Vision and Sign
Language

Marek Hruz
Department of Cybernetics, Faculty of Applied Sciences
University of West Bohemia in Pilsen

Czech Republic

‘ ) 4

z; Nv

3
) X & 4K

{
)4

|




Image Classification
Convolution FTW?



Image Classification - -
* Taks of assighing a class label to an image G e\

* Historically, handcrafted features and trained a classifier
* Works reasonably well for small, non-complex, well-defined data
* To allow the next big leap in computer vision a new dataset was
developed
* ImageNet - an image dataset organized according to the WordNet
hierarchy
* Total number of non-empty synsets: 21,841
* Total number of images: 14,197,122
* Number of images with bounding box annotations: 1,034,908
* SIFT + FVs in 2011 achieved Top-1 accuracy of 50.9% (1000

classes)



http://www.image-net.org/
https://wordnet.princeton.edu/

AlexNet 2012

* Introduces Convolutional Neural Networks to the task of
ImageNet classification siqmed

e The CNN is distributed on 2 GPUs

* Main features:
* Novel, deep CNN architecture
* ReLU non-linearity
* Overlapping max-pooling
* Data augmentation for overfitting reduction
* Dropout

* Achieves Top-1 accuracy of 63.3%

| Output Matrix


https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

CNN implications

* Convolutionalfilters can be visualized and explained
* The shift from algorithm design to data preparation

* Semantic representation in deep layers

mit.:e ~ " container s ip motor scooter

mite container ship motor scooter
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah

bumper car snow leopard
golfcart

fireboat

grille mushroom erry adagascar cat

convertible agaric dalmatian ELT | monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey




I VGG 2014
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@ convolution+RelLU

@ max pooling

| fully connected+ReLLU

7] softmax

* From Google

» Scheme for deeper models

* Small sizes of convolution
kernels (3x3 instead of 11x11)

* Back to non-overlapping pooling

L

* Achieves Top-1 accuracy of 74.4%


https://arxiv.org/pdf/1409.1556.pdf

ResNet 2015 weight layer
F(x) l relu N
weight layer identity

* Addresses the problem of vanishing and F(x) +x
exploding gradients

* Introduces residual (skip) connections

* They allow a better flow of the gradient

* Achieves Top-1 accuracy
of 78.6%

ResNet-18 A ALAPAN A,
=—=TResNet-34 34-layer
0 10 20 30 40 50
tter. (1ed)



https://arxiv.org/pdf/1512.03385.pdf

Convolutions
can Detect Objects?



Object Detection

* Task of recognizing and localizing an object

* Historically, two stages:
* Region proposal
* Region classification

. MS COCO e Pascal VOC CAT, DOG, DUCK

Object segmentation
* Recognition in context
e Superpixel stuff segmentation

* 9,993 annotated images

« 330K images (>200K labeled) e Objects365
* 1.5 million object instances » 365 categories
* 80 object categories 2 millionimages

* 91 stuff categories * 30 million bounding boxes

* 5 captions perimage
* 250,000 people with key points


https://cocodataset.org/#home
http://host.robots.ox.ac.uk/pascal/VOC/
https://www.objects365.org/overview.html

Faster R-CNN 2015
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https://arxiv.org/pdf/1506.01497.pdf

SSD early 2016

MAP@0.5 = 46.5% for

COCO
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https://arxiv.org/pdf/1512.02325.pdf

Learning and Inference

e [f there is sufficient loU of the GT box 10U =

and the anchor (default) box,

then itis considered a positive sample.
* Too many negative boxes — only take a few.
* Loss is the sum of classification and regression error.

* During inference more boxes can be predicted at the same
position — non-maximum suppression



(Vision) Transformers
Next big leap?



Transformers

e Attention Is All You Need

* Paper from BN WA kVA.

* Introduces the idea of using exclusively an Attention mechanism
in sequence processing deep models.

* Removes modeling of a state.

* The Encoder sees the whole sequence at once (or a part of it that
the memory allows).

e The Decoder can work either:

* Autoregressively (the currently output TOKEN is dependent
on the previous ones)

or

* Non-autoregressively (all TOKENSs are output at once
dependent on each other)
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https://arxiv.org/abs/1706.03762
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object queries

* End-to-End Object Detection with Transformers

* Paper from EV2Ar{d. DETR.

* Uses a (pre-trained) CNN to extract high-level visual features.

* Processes these features as a sequence by a Transformer.

* Employs a 2D Positional Encoding to help model the geometry in an

Image.

* First half of PE encodes the x position, second half the y position.
* A nhon-auto regressive decoder predicts class and box of an object.



https://arxiv.org/abs/2005.12872

Emergent properties

self-attention(430, 600) se f-attention(450. 830)

. ~ . .
self-attention{520, 450) » o ' self-attention{440, 1200)

Fig. 3: Encoder self-attention for a set of reference points. The encoder is able to sep-
arate individual instances. Predictions are made with baseline DETR model on a vali-
dation set image.



Panoptic Segmentation (almost) for free

Encoded image Resnet features
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Fig. 8: Illustration of the panoptic head. A binary mask is generated in parallel for each
detected object, then the masks are merged using pixel-wise argmax.
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Fig. 7: Visualization of all box predictions on all images from COCO 2017 val set
for 20 out of total N = 100 prediction slots in DETR decoder. Each box prediction is
represented as a point with the coordinates of its center in the 1-by-1 square normalized
by each image size. The points are color-coded so that green color corresponds to small
boxes, red to large horizontal boxes and blue to large vertical boxes. We observe that
each slot learns to specialize on certain areas and box sizes with several operating
modes. We note that almost all slots have a mode of predicting large image-wide boxes
that are common in COCO dataset.



Learning and Inference

* There is a maximum number of objects that can be detected
(N=100).

* The predictions have to be associated with GT.
* Hungarian loss (a.k.a. linear sum assignment).
* The cost matrix for Hung. Loss is computed from Generalized loU.

* The loss is then (almost) the same as in Faster RCNN.

* There is an “empty” class whose boxes must not overlap with GT
boxes.


https://giou.stanford.edu/GIoU.pdf

Vision Transformer (ViT) Transformer Encoder
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e Paper from [l @A), ViT v =1NC0

* Pure Transformer architecture without convolutions.

* Animage is divided into equal parts, the parts are flattened and
used as an inputinto a “bert-like” architecture with a CLASS
token.

* Much less inductive bias than CNNs.

* More parameters than CNNSs, but larger throughput of images.


https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929

Distillation in £ £
Transformers & 2

i)
* Training data-efficient image transformers &
distillation through attention
* Paper from IS0l I g2l w0 d. DEIT
* Adistillation token is used to incorporate knowledge
from a teacher.
* The teacher is assumed to be a strong classifier (i.e., Self_aFtFtNention
a large CNN). o
* Since Transformers have generally higher throughput © ©
of images it makes sense to distil the information NN
from CNN to Transformer. class patch distillation

token tokens token


https://arxiv.org/abs/2012.12877
https://arxiv.org/abs/2012.12877

Distillation details

1ardDisti 1 1
Lot ™™ = 5 Len(W(Zs),y) + 5 Len(¥(Zs). y1).

 Two variants — soft and hard labels from the teacher.

N

glnbdl (1 - )'CCI-'J(’Q/J(ZH): H) + }‘TEKL(W{}(ZE/T): U(ZT/T))

* Interesting discoveries:
* Class and Distillation tokens converge to different vectors.

* At first (input) layer they are very dissimilar (cos=0.06) at the last level they
are very similar (cos=0.93).

* Using two randomly initialized class tokens converges to quasi-identical
vectors (cos = 0.999).

* Hard distillation is simpler and performs better.
* Very good for finetuning to higher resolution.



Self-supervision (aka distillation without
label)

* Emerging Properties in Self-Supervised Vision Transformers

» Paper from [Y311BXPX]. DINO.

* Self-supervised ViT features contain explicit information about the
semantic segmentation of an image, which does not emerge as clearly
with supervised ViTs, nor with convnets.

e These features are also excellent k-NN classifiers.

Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.


https://arxiv.org/abs/2104.14294

Training

* Two global views and multiple local views are generated using
MultiCrop augmentations.

Previous approaches multi-crop



https://dl.acm.org/doi/abs/10.5555/3495724.3496555

Training

* Two global views and multiple local views are generated using
MultiCrop augmentations.

* Global views are passed to the Teacher.
* All views (global+local) are passed to the Student.
* Cross-entropy between Teacher and Student is computed as loss.

min > Y H(P(x), P(a")).

- ze{z],zj} eV
:;:’7?1::;


https://dl.acm.org/doi/abs/10.5555/3495724.3496555

Training 2 min Y Y H(R(@),RE)

" ze{af i} eV

o

* The Student ‘s parameters are updated by gradient descent.

* The Teacher’s parameters are updated as exponential moving
average.

0, — A0, + (1 — A)6,
* The softmax of the Student and Teacher is sharpened.
* The Teacher’s softmax is also centered.
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Figure 2: Self-distillation with no labels. We illustrate DINO in
the case of one single pair of views (x1, x2) for simplicity. The
model passes two different random transformations of an input
image to the student and teacher networks. Both networks have
the same architecture but different parameters. The output of the

teacher network 1s centered with a mean computed over the batch.

Each networks outputs a K dimensional feature that 1s normalized
with a temperature softmax over the feature dimension. Their
similarity is then measured with a cross-entropy loss. We apply a
stop-gradient (sg) operator on the teacher to propagate gradients
only through the student. The teacher parameters are updated with
an exponential moving average (ema) of the student parameters.

Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt: student and teacher networks

# C: center (K)

# tps, tpt: student and teacher temperatures

# 1, m: network and center momentum rates

gt .params = gs.params

for x in loader: # load a minibatch x with n samples
xl, x2 = augment (x), augment(x) # random views

sl, s2
tl, t2

gs(xl), gs({x2) # student output n-by-K
gt(xl), gt(x2) # teacher output n-by-K

loss = H(tl, s2)/2 + H(t2, sl)/2
loss.backward() # back-propagate

# student, teacher and center updates
update (gs) # SGD

gt.params = l«gt.params + (l-1)*gs.params
C = mxC + (l-m)+cat([tl, t2]) .mean(dim=0)

def H(t, s):

t = t.detach() # stop gradient

8 = softmax(s / tps, dim=1)

t = softmax((t - C) / tpt, dim=1) # center + sharpen
return - (t * log(s)) .sum(dim=1) .mean ()
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Centering enforces a uniform distribution.
The distribution is along all the inputs (i.e.,
images)

This means we want our classifier to make
different decisions given different inputs.
Ideal for uniformly distributed data.

The centering is applied to the teacher
softmax (i.e., target for the student).



Sharpening

e*/t

D ek /T

f&x) =

« We can only callit sharpeningift < 1.
* After softmax the peaks will be higher.

* Both teacher and student /
are sharpened, but with

different constants.




Training details

 ViT from scratch.
e The same architecture for teacher and student.

* Learning rate
* 10 epochs linear warm-up
» after decay with cosine schedule

* Weight decay has also cosine schedule from 0.04 t0 0.4

* Teacher — Polyak-Ruppert averaging with exponential decay.

* 0, « A0, + (1 — 1)6, A follows cosine schedule from 0.996 to 1.
* Teacher T has linear warm-up from 0.04 to 0.07 in 30 epochs.

e Studenttissetto0.1.



DINO features

* A Head is put after the feature maps (ResNet) or CLS token.

* The Head has three layers with hidden dimension 2048 followed
by |12 normalization.

* Then a weight-normalized FC layer with K dimensions.
* Different heads were tested.

# proj. head linear layers 1 2 3 4
¢ &) w/ 12-norm bottleneck - 62.2 68.0 693
= i - w/o 12-norm bottleneck  61.6 629 0.1 0.1
: 2 | E Output dimension. In this table, we evaluate the effect
2| e L smeMip of varying the output dimensionality K. We observe that a
\ Bxsst_/ L Bx3st /)
[ : [ K 1024 4096 16384 65536 262144

k-NN top-1 67.8 693 692 69.7 69.1

Figure 9: Projection head design w/ or w/o 12-norm bottleneck.



Evaluation protocol

e Linear
* Alinear classifier with fixed backbone is trained on a val set.
* Test set is classified using this classifier.

* Drawbacks:
* Needs time to learn.
* Eachtask needs new learning.
* Unstable learning — each task needs different parameters.

* k-NN
* Eachimage in train set is processed by DINO.

* Test sample is classified using 20-NN classification.
* Stable through the tasks.



Method Arch. Param. im/s Linear E-NN Comparison across architectures

SCLR [17] RN30w4 375 117 76.8 69.3
Supervised RN50 23 1237 79.3  79.3 SwAV [10] RN5S0w?2 93 384 773 673
SCLR [12] RN50 23 1237  69.1  60.7 BYOL [30] RN50w?2 93 384 774 _
MoCov2 [15] RNS50 23 1237 71.1 619 DINO ViT-B/16 ]5 312 782  76.1
InfoMin [67]  RNS50 23 1237 730 65.3 SwWAV [10] RN50w5 586 76 785  67.1
BarlowT [51]  RNS50 23 1237  73.2  66.0 BYOL [30] RN50w4 375 117  78.6 _
OBoW [27] RN50 23 1237 738 619 BYOL [20)] RN200w2 250 123 79.6 739
BYOL [30]  RN50 23 1237 744 648 DINO VIT-S/8 21 180 79.7 783
DCv2 [10] RNS50 23 1237 752 67.1 SCLRv2 [13] RNI5S2w3+SK 794 46  79.8 T3.1
SwAV [10] RN50 23 1237 753 657 DINO ViT-B/8 85 63 80.1 774
DINO RN50 23 1237 753 67.5
Supervised VIT-S 21 1007 79.8 79.8
BYOL" [30]  ViT-S 21 1007 714  66.6
MoCov2* [15] VIT-S 21 1007 727 644
SwAV™ [10] ViT-S 21 1007 735 663

DINO VIT-S 21 1007 77.0 745




Table 3: Image retrieval. We compare the performance in retrieval
of off-the-shelf features pretrained with supervision or with DINO
on ImageNet and Google Landmarks v2 (GLDv2) dataset. We
report mAP on revisited Oxford and Paris. Pretraining with DINO
on a landmark dataset performs particularly well. For reference, we
also report the best retrieval method with off-the-shelf features [57].

ROx RPar
Pretrain Arch. Pretrain M H M H
Sup. [57] RNI101+R-MAC ImNet 498 18.5 74.0 52.1
Sup. ViT-§8/16 ImNet 335 89 630 372
DINO ResNet-50 ImNet 354 11.1 559 275
DINO VIiT-5/16 ImNet 41.8 13.7 63.1 344
DINO ViT-5/16 GLDv2 51.5 243 753 51.6

Table 5: DAVIS 2017 Video object segmentation. We cvaluate
the quality of frozen features on video instance tracking. We report
mean region similarity .7,,, and mean contour-based accuracy JF,,.
We compare with existing self-supervised methods and a supervised
VIT-5/8 trained on ImageNet. Image resolution is 480p.

Method Data Arch. (T&F)m JIm  Fm
Supervised

ImageNet INet ViT-S/8 66.0 63.9 68.1
STM [4£] I/D/Y RNS50 81.8 79.2 843
Self-supervised

CT[/]] VLOG RN50 48.7 464  50.0
MAST [40]  YT-VOS RNI8 65.5 63.3 67.6
STC [37] Kinetics RNI18 67.6 64.8 70.2
DINO INet VIT-5/16 61.8 60.2 634
DINO INet ViT-B/16 62.3 60.7 639
DINO INet ViT-S§/8 69.9 66.6 73.1
DINO INet VI'T-B/8 71.4 67.9 749

https://davischallenge.org/images/DAVIS-2017-TrainVal.mp4



https://davischallenge.org/images/DAVIS-2017-TrainVal.mp4

Figure 3: Attention maps from multiple heads. We consider
the heads from the last layer of a ViT-S/8 trained with DINO and
display the self-attention for [CLS] token query. Different heads,
materialized by different colors, focus on different locations that
represents different objects or parts (more examples in Appendix).




Ab latl O n Table 7: Important component for self-supervised ViT pre-
training. Models are trained for 300 epochs with ViT-5/16. We

Supervised study the different components that matter for the k-NN and linear
(*“Lin.”) evaluations. For the different variants, we highlight the
differences from the default DINO setting. The best combination
1s the momentum encoder with the multicrop augmentation and

the cross-entropy loss. We also report results with BYOL [20],
MoCo-v2 [15] and SWAV [10].

Method Mom. SK MC Loss Pred. Ek-NN Lin.

. DINO v X v CE X 72.8 76.1

2 CE 0.1 0.1
Random  Supervised DINO ) ; :: j CE i 779 76.0
ViT-S/16 22.0 27.3 45.9 A v X X CE X 67:9 72: 5
ViT-S/8 21.8 Z3.1 44.7 5 s X /  MSF X 52.6 62.4
Figure 4: Segmentations from supervised versus DINO. We vi- i, v X v cF v .8 5.0
sualize masks obtained by thresholding the self-attention maps to 7 BYOL v X X MSE. v 66.6 71.4
keep 60% of the mass. On top, we show the resulting masks for 2 MoCov? e X X INCE X 62.0 71.6
a ViT-S/8 trained with supervision and DINO. We show the best 5 SWAV X % % CE X 64.7 71.8

head for both models. The table at the bottom compares the Jac- : i i
card similarity between the ground truth and these masks on the SK: Sinkhorn-Knopp, MC: Multi-Crop, Pred.: Predictor

validation images of PASCAL VOCI12 dataset. CE: Cross-Entropy, MSE: Mean Square Error, INCE: InfoNCE
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tween different types of teacher network. The momentum encoder
leads to the best performance but is not the only viable option.



Feel good images

Figure 8: Self-attention for a set of reference points. We visualize the self-attention module from the last block of a ViT-S/8 trained with
DINO. The network is able to separate objects, though it has been trained with no supervision at all.
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Sigh Language

The Deep Learning Perspective



Sigh Language (according to ChatGPT)

* Rich and complex form of communication.

1. Manual Components: These are the elements of sign language that involve the hands and arms.

1. Handshapes: Different configurations of the fingers and hands represent specific letters, words, or
concepts. Each sign is formed by combining these handshapes in various ways.

2. Movements: The motion and direction of the hands and arms play a crucial role in conveying meaning.
Movements can indicate actions, locations, or transitions between ideas.

3. Locations: The space around the signer's body is divided into specific locations, each representing
different grammatical or lexical elements. These locations are used to indicate subjects, objects, or
points of reference.

4. Palm orientation: The way the palm faces can alter the meaning of a sign. Whether the palm is facing
up, down, to the side, or inward can change the interpretation of the gesture.

2. Non-manual Components: These aspects of sign language involve facial
expressions, body posture, and other visual cues that accompany manual signs.

1. Facial expressions: Expressive facial movements are crucial in sign language, as they convey grammatical
information, emotions, and emphasis. Different facial expressions can change the meaning or intensity of a sign, just
as intonation does in spoken language.

2. Body language: Body posture, stance, and movement provide additional context and meaning to signs. They can
indicate the speaker's attitude, intention, or the relationship between different elements in a sentence.

3. Eye gaze: Eye contact and direction play a significant role in sign language conversations. They signal turn-taking,
indicate who is the subject or object of a sentence, and establish rapport between signers.



Continuous SL
Recognition

>

Sign Language Translation

DAZU
(TO)

SIGN LANGUAGE VIDEO

SIGN LANGUAGE GLOSSES

KOMMEN MILD DARUM AB FREITAG SCHNEE NICHT-MEHR

(COME) (MILD) (THEREFORE) (FROM) (FRIDAY) (SNOW) (NO-MORE)

..................................................................
...........

hY

Aldbddadbddddendd

Da auch mildere luft heranflieBt ist schnee ab freitag kein thema mehr. «
(As milder air flows in, snow is no longer a concern on Friday.)

Spoken Language Translations

Sign Language Translation
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Pose Estimation

* Detection of Landmarks (e.g., joints) no Face, and Body

* We focus on Face Landmark Detection, Pose Detection, and Hand
Landmark Detection.



https://developers.google.com/mediapipe/solutions/vision/face_landmarker
https://developers.google.com/mediapipe/solutions/vision/pose_landmarker
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker

Pose Definition - Face

* The facial landmarks are very
dense.
* Many are linearly dependent.
* Hand-picked important
landmarks.
* We want to represent:
* Eyebrows
* Eyes
* Mouth
* Nose (for reference)



Pose Definition - Body
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O - nose

1 - left eye (inner)
2 - left eye

3 - left eye (outer)
4 - right eye (inner)
5 - right eye

6 - right eye (outer)
7 - left ear

8 - right ear

9 - mouth (left)

10 - mouth (right)
11 - left shoulder
12 - right shoulder
13 - left elbow

14 - right elbow

15 - left wrist

16 - right wrist

17 - left pinky

18 - right pinky

19 - left index

20 - right index
21 - left thumb

22 - right thumb
23 - left hip

24 - right hip

25 - left knee

26 - right knee

27 - left ankle

28 - right ankle
29 - left heel

30 - right heel

31 - left foot index
32 - right foot index



Pose Definition - Hand
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SPOTER architecture

* Pose based isolated sign language
recognition.

* Aclever way of normalization and
augmentation.

* Single learned query decoder.
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Pose pre-training
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Pose normalization
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Face normalization
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Visual pre-training

 Masked Autoencoders (Vision Transformers), and DINO
* Informed masking of images - mask only relevant parts.
* Given a pose, we can mask individual parts of the human body.

e Similar to masking whole words in sentences rather than random characters.
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LLaMA

* Large Language Model from Meta.
* Transformer decoder architecture.

* Interesting properties:
* Pre-normalization (RMSNorm)
* SwiGLU activation
* Rotary Embeddings

* LLaMA 2 space:
* https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat

* LLaMa 3 blog:
* https://huggingface.co/blog/llama3d



https://arxiv.org/abs/2302.13971
https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat
https://huggingface.co/blog/llama3

LLaVa

* Visual Instruction Tuning.

* We leave the LLM as is and learn a projection of the image
features, so that the language model can reason about the image.

Language Response X, . . .

Language Model fqg
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Vision Encoder X

v Image Xq Language Instruction


https://arxiv.org/abs/2304.08485

Stable Diffusion

Bonus material


https://arxiv.org/abs/2112.10752

High-Resolution
Image Synthesis

with Latent
Diffusion Models

a.k.a STABLE DIFFUSION

Robin Rombach, Andreas
Blattmann, Dominik Lorenz,
Patrick Esser, Bjorn Ommer



https://arxiv.org/search/cs?searchtype=author&query=Rombach%2C+R
https://arxiv.org/search/cs?searchtype=author&query=Blattmann%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Blattmann%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Lorenz%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Esser%2C+P
https://arxiv.org/search/cs?searchtype=author&query=Ommer%2C+B

Introduction

* Image synthesis model

* Democratizing High-Resolution Image Synthesis

e Diffusion Models (DMs) are trained for many GPU days (150 — 1000 V100
days)
* Inference is also expensive (50k samples takes 5 days on single A100)




Departure to Latent Space

* Analysis of already trained DMs

* Perceptual Compression

 Removes high-frequency details but still
learns little semantic variation

* Semantic Compression

* The actual generative model learns the
semantic and conceptual composition of
the data

 Latent diffusion models (LDMs)

 as an effective generative model and a
separate mild compression stage that only
eliminates imperceptible details

Distortion (RMSE)
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Tralning overview

* First, we train an autoencoder that provides a lower-
dimensional (and thereby efficient) representational space that
IS perceptually equivalent to the data space

* There Is one general autoencoder trained once

* Diffusion model is trained on the latent representation

Latent Space
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Perceptual Image Compression
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https://arxiv.org/pdf/2012.09841.pdf

Latent Diffusion I\/Iodels
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Conditioning Mechanism

* Implemented as a cross-attention mechanism in U-Net

* The conditioning (text, blurred image, segmentation map, ...

processed by an expert model 1,4 resulting in a vector representation

* E.g., for the text conditioning it might be a Transformer Encoder suc

as BERT

* Depending on the task, the tyis either concatenated to
the input latent representation (image-to-image)
* Orisusedinthe U-Net Conv modules
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Text-to-Image Synthesis on LAION. 1.45B Model.

'A street sign that reads A zombie in the "An image of an animal "An llustration of a slightly ‘A painting of a ‘A watercolor painting of a "A shirt with the inscription:

“Latent Diffusion” ’ style of Picasso’ half mouse hall octopus’ conscious newral network’ squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!” ’

i
(" LATENT )
DIFFUSION

Generative
Models!

T
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Figure 5. Samples for user-defined text prompts from our model for text-to-image synthesis, LDM-8 (KL), which was trained on the
LAION [ /5] database. Samples generated with 200 DDIM steps and n = 1.0. We use unconditional guidance [ 2] with s = 10.0.
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Figure 8. Layout-to-image synthesis with an LDM on COCO [+],
see Sec. 4.3.1. Quantitative evaluation in the supplement D.3.



Figure 9. A LDM trained on 256° resolution can generalize to
larger resolution (here: 512 x 1024) for spatially conditioned tasks
such as semantic synthesis of landscape images. See Sec. 4.3.2.
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Figure 10. ImageNet 64—256 super-resolution on ImageNet-Val.
LDM-SR has advantages at rendering realistic textures but SR3
can synthesize more coherent fine structures. See appendix for
additional samples and cropouts. SR3 results from [/].



Figure 11. Qualitative results on object removal with our big, w/
Jt inpainting model. For more results, see Fig. 22.
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