation

e Qut-of-the-box Speaker ID systems
* |-vectors, x-vectors, d-vectors

* Typically extracted under a sliding window

e Scoring can be tuned to test conditions or smaller
speaker variability
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Clustering

* Many clustering approaches
* Agglomerative clustering
* Spectral clustering

* Major challenge is speaker counting
e Ground truth (not necessarily optimal!)

e Speaker count estimation
* Thresholding/Calibration
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Resegmentation

 Variational Bayes HMM of x-vectors (VBx)

* Probabilistic model treating x-vectors as observation of
latent states corresponding to speakers

 Models the temporal aspect of conversations

* Target Speaker Voice Activity Detection (TS-VAD)

* Speaker-specific speech activity classifier based on
Input speaker representation

* Handles overlap!
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Neural Diarization

* Most methods derived from End-to-End Neural
Diarization (EEND)? approach

Label (Permutation 1) Label (Permutation 2) 1
[ ) m] Speaker 1 Speaker 2 [ N J
. ) sveker 2 speakert | 77

PIT loss

Binary cross entropy Minimum Binary cross entropy

Label (One-hot conversion)
0: Non-speech, 1: Speaker 1,
2: Speaker 2, 3: Overlapping

(EET 2 b2 [311])

Linear + Sigmoid T
t Deep Clustering loss
Stacked BLSTM .

)

Stacked BLSTM

Input 'H.v ,

Linear + Tanh + Normalize

UNIVERSITY
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Extension to Arbitrary Speakers

* Encoder-Decoder Attractors (EEND-EDA)® are
used to model a variable number of speakers

Labels yi ¥2 - yr 1 1 - 1 0 Labels 1
Diarization . . . Attractor existence
results yioyzomo I pro 2 s bst probabilies ‘
tot A ot
Sigmoid Linear + Sigmoid

J 39 R a; a -+ as as41  Attractors

| AN I N

| LSTM encoder L= ] 0% [~ J=—[ ][] LSTM decoder

A ... LT ----------- oo T T .

Embeddings e e €T 0 o -~ 0 0 Zero vectors
t T t § 5
SA-EEND . Encoder-Decoder Based Attractor Calculation !
Audio feaures x1 X2 -+ X7
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Practical Considerations

* Large amounts of data are required

* Memory requirements in training
« Someone may talk long periods apart

* Processing long recordings
* Must track speakers across block processing
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System Ensembling

* Different systems may have different strengths
and weaknesses (e.g. traditional vs. neural)
 DOVER?® and overlap-aware extension DOVER-Lap?

1 1 1 1 1
SpeakerA ! I 1o I Speaker B
1 ] ] 1 ]
] ] 'l 'l 2
i AV, 4 1
Hypothesis 1 / 2 .
1 1 1 1
1 1 L —
Hypothesis 2 bt Jorsires)
/ X
1 1 1 1 1
Hypothesis 3 L_l, A i
'} g. 1
]

DOVER

DOVER-Lap

T0 7!1 7:2 ’7!3 7!4 Ts T6
Qi"" JOHNS HOPKINS
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Multichannel Diarization

* Multiple microphones improve localization, and
different talkers will be in different locations

* They may, however, move around

* Directional information from beamforming may be
integrated into the system

* Multiple audio signals may be used directly in the
system, integrating beamforming implicitly

JOHNS HOPKINS
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Multimodal Diarization

* Video may contain useful information for
diarization and we would like to use it

* Audio-visual diarization has been successfully
done using lip region of interest features?t
* Occlusions and out-of-frame issues pose a challenge

p—
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