Leveraging Pre-training Models
for Speech Processing

I. OVERVIEW

Pre-training has proven to be crucial in advancing the state
of speech, natural language processing (NLP), and computer
vision (CV) research in recent years. The network is first
trained via a pre-training task, leveraging ubiquitous unlabeled
data, which is also known as self-supervised learning (SSL).
The pre-training is usually application-agnostic, and the pre-
trained models are transferred to multiple downstream applica-
tions. SUPERB [1]-[3], LeBenchmark [4], and NOSS [5] are
the initial effort to evaluate the pre-trained models on their
generalizability across various speech and audio processing
tasks and find that the pre-trained models achieve outstanding
performance on a wide range of tasks. The publicly available
pre-trained models significantly benefit the small players. For
example, with a pre-trained model, one only needs to train a
two-layer LSTM as a downstream model to achieve 3% WER
on Librispeech [1]. Without pre-training, a network with more
than ten layers is usually required to achieve the same-level
performance.

The project aims to expand the existing benchmarking to
provide a comprehensive understanding of pre-trained net-
works and develop new techniques to leverage the pre-trained
models better. We believe this project will broadly push the
front of network pre-training technology in speech. We have
explored the following research directions.

Greener Pre-trained Models. Despite the success of these
vast models, they require large memory and high computa-
tional costs [6]. To what extent the large capacity is needed is
an open question, but the high computation cost and memory
usage pose a high technical barrier to the adoption, and,
more importantly, training of these models. In this project, we
aim to tackle the high computational cost of self-supervised
learning by developing efficient pre-trained models regarding
computation and memory footprint. We start by exploring
various approaches of network compression, including itera-
tive pruning, low-rank approximation, knowledge distillation,
etc., to compress pre-trained networks. These technologies
are helpful in NLP [7], but have not been fully explored in
pretrained speech models. The results are in Section II and
submitted to ICASSP 2023 [8]. We observe that in speech
processing, the number of frames along the time axis is often
the dominant factor in runtime. In Section III, we investigate
subsampling techniques to reduce sequence length. The results
have been published at SLT 2022 [9].

Model Robustness. The pre-training models show out-
standing performance on various applications, but their failure
modes are still unclear. Domain shifts caused by mismatches
between training data and testing data usually occur in real-
world scenarios. Are pre-training models robust to domain

shift? In this project, we focus on the setting that the training
data of downstream tasks contain clean speech while the
testing data has distortions. There is some preliminary research
about domain shift [10], [11] of pre-training models, but here
we conducted a study focusing on compressed models, and
we further study how to make the pre-trained models more
robust. The results are shown in Section IV and have been
published by SLT 2022 [12].

Visual-enhanced Pre-trained Models. It has been known
that visual information improves speech representations [13].
Much effort was put into using paired images and spoken
captions to help speech processing [14], and they are usu-
ally called visually grounded speech models (VGS). E.g.,
the recent Fast-Slow Transformer for Visually Grounding
Speech (FaST-VGS and FaST-VGS+ ) succeeds in many
speech processing tasks by utilizing transformers and cross-
modal attention mechanisms to perform image-speech retrieval
and semantic tasks [13], [15]. Moreover, VGS models trained
with retrieval objectives can extract semantic and word-level
information from speech [16], which is difficult to achieve
by training solely with speech [17]. This project focuses on
leveraging not only paired image-speech data but also an
image-text pre-trained model to enhance speech SSL models.
By taking advantage of paired image-speech and image-text
data, we can bridge speech and text domains via images. The
results are in Section V and published at SLT 2022 [18].

How to use the pre-trained models. So far, there are two
main methods of using the speech pre-training models: (1)
freezing the representation models and using them as feature
extractors, and (2) fine-tuning the representation models with
downstream tasks. Are there other ways to use them? This
project looks for more efficient ways to leverage the pre-
trained models in downstream tasks. In the NLP community,
the adapter-based method [19], [20] and prompt/instruction
learning [21] have achieved competitive performance com-
pared with fine-tuning, but the exploration in speech is insuffi-
cient. In Section VI, we show the exploration results of using
adapters in speech pre-training models, and the results were
published in SLT 2022 [22]. On the other hand, in Section VII,
we explore the possibilities of using prompt learning on speech
pre-training models, and some preliminary results have been
published at INTERSPEECH 2022 [23], while more complete
results are submitted to ICASSP 2023 [24].

Pre-trained Models for Prosody. Here we expand the use
of pre-trained techniques for modeling prosody. Previous work
has studied the ability of pre-trained models to extract phonetic
and speaker information [1], [4]. However, it is unclear
whether they can extract prosodic information from speech,
which is essential for interactive dialogue systems. The project
extends the existing pre-training models to support prosody for



pragmatic-related classification tasks, including turn-taking,
micro-emotion, and prediction of response prosody. The re-
sults are presented in Section VIII and published in SLT
2022 [25]".

Pre-trained Models for low-resource South African lan-
guages. We study how self-supervised pre-training and semi-
supervised training can be used to leverage untranscribed
audio data in underrepresented languages. In semi-supervised
training, the initial acoustic model is initialized with a flat-
start initialization or with cross-lingual transfer learning with
spectral representations as inputs. We propose another ini-
tial acoustic model trained on learned multilingual speech
representations. In particular, we explore how 200 hours of
untranscribed South African soap operas data can help to
improve the initial acoustic model trained only on 12.7 hours
of manually transcribed code-switched speech between four
South African languages and English [26]. Please refer to
Section IX for the results. The results have been submitted
to ICASSP 2023 [27].

Unsupervised Automatic Speech Recognition. During the
workshop, we developed the ESPnet Unsupervised ASR Open-
source Toolkit (EURO), an end-to-end open-source toolkit
for unsupervised ASR (UASR). EURO adopts the state-of-
the-art UASR learning method introduced by the Wav2vec-
U [28], originally implemented at FAIRSEQ, which lever-
ages self-supervised speech representations and adversarial
training. In addition to wav2vec2, EURO extends the func-
tionality and promotes reproducibility for UASR tasks by
integrating S3PRL and k2, resulting in flexible frontends
from many self-supervised models and various graph-based
decoding strategies. EURO is implemented in ESPnet and
follows its unified pipeline to provide UASR recipes with
a complete setup. This improves the pipeline’s efficiency
and allows EURO to be easily applied to existing datasets
in ESPnet. Extensive experiments on three mainstream self-
supervised models demonstrate the toolkit’s effectiveness
and achieve state-of-the-art UASR performance on TIMIT
and LibriSpeech datasets. EURO will be publicly available
at https://github.com/espnet/espnet, aiming to
promote this exciting and emerging research area based on
UASR through open-source activity. For more information
about EURO, please refer to Section X-A. The introduction of
EURO has been written as a paper and submitted to ICASSP
2023 [29].

Usage Extension of Unsupervised ASR. Spoken language
understanding (SLU) is a task aiming to extract high-level
semantics from spoken utterances. Previous works have inves-
tigated the use of speech pre-trained models and textual pre-
trained models, which have shown reasonable improvements to
various SLU tasks [30]. However, because of the mismatched
modalities between speech signals and text tokens, previous
methods usually need complex designs of the frameworks.
We proposes a simple yet efficient unsupervised paradigm that
connects speech and textual pre-trained models, resulting in an
unsupervised speech-to-semantic pre-trained model for various
tasks in SLU. To be specific, we propose to use unsupervised
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ASR as a connector that bridges different modalities used in
speech and textual pre-trained models. Our experiments show
that unsupervised ASR itself can improve the representations
from speech self-supervised models. More importantly, it is
shown as an efficient connector between speech and textual
pre-trained models, improving the performances of five dif-
ferent SLU tasks. Notably, on spoken question answering
(SQA) [31], we reach the state-of-the-art result over the
challenging NMSQA benchmark. The results are shown in
Section X-B and submitted to ICASSP 2023 [32].

The 2022 Jelinek Memorial Summer Workshop on Speech
and Language Technologies was an incredible opportunity
for an international team of experts to come together and
develop cutting-edge speech SSL technology. Hosted at the
prestigious Johns Hopkins University, this six-week workshop
was made possible thanks to the generous support of Amazon,
Microsoft, and Google. The team was also grateful for the
computational resources provided by the Taiwan Web Service
(TWS) and the Maryland Advanced Research Computing
Center (MARCC). For more information about the amaz-
ing team behind this project, please visit their webpage at
https://jsalt-2022-ssl.github.io/.

II. SSL MODEL PARAMETER COMPRESSION
A. Introduction - Model Compression

Model compression as a concept is broad. Any approach
that returns a small yet performant model contributes to the
trade-off and should be considered in the opportunity cost
of compression. Common compression techniques, such as
iterative pruning [33]-[35], low-rank approximation [36]-[38],
and knowledge distillation [39], have little in common, another
sign that the concept of model compression is broad. In fact,
training a small model from random initialization and neural
architecture search can both be treated as model compression,
though nothing is really compressed. In this report, we limit
the study to iterative pruning, low-rank approximation, and
knowledge distillation. We also provide a simple baseline,
where the forward process of the large model is stopped early.
Stopping the forward process early not only reduces computa-
tion, but also maintains satisfactory performance because low
layers are often already useful for downstream tasks [17].

Iterative pruning, low-rank approximation, and knowledge
distillation, have been explored extensively in the supervised
setting, for example, on automatic speech recognition [40] and
machine translation [41]. However, only recently are these
techniques applied to self-supervised learning. Some study
compression for a particular downstream task [42], while some
aim to maintain the self-supervised loss [43]-[46]. Moreover,
unlike regular tasks with a single objective, there are multiple
measurements to compare. In addition to the common accuracy
measures, some compare the number of parameters [44], while
some compare wall-clock time [46].

In this report, we focus on studying to what degree we
can maintain self-supervised loss when compressing and to
what degree maintaining the self-supervised loss leads to
generalization to different downstream tasks. We make several
contributions. We design a clean training pipeline to train a 12-
layer Transformer with a simplified HuBERT loss, focusing



on reproducibility. We compare iterative pruning, low-rank
approximation, and knowledge distillation for compressing the
pre-trained 12-layer Transformer. We also provide a compre-
hensive study of theoretical and practical speed-up of the
compression techniques, measuring the wall-clock time, the
number of parameters, and the number of multiply-accumulate
operations (MACs) per one second speech, charting the land-
scape of compressing Transformer-based self-supervised mod-
els.

B. MelHuBERT

Since the loss is not accessible for the pre-trained HuBERT?
we train a self-supervised model from random initialization.
We make several changes to simplify the training pipeline, in
line with the goal of model compression. Our model, Mel-
HuBERT, is a regular 12-layer Transformer that directly takes
Mel spectrograms as input, as opposed to wave samples in
HuBERT. The 7 convolutional layers in HuBERT, accounting
for 33% of MACs in HuBERT for producing 20-ms frames, are
removed in MelHuBERT. We train two variants, MelHuBERT-
10ms and MelHuBERT-20ms. MelHuBERT-10ms takes the
typical Mel spectrograms at 10 ms frame period, while
MelHuBERT-20ms splice every two frames to achieve a 20
ms frame period.

In addition to the slight modification in architecture, we
also simplify the training objective. We first follow HuBERT,
train a k-means model on Mel spectrograms, and quantize a
sequence of frames into a sequence of cluster labels. Instead
of using an ad-hoc training loss, we simply use cross entropy
to predict the cluster labels for a masked input. The loss is
only computed on the masked portion, similar to HuBERT.

C. Model Compression

In this section, we briefly review the specifics of model
compression techniques used in this report, including weight
pruning, head pruning, low-rank approximation, knowledge
distillation. Except knowledge distillation, the others can be
seen as instances of iterative pruning. Iterative pruning per-
forms the following two steps iteratively.

o Prune a block of weights.

e Train the pruned network until the loss converges.
What constitutes a block and how a block is chosen can be
customized. Pruning can be implemented by zeroing out the
chosen weights, or by avoiding the computation entirely. We
do not consider one-shot pruning as it typically achieves a
worse compression [47].

1) Weight Pruning: Weight pruning is one of the earliest
pruning algorithms [48]. The idea is based on the finding that
the increase in loss due to small changes to the weights of
neural networks can be quickly recovered by a small amount
of training. Weight pruning usually is an instance of iterative
pruning, which converges faster and with lower training loss
comparing to one-shot pruning. In this report, we adopt one
of the simplest criterion for pruning [34], [47], setting the
weight to zero when the absolute value is below a threshold.
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The threshold is determined based on the amount of remaining
weights to be pruned, and we will have a schedule for the
amounts to be pruned in the experiments.

We follow the usual implementation [34], using a binary
mask to keep track of what weights are pruned. Weights that
are pruned are never instantiated again. Since the mask does
not exhibit any structure, speed-up of weight pruning can only
come from sparse parallel computations or dedicated hardware
[33]. In this report, we do not explore these options and only
report theoretical speed-up.

2) Head Pruning: Head pruning is another iterative pruning
technique [35], where the unit of a block is the set of key,
query, and value weights for computing self-attention. Head
pruning becomes an option when heads in Transformers are
found not to be useful for particular tasks [49], [50]. Besides,
pruning heads can lead to significant reduction in computation,
considering the O(7?) computation for a sequence of length
T to compute the self-attention.

Similar to weight pruning, we can specify a threshold on
the L, norm of the weights, and prune heads based on the
desired amount to be pruned. Another option [50] is to use a
small data set {(z1,v1),..., (Zn,yn)} to compute a score

n
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for each head k, where L is the loss function, V) is the
attention multiplied by the value matrix, and % is its
gradient. This quantity considers the L; of both the attention
map and its gradient. This L; of the gradient is small when
the attention map has little effect on the loss, suggesting the
head is a good candidate to prune. Contrary to weight pruning,
the computation of self-attention can be avoided entirely when
pruned, so the approach can lead to speed-up without sparse
operations or dedicated hardware.

3) Low-Rank Approximation: Low-rank approximation as-
sumes that the weight matrix is low rank [36], and can be
approximated by factorization, such as singular value decom-
position [51]. Transformers have two feed-forward layers after
self-attentions, and the dimension after the first feed-forward
layer is typically large (e.g., 3072). Most of the computation
is due to the large dimension of this hidden layer. Despite
having the nonlinearity between the two feed-forward layers,
we find that the two weight matrices are both low rank. As
a result, instead of doing matrix factorization, we prune the
3072-dimensional hidden layers. This amounts to pruning the
columns of the first feed-forward layer and the corresponding
rows of the second feed-forward layer based on the sum of
their weight magnitudes.

4) Knowledge Distillation: Knowledge distillation trains a
neural network (a student) to match parts of another neural
network (a teacher) [52]. Matching the output of a teacher is
the most common, while matching the hidden layers are also a
viable option [53], [54]. In terms of the losses, KL divergence
is commonly used to match probability outputs, while Lo is
often used to match the hidden vectors [55]. In this report,
since MelHuBERT uses cross entropy for training, we simply
use KL divergence as the distillation loss. There are several
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positive results with knowledge distillation, compressing self-
supervised models [44]-[46].

D. Experiments

Pre-training and the subsequent compression training are
done on the 360-hour subset of LibriSpeech. For the down-
stream tasks, we conduct phone recognition on 100-hour
subset of LibriSpeech, and speaker identification on VoxCeleb
1. All experiments follow default SUPERB settings [1], where
the pre-trained models are frozen after pre-training and not
fine-tuned®. The downstream tasks are allowed to use the
weighted sum of the 12 layers produced by the Transformer,
and the weights are learned together with the downstream
models.

When measuring the rate of compression, we define density
as the pruned amount over the total amount that can be pruned.
For example, the density in head pruning is the amount of
heads pruned over the total number of heads.

1) MelHuBERT: To train MelHuBERT-10ms and
MelHuBERT-20ms, we first run k-means with 512 clusters
on log Mel features extracted from the 360-hour subset of
LibriSpeech. We then train a 12-layer Transformer to predict
the cluster labels of each frame for MelHuBERT-10ms
or every other frame for MelHuBERT-20ms. We choose
a masking strategy that masks roughly the same amount
of content, 7% of masking probability with a mask of 10
frames for MelHuBERT-10ms and 14% with a mask of 5
frames for MelHuBERT-20ms. To compare, HUBERT uses
8% of masking probability with a mask of 10 frames. Both
MelHuBERT-10ms and MelHuBERT-20ms are trained on
single RTX 3090 GPUs with Adam for 200 epochs, with
an effective batch size of 32 and a learning rate of 1074,
It requires about 220 hours to train MelHuBERT-10ms, and
about 150 hours for MelHuBERT-20ms. Dropout of 10% is
applied after the multiplication of matrices, such as query,
key, and value matrices, and after FC1 and FC2.

Table I shows the downstream performance of MelHuBERT-
10ms and MelHuBERT-20ms. We include a 6-layer LSTM
trained with APC, with a time shift of 3 frames. We also
include HuBERT for completeness, but it is not directly
comparable due to an additional training stage and additional
training data. MelHuBERT-20ms not only performs better than
its 10 ms counterpart, but, as we will see soon, runs faster.

2) Weight Pruning: For weight pruning, we iteratively
prune individual weights based on their L; for all weights
and biases in linear layers of Transformers. We keep track
the exponential moving average of the loss with a decay of
0.9998, and if the loss is within 0.001 compared to 15000
steps before, pruning is triggered. We use a pruning schedule
that is aggressive when the network is dense, and mild when
the network is sparse. In particular, we pruning 20% until 80%
density, 10% until 50% density, 5% until 35% density, 2.5%
until 30% density, 1% until 10% density, and 0.5% until 5%
density. We use a batch size of 4 and a learning rate of 10~°.

Results of weight pruning are shown in Figure 1 (a).
We can maintain the pre-training loss until 55% density.

3https://github.com/s3prl/s3prl

For phone recognition, we can maintain the PER until 45%
density. For speaker identification, the performance is in fact
better until 30% density. When we reach 10% density, the
performance only degrades by 1.7% and 3.7% absolute for
phone recognition and speaker identification, respectively.

3) Head Pruning: For head pruning, recall that we have
two approaches, one based on the L; of head weights, and
the other based on the L; of gradients For the weight-based
approach, we prune a fixed amount of heads for each layer,
because higher layers tend to have larger L;. If we compare
heads across layers, an entire layer would be pruned before
we prune others. For the gradient-based approach, we use a
1/4 of the training data to compute the scores of each head.
As opposed to pruning a fixed number for each layer, we
normalize the scores of heads within each layer, and prune
the heads by comparing them altogether. As for all iterative
pruning approaches, we train the model for a fixed 25,000
steps after pruning, with learning rate 10~° and a batch size
of 4.

Results of head pruning is shown in Figure 2. We find that
the gradient-based approach is better than the weight-based
approach. Figure 1 (b) shows the gradient-based head pruning
results comparing with other pruning techniques. We find that
speaker identification is more susceptible to head pruning
compared to phone recognition. In fact, head pruning improves
phone recognition until density 50%. Overall, with a density
of 25%, the performance only degrades by 0.9% and 3.4%
absolute for phone recognition and speaker identification,
respectively.

4) Low-Rank Approximation: For low-rank approximation,
recall that we target the 3072-dimension output of FC1 layer.
Reducing the dimension amounts to pruning the rows of FC1
and the columns of FC2 based on the sum of their L;. We
prune 128 dimensions every 25,000 steps. We use a learning
rate of 107° and a batch size of 4. Results are shown in
Figure 1 (c). We see trends similar to other pruning methods,
and can obtain an absolute 1.5% and 2.6% drop in phone
recognition and speaker identification until density 40%.

5) Knowledge Distillation: For knowledge distillation, we
explore a 2-layer and a 6-layer student network. Following
[44], we study several design decisions, including masking
strategy, initializing with MelHuBERT layers, and the temper-
ature when training with KL divergence. Our baseline in this
case is simply taking the first 2 or the first 6 layers from a
pre-trained MelHuBERT. Overall, our results are negative. The
distillation loss continues to drop as we train, but representa-
tion produced by the student does not perform better on the
downstream tasks. This is consistent with the finding of others
[45] in that the representation fails to be useful for the down-
stream tasks when the network is overly shallow. As shown in
Figure 3, taking the first few layers in MelHuBERT performs
better than knowledge distillation. Taking the first few layers
in MelHuBERT does not even require any additional training
compared to knowledge distillation.

E. Discussion

Results in Figure 1 are based on densities with respect to
each individual techniques. The downstream performance can
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on MelHuBERT-10ms. The dashed line is the performance of
MelHuBERT-10ms.

be compared, but the benefits due to compression are difficult
to compare and particularly difficult to be fair to all techniques.
We decide to report different aspects to evaluate the benefits
of compression, including reduction in runtime on GPUs,
reduction in MACs per one second speech, and reduction
in parameters. Reduction in runtime on GPUs immediately
transfers to speed-up when GPUs are available. Reduction in
MACs shows the (theoretical) speed-up when large amounts
of parallelization are not available. Reduction in parameters
brings benefit to generalization, as we have shown in Figure
1. A small amount of pruning almost always improves the
downstream performance.

The analyses are shown in Figure 3 for MelHuBERT-10ms
and MelHuBERT-20ms, respectively. We find that weight
pruning brings significant reduction in parameters and MACs
per one second speech, without affecting the performance of
phoneme recognition much. However, weight pruning intro-
duces sparse matrices and does not enjoy real-time speed-up
on GPUs. Significant speed-up with weight pruning is possible
when there is no option for parallelization, for example, on
devices where there is only a single processor.

Head pruning is effective in maintaining performance while
improving all metrics. It is less effective in reducing parame-
ters, because the parameters of Transformers are concentrated
in the FC layers. However, computation of self-attention is
expensive, and we find a significant reduction in MACs per
one second speech and runtime on GPUs.

Low-rank approximation is effective in reducing the number

TABLE I: Downstream performance of MelHuBERT-10ms
and MelHuBERT-20sm compared to APC and HuBERT.

PR SID

APC 6-layer LSTM  32.0 447
MelHuBERT-10ms 151 352
(first 6 layers) 24.1  34.1
(first 2 layers) 849 41.1
MelHuBERT-20ms 13.0 337
(first 6 layers) 19.0 335
(first 2 layers) 46.3  40.3
HuBERT 54 18.5

of parameters, as the parameters are concentrated at the FC
layers in Transformers. The improvement in runtime is less
pronounced compared to head pruning.

Finally, we use the first 2 and first 6 layers of MelHuBERT
as baselines (shown in Table I). We find that removing the
layers provides a strong trade-off across all metrics. Phonetic
information is sufficiently accessible within the first 6 layers,
while the speaker information is already accessible in the first
2 layers.

III. SEQUENCE COMPRESSION
A. Introduction - Sequence Compression

In Section II, several model compression techniques have
been explored, including weight pruning, head pruning, low-
rank approximation, and knowledge distillation. However, in
speech processing, the number of frames, along the time axis,
is typically the dominating factor at runtime. For Transformers
in particular, though quadratic memory consumption of self-
attention is possible to avoid [57], most implementations
still require quadratic memory and quadratic runtime. Sub-
quadratic attention mechanisms are actively being developed
[58]-[60], but the overhead typically makes these attention
mechanisms less useful in practice [61]. Instead of reducing
the runtime and memory complexity of self-attention, in
this section, we study subsampling techniques to reduce the
sequence length directly.

Subsampling (and sometimes concatenating) contiguous
frames is a common technique for speeding up training and
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inference of automatic speech recognizers [62]-[64]. This
approach can be as simple as concatenating every two frames
[64] or dropping every even frames [65], [66]. Subsampling
can also be achieved with pooling or convolution with a stride
larger than 1 [67]-[70]. In this report, we term this family of
approaches fixed-length subsampling. Fixed-length subsam-
pling has been explored in self-supervised learning [71]-[73].
Both Wu et al. [71] and Vyas et al. [72] use fixed-length
subsampling, paired with upsampling, during the optimization
of self-supervised losses. Lee et al. [73] is the most similar to
our work in that it also uses fixed-length subsampling to reduce
the time resolution paired with upsampling in a knowledge
distillation setting. The subsampled representation is then
upsampled when evaluated on downstream tasks. Though
this approach achieves the desired computational speed-up,
how subsampling affects the learned representation largely
remains unclear and is the central focus of this report. Another
difference is that we directly use the subsampled representation
in downstream, and explored a framework that works better
without upsampling involved.

Since phones in speech come in varying duration, it is
widely accepted that self-supervised models enforcing piece-
wise constant constraints would learn better representations
[74]-[76]. Piecewise constant constraints can have various
forms, but they mostly involve finding boundaries of segments
and pooling frame representations into segment representa-
tions. We term this approach variable-length subsampling.
In this work, we study both the computational speed-up
and the impact on learned representations with variable-
length subsampling. Our approach involves adding a layer of
Continuous Integrate-and-Fire (CIF) [77] to learn subsampled
representation while optimizing loss functions.

To push the boundary of small, yet competitive self-
supervised models, we build our work on top of Distil-

HuBERT [44], a model consisting of two Transformer lay-
ers, trained with knowledge distillation from HuBERT [78].
We evaluate our approach on phone recognition, automatic
speech recognition (ASR) with word pieces of different sizes,
keyword spotting, intent classification, speaker identification,
and emotion recognition. We find that phone recognition
and ASR are the tasks most impacted by the subsampled
representation. Matching the frame rate of downstream tasks
gives the best performance. Variable-length subsampling has
particularly strong performance for the settings with a low
frame rate. For analysis, we also show that given the phonetic
segmentation, variable-length sampling can be as good as, if
not better than, the DistilHuBERT baseline while having a
frame rate as low as 10 Hz.

B. Compressing Sequences with Subsampling

The model we study in this report is based on DistilHu-
BERT. For an input waveform s, there is a convolutional neural
network (CNN) that converts the waveform s into a sequence
of feature vectors x1,...,zp, or simply x1.7 = CNN(s).
we obtain a sequence of hidden vectors ui,...,ur from the
teacher model fy (in this case HuBERT). Similarly, vi.p =
fo(x1.7), where fp is the student model, DistiiHuBERT. The
student model is trained to minimize the distance of the
representations L(uy.p,vi.0; W) = ZZ;I d(ug, Wuy), where
W is a trainable projection and the distance d can be cosine,
dot product, Euclidean distance, or a combination of them. In
DistilHuBERT, the distillation is applied to multiple layers of
HuBERT via multitask learning. In particular, we minimize the
sum of several loss terms L(ugli)T,vlzT; W®), where uge)T is
the ¢/-th hidden layer of HUuBERT and each loss has a learnable
projection W) (also called a prediction head).

To subsample frames in time while maintaining the use
of the loss from DistilHUBERT, we have two options, one



with subsampling followed by upsampling, and another by
subsampling the targets. Specifically, the first option minimizes

L (ul;T, upsample(fD(subsample(xlzT)))) 2)

by having upsampling after the output of the student, while
the second option optimizes

L(subsample(uLT), fD(subsample(xlzT))> 3)

by subsampling the output of the teacher. Figure 4 shows the
two options. For the rest of the sections, we will discuss the
choices of subsampling and upsampling functions.

1) Fixed-Length Subsampling: For fixed-length subsam-
pling, we adopt two commonly used approaches, convolution
subsampling and average pooling with a stride larger than 1.
We can control the frame rates by changing the strides. For
convolution subsampling, the kernel size is set to the same as
the stride size.

2) Variable-Length Subsampling: For variable-length sub-
sampling, we follow a two-step approach. A segmentation (a
sequence of boundaries) is first proposed; vectors within each
segment are pooled (for example with weighted averaging) and
passed to the subsequent layers. We use Continuous Integrate-
and-Fire (CIF) [77] to produce segmentation proposals. At
a high level, for an input sequence of length 7', the CIF
module takes input from the previous layer and produces
a sequence «,qs,...,p of nonnegative numbers (using a
combination of convolution, feedforward layer, and sigmoid
function). Whenever 2221 a;, 1.e., the accumulation up to
time ¢ crosses an integer boundary, a segment boundary at
time ¢ is proposed (or fired). In other words, the sequence
aq.7 controls both where and how many boundaries should
be present. In fact, fixed-length subsampling can be seen as a
special case with oy = 1/F forall t =1,...,T where F can
be set based on the desired subsampling rate.

The CIF module can be trained end to end without any
supervision. In practice, however, the segmentation seldom
corresponds well with any actual boundaries in speech. Below
we discuss several options of boundary guidance to help CIF
learn more meaningful boundaries.

Cardinality Guidance The cardinality guidance encourages
the CIF module to produce the desired number of segments at
training time; hence the name. Specifically, we add the term

T 2
(k).

to our loss function, where K is the desired number of
segments. The normalization 7' (absent in the original CIF
formulation) is added to make sure the term is comparable
across utterances of different lengths. Though the guidance is
used at training time, at test time, we use the o’s produced by
the CIF module as is.

Lcara (a) =

Segmentation Guidance In some cases where we have access
to phonetic boundaries, such as through forced alignments or
other unsupervised approaches, the segmentation can be used
as a source of supervision for the CIF module.

Suppose a segmentation of K segments is provided as
a sequence of boundaries in time indices ti,...,ftx. To
encourage the boundaries to be placed in accordance with the
provided target, we introduce a segment-based loss

K tr
Leg(e) =Y 1> a; —k|. (5)

k=1 |j=1

The loss only focuses on where the boundaries are proposed.
We also introduce a more stringent constraint, constructing a

target o’ = tk,+1lftk for t;, <i < tx,1. We optimize

Lframe (av asup) = ||a - asup”l (6)

to make sure the sequence a produced by the CIF module is
close to the target o®'P at every frame; hence a frame-based
loss.

Each of these losses can be added to our loss function with
an interpolation factor. The segmentations for supervision are
only used at training time, while at test time, we use the a’s
produced by the CIF module as is.

C. Experimental Setting

Our experiment is based on the original DistilHuBERT
implementation with S3PRL [1] and fairseq [79]. The pre-
training setting and hyperparameters, including learning rate
schedule, are the same as the original DistilHuBERT im-
plementation except that we introduce the subsampling and
upsampling modules. We have three prediction heads, targeting
the representations of the 4™, 8" and 12" layers of a frozen
HuBERT model. We use the 960-hour LibriSpeech dataset [80]
for pre-training, and all models are trained for 200,000 updates
with a batch size of 24.

The CIF module for variable-length subsampling consists
of a single one-dimensional 512-channel convolution with a
stride of 1 and kernel width of 5, followed by a feedforward
layer of 512 dimensions and an output dimension of 1.

The experiment is evaluated on a subset of the SUPERB
benchmark?, including phone recognition (PR), automatic
speech recognition (ASR), keyword spotting (KS), intent
classification (IC), speaker identification (SID), and emotion
recognition (ER). We further evaluate on an additional task,
automatic speech recognition with word pieces (ASR-5k).
The ASR-5k model is trained with 5000 sentencepiece [81]
targets (trained with byte-pair-encoding [82]). Both ASR and
ASR-5k are evaluated without a language model (LM). To
compare the performance with the DistilHuBERT paper, only
the representation of the last layer (without the prediction
heads) is used for downstream evaluation.

D. Preliminary Analysis

Before we train our models with subsampling, we explore
a range of frame rates for several tasks. We concatenate con-
tiguous hidden vectors produced by the vanilla DistilHUBERT
to achieve a target frame rate. This approach preserves the
information sent to the downstream tasks while only changing

“https://superbbenchmark.org
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Fig. 4: Two subsampling options. (a) A subsampling module is placed after the student’s CNN layer, and an upsampling module
is placed after the student’s encoder output. (b) Identical subsampling modules are placed after the student’s CNN layer and

after the teacher’s encoder output.

the frame rate. We also explore averaging contiguous hidden
vectors as an alternative. Since KS, IC, SID, and ER are
utterance-level tasks, subsampling the hidden vectors does not
affect the performance, so we only focus on PR, ASR, and
ASR-5k.

Results are shown in Table II, where two subsampling
methods are tested: concatenating (cat) and average pooling
(avg). Phone recognition starts to fail for frame rates lower
than 12.5 Hz. ASR with characters completely fails for frame
rates lower than 25 Hz, while ASR with word pieces can
sustain subsampling to a frame rate as low as 6.25 Hz.

Figure 5 shows the average frame rates of different units,
such as phones, characters, and word pieces. When we increase
the number of word pieces learned, the size of the word
pieces increases. In particular, when the number of word
pieces is large, many of the word pieces are actual words, and
the average frame rate decreases accordingly. The results in
Table II are consistent with the average frame rates in Figure 5,
as these tasks rely on a CTC layer that can only produce labels
as many as it has frames for.

We also find that averaging is on par with concatenation,
and decide to use averaging as the pooling method for the rest
of the experiments.

E. Experiments

Unlike the previous section, here, we study models pre-
trained along with subsampling. Models trained with subsam-
pling could potentially learn to represent the input speech
differently from the vanilla DistilHuBERT.

1) Fixed-Length Subsampling: In this section, we explore
the two options for fixed-length subsampling: subsampling
paired with upsampling shown in Figure 4 (a), and subsam-
pling of both the teacher’s and the student’s output shown in
Figure 4 (b). For subsampling and upsampling pairs, we have
convolution paired with deconvolution and averaging paired
with repeating (duplicating frames to the desired frame rate).

TABLE II: Results of subsampling the output of DistilHu-
BERT. FP and FR represent the frame period and frame rate,
respectively, after subsampling. The metrics include phone
error rate (PER) and word error rate (WER).

Model FP FR PR ASR ASR-5k
ms Hz | PER] WER] WER]
DistilHuBERT\ 20 50 \ 16.27 13.37 12.86
cat 2 40 25 15.17 17.44 13.01
cat 4 80 125 | 31.03 > 100 13.77
cat 8 160 6.25 | 82.32 > 100 17.83
avg 2 40 25 15.57 16.45 12.95
avg 4 80 125 | 30.12 > 100 14.06
avg 8 160 6.25 79.57 > 100 18.86
_15.01
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Fig. 5: Average frame rates for different units. Phones and
characters are labeled as phone and char. The numbers 100,
200, 500, 1k, 5k, and 16k represent the number of word pieces
learned with BPE. The average frame rates are computed on

the LibriSpeech dev-clean subset.

In Figure 6 (Left), we show the pretraining losses for
different subsampling and upsampling pairs, and in Table III
(D), we have their respective downstream performance. In
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Fig. 6: Losses for pretraining with subsampling. Left: subsampling and upsampling pairs for pretraining compared to
DistilHUBERT and subsampling both the teacher and the student. Middle: various frame rates of using averaging and repeating
for subsampling and upsampling. Right: various types of boundary guidance.

Figure 6 (Left), we first note that convolution paired with
deconvolution is able to recover the DistilHuBERT loss while
averaging paired with repeating is worse. In Figure 6 (Middle),
we also find that more aggressive sampling makes it more
difficult to match the training loss of the vanilla DistilHuBERT.
However, in Table III (I), the downstream performance for
averaging paired with repeating is on par with convolution
paired with deconvolution for the two frame rates we explored.

Due to this finding and the simplicity, we use averaging
to conduct the experiments for subsampling both the teacher
and the student. The training loss is shown in Figure 6 (Left)
and the downstream performance is in Table III (II). We do
find the training loss to be lower (perhaps due to having fewer
frames), and the downstream performance is generally on par,
if not better than, with upsampling. These results are also
comparable to the ones in Table II, including the failed case
for phone recognition at the frame rate of 6.25 Hz.

2) Variable-Length Subsampling: Based on the findings in
the previous section, we decide to perform variable-length
subsampling on both the teacher and the student. Recall
that variable-length subsampling is achieved by producing a
sequence « that decides where a boundary should be placed.
Here, we choose a weighted sum of the vectors within a
segment to produce a segment representation. In particular,
suppose «y,...,qp are the a’s in between two boundaries.
The weights used for weighted averaging are €, oy, . . ., ap —€',
where € is the leftover weight that exceeds the integer from the
previous boundary and €’ is the leftover weight that exceeds the
integer boundary and gets carried over to the next boundary. In
order to match the subsampling exactly for both the teacher
and the student, we decide to reuse the « produced by the
student on the teacher, as indicated in Figure 4 (b).

We first explore cardinality guidance, denote as card, where
we set the number of segments to match the desired frame
rate. For example, the number of segments K is set to 7'/4
if the desired frame rate is 12.5 Hz. We tune the weight of
the added loss term L.,q and find that a weight of 0.5 works
the best. The downstream performance is shown in the first
two rows of Table III (III). The results are generally worse
than fixed-length subsampling. We suspect for the cardinality
guidance is too weak for constraining the model, so we turn
to the stronger segmentation guidance.

Below we explore two options, using smoothed HuBERT

codes and unsupervised ASR, to obtain segmentation for
guiding the CIF module.

Smoothed HuBERT Codes as Guidance The amount of re-
peated HuBERT codes tend to correlate well with the duration
of phones [83], so we can make use of the codes produced by
the teacher as a proxy to segmentation. Here we run k-means
on the output of HuBERT (layer 6, following [83]) to obtain
the codes. We then use the dynamic programming algorithm
proposed by Kamper and van Niekerk [84] to obtain the
segmentation. Their algorithm generally smooths the frequent
changes of a HuBERT code sequence, while also providing a
hyperparameter A penalizing short segments. In other words,
larger A produces larger segments, leading to a lower frame
rate. There is no clear correspondence between A and frame
rate (except that they are positively correlated), so we simply
sweep A to find the desired frame rates. Recall that there
are a frame-based approach and a segment-based approach to
incorporate segmentation guidance. We tune the weight of the
two additional loss terms, and find that 0.005 and 0.25 work
best for Lgs and Lirame, respectively. Despite the weight of
Ly, being deceptively small, it is crucial to prevent CIF from
producing degenerate solutions.

Results of this approach are listed in the second block of
Table III (IIT). Note that we tune A to find a frame rate closest
to the desirable one. For readability, we round the frame rates
to the desirable ones in Table III (IIT). This approach performs
significantly better than others for the 12.5 Hz frame rate,
while matching the result of others for the 25 Hz frame rate.
It shows the great potential of variable-length subsampling and
calls for better segmentation.

Unsupervised ASR as Guidance Another approach to obtain
a segmentation of speech is through unsupervised ASR [28],
[85]. Our pre-trained unsupervised ASR model is a simplified
version of wav2vec-U 2.0 [85] without the auxiliary k-means
cluster loss. The model is trained on audio from the 100-
hour LibriSpeech and texts from the LibriSpeech language
modeling text. More investigations about unsupervised ASR
are in Section X in this report. Once the model is trained, it
simply acts as a frame classifier, producing posterior proba-
bilities of phones at a frame rate of 16.7 Hz (60 ms frame
period). The segmentation can be obtained by finding the
maximum of each frame as predictions and merging the



TABLE III: Downstream performance for various subsampling approaches. FP and FR denote the frame period and frame
rate, respectively. The metrics include phone error rate (PER), word error rate (WER), and accuracy (Acc). For further results,

please refer to the SUPERB website.

Model FP FR Params MACs MACs-C PR ASR-5k KS IC SID ER
ms Hz  Millions GMACs GMACs | PER| WER| AcctT AcctT AcctT Acct
DistilHuBERT | 20 50 23.49 758.9 207.1 | 16.27 12.86 9598 9499 7354  63.02
(I) Fixed-Length - with upsampling
conv-deconv 2 | 40 25 25.20 667.6 115.8 16.06 13.62 95.78 92.06 67.13  63.08
conv-deconv 4 | 80 125 26.90 610.3 58.5 32.04 16.15 95.75 90.67 62.65 61.62
avg-repeat 2 40 25 23.49 664.6 112.8 15.54 13.50 96.04 95.15 71.16 62.98
avg-repeat 4 80 6.25 23.49 607.3 55.5 30.69 16.14 95.78 9333 6856 61.13
(II) Fixed-Length - subsampling targets
avg 2 40 25 23.49 664.6 112.8 15.43 13.31 95.59 9431 7219 63.17
avg 4 80 125 23.49 607.3 55.5 30.50 15.55 95.88 93.12 6933 62.41
avg 8 160 6.25 23.49 579.5 27.7 79.98 24.90 9526 90.85 68.46  60.79
(IIT) Variable-Length - subsampling targets
card 2 40 25 24.81 675.7 123.9 17.23 14.24 9497 88.74 70.44 62.04
card 4 80 125 24.81 620.7 68.9 38.51 16.88 95.13 90.51 7027 61.31
DP A =0 40 25 24.81 680.6 128.8 15.53 14.19 95.65 9454 7142  62.67
DP A =25 80 125 24.81 623.3 71.5 21.94 15.33 95.72 94.62 71.05 63.19
DP A =35 90 11.1 24.81 614.6 62.8 31.73 16.66 95.72 9441 6946  62.38
DP A =175 160 6.25 24.81 593.4 41.6 78.41 27.04 95.39 89.16 66.83 61.64
w2v-u 2.0 | 90 111 24.81 616.6 64.8 | 2337 15.71 95.62 9465 7170 61.74
(IV) Variable-Length - subsampling targets
MFA | 100 10 - - - | 12.33 11.85 - - - -

same contiguous predictions. Since voice activity detection is
involved during training, we overwrite segments where the
silence is detected. Once the boundaries are extracted, we add
frame-based and segment-based losses with the same weights
as in Section III-E2.

The downstream performance of using the segmentation of
wav2vec-U 2.0 is in the last row of Table III (III). We also
conduct a similar experiment with the smoothed HuBERT
codes for comparison, matching the frame rate of the seg-
mentation produced by the wav2vec-U 2.0 model. We find
that this approach is particularly strong at phone recognition
and ASR with word pieces, giving the best performance and
frame rate tradeoff.

The training loss of various variable-length subsampling
is shown in Figure 6 (Right). Though the downstream per-
formance of using wav2vec-U 2.0 segmentation provides a
better tradeoff, the loss is slightly higher than the approach of
smoothing HuBERT codes.

3) Topline: Subsampling with Forced Alignments: Given
the results from previous sections, an accurate segmentation
could prove to be sufficient for an aggressive subsampling
frame rate. As an analysis, we study forced alignments as
a variable-length subsampling approach of its own. Forced
alignments (of phones) are obtained from the Montreal Forced
Aligner (MFA) [86]. Once the segmentation are obtained, we
simply use average pooling to obtain a segment representation
from the teacher and the student. We follow DistilHuBERT
training without adding any other terms. For the downstream
tasks, we also use forced alignments for subsampling. Note

that the CIF module is not used in this setting, as segmentation
is always provided.

The result is shown in Table XIII (IV) and serves as our
topline result. We do not report downstream performance
for all tasks as transcripts are not available for computing
forced alignments on those datasets. This approach achieves
an average frame rate of 10 Hz (i.e, the average frame rate
of phones), and has the best phone recognition and ASR
results. The result suggests that there is still room for better
segmentations.

F. Discussion

To measure the impact of subsampling on runtime, we report
average multiply-accumulate operations (MACs) on a subset
of LibriSpeech fest-clean consisting of utterances between
1 and 20 seconds. MACs are measured in inference mode
without counting prediction heads and upsampling. MACs
of various subsampling approaches are reported in Table III.
The improvement in MACs is obscured by the MACs of the
seven CNN layers, as the MACs of CNN dominate everything
else. We therefore also report MACs without the CNN layers
(denoted as MACs-C). The improvement is then clear and
consistent with the reduction in frame rates.

IV. GENERALIZATION OF SSL
A. Introduction

This section investigates the generalizability of SSL models.
Domain shifts caused by mismatches between training data



and testing data usually occur in real-world scenarios. A
common factor that causes domain shifts is speech distor-
tions. Here we focus on the setting that the training data
of downstream tasks contain clean speech while the testing
data has distortions. For many downstream speech processing
tasks, since the cost of collecting labelled training data is
expensive, the training dataset can not be diverse, and usually
only has clean speech. However, there may be background
noises during the testing phase in real-world applications,
making SSL models vulnerable in performance as studied in
[11].

We further find that distilled SSL models suffer from perfor-
mance degradation even more than their teachers in distorted
environments. To overcome the problem that distilled models
are especially vulnerable to distorted speech, we propose to
apply Cross-Distortion Mapping (CDM) during knowledge
distillation to improve the generalizability of DistilHuBERT.
The process of Cross-Distortion Mapping refers to a teacher-
student learning framework with the teacher and student
model having different distorted inputs. The results show that
CDM improves the testing performance on downstream speech
processing tasks under the setting with speech distortions, even
when the distortion types are unseen during training. To further
improve the robustness of the teacher model, we performed
domain-adaptive pre-training on the teacher model by utilizing
distorted pre-training data so that the student model would
be able to have a more robust target to learn with. We also
applied Domain Adversarial Training [87] (DAT) in the hope
of generating more domain-invariant speech representations,
and found out that DAT benefits the generalization of models

in some cases>.

B. Related work

There are several studies enhancing the robustness of SSL
models. It has been found that pre-training some more steps
with unlabeled target domain data [10] on Wav2vec2.0 mit-
igates the problem of domain shifts. Therefore an intuitive
method to enhance the robustness of SSL models is to augment
pre-trained data by adding distortions. Here we found that the
proposed CDM method further improved the distilled SSL
model learned from the domain-adapted teacher model pre-
trained with distorted speech.

Besides domain-adaptive pre-training, DAT is applied to
improve the generalizability of SSL models. Augmentation ad-
versarial training [88] combines the concept of augmentation
and DAT to generate representations invariant to augmenta-
tions. Some other studies also apply DAT to adapt models
to different kinds of data and are also proved to benefit
unseen domains, such as different accented speech [89], [90]
or distorted speech [11], [91]. Based on our experimental
results, DAT sometimes further improved the results when
combined with our proposed CDM method.

Several studies have successfully improved the robustness
of Wav2vec2.0 models. Having noisy waveforms as input,
performing clean speech reconstruction with a reconstruction

5Code will be released at https://github.com/nobel861017/distort-robust-
distilSSL.

module along with pre-training [92] also improves noise
robustness. Having both clean and noisy speech as input,
a denoising approach [93] conducted by constructing clean
quantized vectors serving as the target for the noisy repre-
sentations successfully improved performance on noisy testing
sets while preserving performance on the original clean testing
set. The idea of [93] is similar to setupl of CDM (will be
elaborated in Section IV-C2b), where the student model learns
to generate clean representations of the teacher given distorted
speech inputs. However, we find that setup2 of CDM, where
both student and teacher models are given distorted speech, is
more effective in gaining robustness than setupl.

CDM is also similar to another series of work, Bootstrap
Your Own Latent (BYOL) [94]. BYOL performs augmentation
to data and trains an online-target framework from scratch.
The online-target framework consists of an online network and
target network with similar model architectures. Both networks
receive the same input but with different augmentations and
minimize the distance of output representations between the
two. As BYOL, CDM includes the augmentation method of
BYOL and the concept of denoising by viewing different
distorted speech as different domains and minimizing the
distance of speech belonging to different domains. Different
from BYOL, we utilized a teacher-student model compression
framework where a small student model is trained to mimic a
large teacher model.

C. Methods

1) Knowledge distillation: Throughout this work, DistilHu-
BERT [44] is adopted to meet our needs for reducing model
size. DistilHUBERT is trained with a teacher-student learning
framework with knowledge distillation. As shown in Figure 7,
the student network consists of a subnet F followed by some
prediction heads p, where F is constructed by reducing the
number of transformer encoder layers of the HuBERT teacher
model. Given an input speech utterance x € R”, where T is
the number of timesteps of x, a predicted hidden representation
sequence hi is output by the student model as shown in
Eq. (7).

z = F(x)

h' = p;(z)

In Eq. (7), z is the last hidden representation of the transformer
layers in the student model, and serves as the input of the
prediction heads p. Prediction head p; predicts the i*"* hidden
layer representation h’ of the teacher model. The overall

objective of DistilHUBERT consists of a L; loss term and
a cosine similarity loss term as shown in Eq. (8),

)

£distil = ELl + ‘ccos

-y

ie{4,8,12} t=1

by - b ®

LT ~log J(cos(hi, fl@))

where o is the sigmoid function and cos(-,-) is the cosine
similarity function, D is the feature dimension of the repre-
sentations, and -y is a constant to scale the value of the cosine
similarity loss. Though both loss terms may have similar goals,
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Fig. 7: Mlustration of DistilHUBERT with a distortion classifier. The distortion augmentor follows the procedure mentioned in
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model have a distortion augmentor in front.

the original paper [44] reports that considering both terms
results in better performance.

2) Model generalization:

a) SSL model domain-adaptive pre-training: Pre-training
SSL models with target domain data is an intuitive way to
adapt SSL models to another domain [10], [11], [92], [95].
This method is sometimes referred to as domain-adaptive pre-
training or continual training, depending on its training setting
and data configuration®. For some experiments in our work,
we trained the pre-trained teacher model with distorted speech
data for additional steps to enhance robustness. The distorted
data is generated by adding distortions to the original pre-
training data of the corresponding SSL model. We hope that in
this way, the teacher model will be able to output more robust
representations for the student model to learn with. To avoid
any possible misunderstanding, we refer to this method as
domain-adaptive pre-training in the further subsections. Note
that this method differs from Domain Adversarial Training
mentioned in subsection IV-C2c, though both are domain-
adaptive methods.

b) Cross-Distortion Mapping (CDM): Cross-Distortion
Mapping refers to the augmentation procedure for the teacher-
student framework. The teacher and student model receive the
same speech utterance augmented with different distortions as
shown in Figure 7. We investigate two setups for augmenta-
tion.

e setupl: The first setup is to input speech utterances
without distortions to the teacher model, while the student
model takes distorted speech as input. This setup has the
denoising concept since the distorted speech represen-
tations have clean speech representations as targets, and

5Continual training is performed under a life-long learning scheme, and
the data of previous tasks are usually unavailable, which is not the case in
our work.

there are previous works [93], [96], [97] showing that this
setup is beneficial for training models robust to noise.

o setup2: The second setup is to apply different distor-
tions to speech similar to [94], [98], [99], resulting in
the teacher and student model observing same speech
utterances but with different distortions.
¢) Domain Adversarial Training (DAT): DAT is per-

formed by utilizing a distortion classifier D that takes the
last hidden states z of the student model as input. The
distortion classifier aims at identifying the distortion types of
the distorted speech input by optimizing a multi-label cross-
entropy loss (each speech utterance may be distorted with
multiple distortions).

During the training process, the distortion classifier and the
student model are trained in turn. First, the parameters of the
distortion classifier 4 is updated with gradient descent shown
below,

9d <— 9(1 — a%ch (9)
where 0p is the parameters of the distortion classifier, Lp is
the cross-entropy loss, and « is the learning rate.

After training the distortion classifier, the parameters 6,
of the student model are updated through the process in the
following,

O(Laistit — ALp)
d0,

where 6, is the parameters of the student model, § is the
learning rate, and ) is a constant controlling the scale of Lp.

0s — 0, — B (10

D. Experimental setup

1) Data preparation: The corpus used for knowledge dis-
tillation is LibriSpeech [80] 960-hour, which is same as the
pre-training data of HuBERT-base in [78]. In our distorted



KS (Acc% 1) IC (Acc% 1) ER (Acc% 1)
da. para. | clean 2-dist fsd dns | clean 2-dist fsd dns | clean 2-dist fsd dns
(T1) HuBERT [78] X 95M | 96.30 89.81 90.94 77.60 | 98.34 89.09 91.93 74.11 | 64.92 56.72 60.05 52.08
(T1’) HuBERT V 95M | 96.53 94.77 94.00 82.83|98.37 96.20 96.78 85.00 | 65.88 62.82 63.89 56.70
(S1) DistilHuBERT (Tr2) [44] X 23M | 9598 87.57 88.70 75.07 |94.99 70.29 72.50 48.30|63.13 55.09 57.05 49.76
(S1°) DistilHuBERT (Tr2) V 23M|96.14 86.86 90.56 76.47|95.65 77.99 81.73 57.50 | 64.01 58.89 59.06 53.14
(S2) DistilHuBERT (Tr2) setupl X 23M | 95.52 92.92 9344 76.66 |94.17 89.53 89.61 72.11|63.51 58.11 60.17 50.66
(S2’) DistilHuBERT (Tr2) setupl V 23M|96.17 93.61 94.09 77.44|95.57 86.11 89.03 71.26 | 63.72 59.62 61.42 53.69
(S3) DistilHuBERT (Tr2) setup2 (same) X 23M |96.11 89.84 91.69 78.42|94.62 7540 80.33 57.92|61.87 5572 59.41 50.27
(S3’) DistilHuBERT (Tr2) setup2 (same) V 23M | 96.33 92.57 9348 80.04 | 95.68 85.16 86.84 64.46 | 64.25 59.62 60.93 51.78
(S4) DistilHuBERT (Tr2) setup2 X 23M | 96.27 9299 9396 77.47|9591 90.72 90.77 73.87 | 63.77 59.89 61.62 51.25
(S4’) DistilHuBERT (Tr2) setup2 V 23M|96.53 93.61 94.38 79.10|96.57 92.25 92.67 78.41 | 63.08 60.38 60.89 53.38
(S5) DistilHuBERT (Tr2) setupl + DAT X 23M |9594 93.80 93.83 79.36 |96.02 90.35 91.09 74.61 | 63.41 59.34 60.58 53.29
(S5’) DistilHuBERT (Tr2) setupl + DAT V 23M | 95.75 93.61 93.35 78.25|96.34 88.82 90.48 73.19|63.23 60.06 61.15 53.71
(S6) DistilHuBERT (Tr2) setup2 + DAT X 23M | 96.17 93.77 9390 78.45]96.49 91.35 92.09 7551|6344 59.36 61.82 51.01
(S6’) DistilHuBERT (Tr2) setup2 + DAT V 23M | 96.46 94.03 94.55 78.90 | 96.75 91.01 92.06 76.51|63.45 61.15 61.62 53.49
(S7) DistilHuBERT (Trl) X 20M | 9490 86.34 87.47 71.44|92.35 6043 6425 38.65|6245 52.65 57.19 49.23
(S7°) DistilHuBERT (Trl) setup2 V. 20M | 96.46 92.79 93.44 75.33 (9496 84.66 86.29 64.36 | 62.93 58.56 59.53 5043
(S8) DistilHUBERT (Tr3) X 34M | 96.53 89.39 90.85 76.50 | 94.70 74.00 78.12 54.15|62.94 55.34 56.94 51.69
(S8’) DistilHuBERT (Tr3) setup2 V 34M | 96.53 93.90 94.61 77.90|97.47 93.49 93.80 79.57 | 64.63 62.88 63.25 53.98

TABLE 1V: Evaluation results for KS, IC, and ER in accuracy (Acc). By default, DistilHUBERT and has two transformer
encoder layers (Tr2). Trl and Tr3 denote the number of transformer encoder layers (1 and 3) of DistilHUuBERT, which are
different from the default configuration (Tr2). The second column, da., specifies whether domain-adaptive pre-training is
conducted to the teacher model. The third column, para., lists the number of parameters for each model. The terms “setupl”
and “setup2” refer to the two setups of the CDM method mentioned in Section IV-C2b. The best performance on each test set
throughout the twelve DistilHUBERT models in (S1)-(S6’) is marked in bold.

setting (denoted as 2-dist in Table IV and V), we consider
clean speech and speech containing one or two distortions.
Distorted speech is generated by applying either one of the
additive distortions or one of the non-additive distortions, or
both to speech.

Additive distortions are noises directly added to speech
data at a specific speech-noise ratio (SNR) between 10 dB
and 20 dB. We adopted additive noise from four widely-
known noise datasets, Musan [100], WHAM! [101], FSD50k
[102], and DNS’ [103]. Apart from the recorded noise data
of the aforementioned datasets, we also took advantage of
Gaussian noise, a hand-crafted noise that follows the Gaussian
distribution in the time domain. During testing, we evaluated
models on four downstream speech processing tasks, KS, IC,
ER, and ASR. Besides the original testing set configured by
the SUPERB benchmark (denoted as clean in Table IV and
V), we also tested the models under our distorted setting
(2-dist). Furthermore, to evaluate the robustness of models
to unseen distortions, the two noise datasets, FSD50k and
DNS, are held out from the training phase among all the
experiments and are only adopted during testing to create a
domain mismatch scenario. Note that speech in the FSD50k-
distorted testing set (denoted as fsd in Table IV and V)
contains one background noise sampled from the FSD50k
corpus, creating a single distortion setting. Speech in the DNS-
distorted testing set (denoted as dns in Table IV and V) is

7We follow the procedure in the original paper [103] to generate noisy
data.

constructed by adding one background noise and convolving
a room impulse response [104] to speech.

For non-additive distortions, we chose some common sound
effects, such as reverberation, pitch shift, and band rejection
to apply to speech data. Adding non-additive distortions to
speech does not require additional data and can be directly
applied to waveforms. We followed the configurations and
implementation details proposed in WavAugment® [105].

For the ASR task, we also report the performance on the
test-other split of LibriSpeech and the real speech recordings
of CHiME3 [106], no additional distortions are applied to
these two testing sets.

2) Upstream models and training details: HuBERT-base
is the teacher model used for knowledge distillation, and the
pre-trained weights are initialized by the checkpoints released
in Fairseq’ [79]. The domain-adaptive pre-trained version of
HuBERT-base follows the same procedure mentioned in [11],
except for the generating process of distorted speech replaced
by our procedure mentioned in subsection IV-D1.

For knowledge distillation, we train each model for 20k
steps and adopt the checkpoint that yields the lowest dis-
tillation loss in (8) on the development set (dev-clean of
LibriSpeech). Other hyperparameters such as learning rate,
optimizers, and schedulers are the same as the original Distil-
HuBERT [44] training configuration.

For DAT, the distortion classifier is a mean pooling opera-
tion followed by a linear layer projecting the representations

Shttps://github.com/facebookresearch/WavAugment
9https://github.com/facebookresearch/fairseq
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ASR (WER% |)

da. para | clean LM |other LM |2-dist LM | fsd LM | dns LM |CHIME3 LM
(T1) HuBERT [78] X 95M| 642 479 | 1567 12.14]11.28 859 | 936 720 |22.72 18.87| 2474 20.28
(T1’) HuBERT V 95M| 6.75 491 | 1601 1244| 831 6.17 | 7.78 5.86 | 1631 12.85| 2198 17.51
(S1)  DistilHuBERT (Tr2) [44] X 23M | 1337 921 |35.65 27.78 | 30.65 24.32|24.27 1837 |54.46 47.52| 46.62 37.68
(S1’) DistilHuBERT (Tr2) V 23M|13.14 9.08 | 33.97 26.63|26.02 19.97 | 21.80 16.28 | 4829 41.70 | 43.76  36.38
(S2) DistilHuBERT (Tr2) setupl X 23M| 1396 9.64 | 3623 28.67|18.52 13.25]16.69 11.87|38.63 31.39| 3815 29.92
(S2’) DistilHuBERT (Tr2) setupl V 23M | 13.54 9.41 | 3437 27.18|17.58 12.71 | 1638 11.61 | 37.41 30.66| 37.92 29.74
(S3) DistilHUBERT (Tr2) setup2 (same) X 23M | 1377 9.52 | 3587 2823|2349 17.34|19.83 14.36 | 45.18 37.69| 4130 3273
(S3’) DistilHUBERT (Tr2) setup2 (same) V 23M | 13.57 9.34 | 3434 2691 | 18.71 1333 | 17.06 12.16 | 38.77 31.29| 3825 29.94
(S4) DistilHuBERT (Tr2) setup2 X 23M | 1433 9.90 |36.99 28.95|18.58 13.44|17.18 12.13 |39.14 32.11| 39.13  30.80
(S4’) DistilHuBERT (Tr2) setup2 V 23M| 137 9.66 | 33.97 27.03|17.89 1298|1635 11.65|37.73 31.06 | 38.02 30.18
(S5) DistilHUBERT (Tr2) setupl + DAT X 23M | 13.64 9.40 |34.53 27.27|17.86 12.66 | 16.45 11.72|37.56 30.53 | 37.63 30.17
(S5’) DistilHUBERT (Tr2) setupl + DAT V 23M | 13.72 9.57 |34.08 26.82|17.74 1270|1630 11.61 |37.30 3043 | 3721 29.31
(S6)  DistilHUBERT (Tr2) setup2 + DAT X 23M | 14.46 10.02 | 37.37 29.41|18.96 13.69 | 17.52 12.30 | 39.03 31.77 | 39.26  31.01
(S6’) DistilHUBERT (Tr2) setup2 + DAT V  23M | 13.58 9.45 | 34.07 26.97 | 17.61 12.63 | 16.16 11.60 | 37.11 30.33 | 37.57 29.71
(S7) DistilHuBERT (Trl) X 20M | 1470 10.03]39.73 31.73| 3597 29.33]28.12 21.41 6291 5722 | 5248 4344
(S7°) DistilHUuBERT (Tr1) setup2 V 20M | 1520 10.41|3837 30.61|20.37 14.64|18.69 13.40 |44.26 37.07 | 42.80 34.33
(S8) DistilHuBERT (Tr3) X 34M | 12,61 8.73 | 3250 25.24|28.05 21.95|22.05 16.54 |51.28 45.07 | 44.06 36.37
(S8’) DistilHuBERT (Tr3) setup2 V 34M | 12.12 8.48 |30.92 23.95| 1537 10.92| 1420 1022 |32.08 2571 | 33.94 26.63

TABLE V: Evaluation results for ASR in word error rate (WER). Results of the test-clean set of LibriSpeech is abbreviated
as clean, and the results of the test-other set of LibriSpeech is abbreviated as other. LM represents the results after language

model rescoring. Notations are same as Table IV.

to a dimension equal to the number of distortion types. In
our work, there are seven distortion types, including Musan,
Gaussian, WHAM!, reverberation, pitch shift, band rejection,
and clean. The distortion classifier is trained in a multi-label
classification style. The A value is set to le—2 for all of the
DAT experiments.

3) Downstream models and training details: For the down-
stream speech processing models of the four tasks reported in
the results, we follow the same model configurations of the
SUPERB benchmark'®. We adopt the last hidden states of the
student model as the input of the downstream models. During
downstream training, the batch sizes for training downstream
tasks KS, IC, and ASR are set to 32, and 4 for ER. The
learning rate for the optimizer is set to le—4 for IC, ER, and
ASR, and le—3 for KS. Tasks KS, IC, and ASR are trained
for 200k steps and task ER is trained for 30k steps.

E. Results

1) Baselines: HuBERT and DistilHuBERT: By comparing
(T1) to (S1), and (T1’) to (S1’) in Table IV and Table V, it is
obvious that HUBERT and DistilHuBERT have similar perfor-
mance on the clean testing set for most of the speech tasks.
However, both models suffer from performance degradation
when distortions are introduced, especially for DistilHuBERT.
This suggests that HUBERT is not robust, and the distillation
process even worsens the generalizability of it.

2) Different CDM settings: Setupl forces the student to
learn the clean representations of the teacher regardless of the
distortions of speech. The results show that applying setupl by
forcing representations of all kinds of input speech (clean or

Details for training downstream speech models can be found at
https://github.com/s3prl/s3prl/blob/main/s3prl/downstream/docs/superb.md

distorted) to fall in the clean representation domain is effective
((S2)(S2’) compared to (S1)(S1’)). However, by comparing
(S2) to (S4), and (S2’) to (S4’), we observe that setup2 yields
better performance than setupl on almost every testing set for
KS, IC, and ER. This indicates that learning representations
of the same speech utterance but with different distortions
improves the generalizability of the student model.

For setup2, we also experimented on the case where the
teacher and student models take the same distorted speech as
input ((S3) and (S3)) and found out that this setting yields low
distillation loss but does not generalize as well as the original
setup2 on each testing set. We also observed that (S3) and (S4)
have large performance gaps on the FSD50k and DNS testing
set for IC, ER, and ASR. This is because the student model
(S3) is prone to output representations containing distorted
information when the teacher and student have the same
distorted speech inputs, causing the representations to be less
domain-invariant.

3) Domain Adversarial Training: Setupl with DAT not
only forces the student to map its representations to the
clean representations of the teacher, but also regulates the
representations of the last hidden layer to be domain-invariant.
The results show that regulating the representations of the last
hidden layer is effective for both distorted and clean speech
((S5) (S5’) compared to (S2) (S2’)), and this setting (S5) even
outperforms setup2 (S4) on most of the testing sets. We notice
that whether using the domain-adaptive pre-trained HuBERT
as the teacher model seems to have minor impacts on the
average performances by comparing (S5) and (S5°), implying
that DAT reduces the gap between different teacher models
(the gap between (S5) and (S5’) compared to the gap between
(S2) and (S2)).

We constructed models (S6) and (S6’) by applying DAT
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to models (S4) and (S4’). By comparing (S6) with (S4), it
showed that applying DAT to setup2 improved the perfor-
mance for IC. By comparing (S6°) with (S4’), we also found
similar results for ER and ASR. However, we noticed that
there were still some cases where models did not benefit
from DAT by observing (S4) and (S6) having similar results
for KS, ER, and ASR. Knowing that model (S4) does not
use the domain-adaptive pre-trained HuBERT model during
distillation, causing a performance gap between (S4) and (S4°),
we hoped that applying DAT to (S4) could make up the gap.
Unfortunately, this is not the case. DAT also seems to worsen
the performances of some testing sets of KS and IC.

4) Different model sizes: We also trained different model
configurations of DistilHUuBERT by alternating the number of
the transformer encoder layers of the student model. From
models (S7)(S7°)(S8)(S8’), by comparing the performance
between clean testing sets and distorted testing sets (2-dist,
fsd, and dns), we found out that smaller models are less
robust to distortions. To ensure general usage of our proposed
methods, we trained a smaller student model (S7’) and a
larger student model (S8”) under the setting that yielded best
performance (setup2). By comparing (S7) to (S7°), and (S8)
to (S8’), we conclude that setup2 shows consistent results
for student models of different sizes. This demonstrates that
this setting is model-agnostic, and can be applied to different
student architectures in the future.

F. Visualization

1) Visualization setup: To demonstrate the robustness of
our proposed approaches, we visualized the last layer represen-
tations of the models with t-SNE [107] for the test-clean por-
tion of LibriSpeech. We show the speech representations of six
kinds of speech, including clean speech, speech with Musan
noise, speech with Gaussian noise, speech with reverberation,

(h) (S4°)

() (55)
Fig. 8: Visualization of representations for models in Tables IV and V. Each visualization corresponds to an upstream model
without any fine-tuning with downstream data. Colors blue, orange, green, red, purple, and brown represent the representations
of clean speech and speech with Musan, Gaussian, reverberation, FSD50k and DNS noises, respectively. FSD50k and DNS
noises are unseen distortions during pre-training.

() (857)

and speech distorted with FSD50k and DNS noise by the
following process. First, we distort all the speech utterances
in the test-clean set with one kind of speech distortion and
extract their representations from the last transformer layer of
the upstream model. The representations are further averaged
along the timestep dimension to produce a flat vector of length
D. Then we divide the representations into 100 splits and
average the representations in each split, resulting in 100
representations. Finally, we repeat this process for the six kinds
of speech, resulting in 6 vectors for each split and 600 vectors
in total for visualization.

2) Visualizing results: We show t-SNE visualizations as
described in subsection IV-F1 to further understand the mod-
eling capability of each upstream model. From Figure 8a, we
observe that the original HuBERT model (T1) is not robust
when the speech signal is subdued under different distortions.
There are clear cluster assignments for each of the distorted
speech configurations. The two most prominent clusters are the
ones with Gaussian noise and DNS noise added to speech. This
explains the large performance gap of model (T1) between
the clean testing set and the testing set with DNS noise in
Tables IV and V. A similar phenomenon can be seen for the
model distilled from the original HuBERT model (S1) (see
Figure 8c).

Figure 8b shows that model (T1’) is robust to all the
distortions. Notice that some figures in Figure 8 show multiple
data points overlapped together. We verified that the repre-
sentations representing speech with clean, Musan, Gaussian,
reverberation, FSD50k, or DNS noise in the same split overlap
together on the t-SNE visualization, meaning that, no matter
if the speech signals belonging to a particular split have been
distorted or not, the model will still place them into the same
representational space. This supports our claim that model
(T1’) is more robust than the baseline teacher model (T1).
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Fig. 9: An overview of the proposed SpeechCLIP model.

Having a robust teacher model proves to be crucial, as can
be seen by comparing Figure 8c and 8d, where we show that
a model distilled from a teacher that is not robust results in
less robust student models and vice versa, explaining the large
performance gap between models (S1) and (S1°) in Table IV
and Table V. Similar conclusions can be inferred for models
in Figure 8e and 8f.

Finally, in Figure 8h, all the points in the same split
with different distortions almost completely overlap with each
other, showing the distortion-invariant capability of performing
distillation with CDM. On the other hand, Figure 8i and 8j
show that DAT is important when the teacher model is not
robust, as supported by the analysis in subsection IV-E3 and
the results for models (S5) and (S5°) in Table IV and Table V.
Yet, performing DAT does not always improve the robustness
of the student when distilled from a robust teacher model.
Hence, performing distillation with our CDM method is
enough for achieving robustness under distorted settings when
we have a robust teacher. These conclusions are supported
by the results in Table IV and Table V where the difference
in performance between model (S4°) and (S6’) are almost
marginal. Our visualization provides insightful understandings
of which pipeline to use depending on the characteristics of
the teacher model involved during the distillation process.

V. VISUALLY-ENHANCED SSL MODELS
A. Introduction

This report uses paired image-speech data and an image-
text pre-trained model to enhance speech SSL models. This
report introduces SpeechCLIP , a novel framework to integrate
speech SSL models with a pre-trained vision and language
model as depicted in Figure 9. We use Contrastive Language-
Image Pre-training (CLIP), a powerful model pre-trained to
align parallel image-text data [108]. Then, a speech encoder
initialized by a pre-trained speech SSL model is enhanced
by aligning with CLIP using paired image-speech data. By
aligning a speech encoder’s and CLIP’s image embedding
spaces, the speech encoder is implicitly aligned with CLIP’s
text encoder, forcing it to capture more textual content.

We propose two SpeechCLIP architectures: parallel and
cascaded. The parallel model is similar to WAV2CLIP [109].
However, our speech encoder uses a pre-trained speech SSL

model and focuses on capturing local and global spoken
contents. Meanwhile, WAV2CLIP extracts global features in
general audio for classification and retrieval. Furthermore,
AudioCLIP is an extension of WAV2CLIP since it is trained
with paired image, audio, and text data [110]. The cascaded
SpeechCLIP cascades CLIP’s text encoder on top of the speech
encoder, forcing the model to output subword embeddings.
Eventually, the cascaded model captures spoken words in
speech signals.

In this report, the proposed SpeechCLIP models achieve
state-of-the-art image-speech retrieval on two standard spo-
ken caption datasets with minimal fine-tuning. Moreover, we
demonstrate SpeechCLIP ’s capability of performing zero-
shot speech-text retrieval and capturing keywords directly from
speech. We also make our code available on Github!!.

B. Method

1) Preliminaries:  Contrastive  Language-Image  Pre-
training (CLIP): CLIP [108] uses contrastive learning to
pre-train visual models from natural language supervision on
an enormous scale, where the supervision comes from paired
image-text data. Composing two encoders processing image
and text separately, CLIP aims to align semantically similar
images and text captions. CLIP can easily transfer across
various computer vision tasks with little supervision.

In SpeechCLIP , pre-trained CLIP and HuBERT models are
frozen and serve as feature extractors, as shown in Figure 10.
The CLIP model extracts image and sentence embeddings to
supervise SpeechCLIP . Following SUPERB [1], HuBERT ’s
CNN output and transformer encoder’s hidden representations
are weighted and summed by a set of learnable weights. The
weights automatically assign importance to each hidden layer
to minimize the overall objective function. Only the newly
added components excluding HuBERT and CLIP are learnable
during training, reducing the computational cost significantly,
thus enabling a larger batch size for contrastive pre-training.
In the following sections, we introduce two SpeechCLIP ar-
chitectures: parallel and cascaded.

2) Parallel SpeechCLIP : Parallel SpeechCLIP is similar
to CLIP, which aligns semantically related images and spoken
captions, as shown in Figure 10a. Since the weighted sum of
HuBERT ’s output is a sequence of frame-level features, we
add a learnable CLS token at the beginning of each sequence.
The sequence is passed through a transformer encoder layer
to obtain an utterance-level representation [111]. The repre-
sentation is used to compute the cosine similarity with image
embeddings in a mini-batch for calculating the contrastive loss.
Cosine similarity scores are also used for retrieving speech
and image samples. Following CLIP, the loss function has a
learnable temperature for scaling the similarity scores.

By aligning speech and CLIP image encoders, parallel
SpeechCLIP implicitly bridges speech and text representa-
tions since CLIP’s image and text encoders are well-aligned.
Therefore, it can perform both image-speech and speech-
text retrieval. Still, this method is limited to summarizing
utterances because it has no explicit constraints to capture

Mhttps://github.com/atosystem/SpeechCLIP
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Fig. 10: An illustration of SpeechCLIP models. (a) A pre-trained HuBERT [78] extracts audio features. The features are
concatenated with a learnable CLS token and fed into a transformer encoder layer to obtain a single vector representing
the information of the entire sequence. The vector is then used to compute contrastive loss with the CLIP image encoder’s
output [108]. (b) Cascaded SpeechCLIP uses K CLS tokens to capture a small sequence of keywords from the audio signal.
The keywords are batch-normalized and vector-quantized before passing to the CLIP text encoder. BN and VQ respectively

denote batch normalization and vector quantization.

word-level content. Thus, the following section introduces a
novel method addressing this issue.

3) Cascaded SpeechCLIP : To force the speech encoder
to capture semantic information from speech, we propose
cascaded SpeechCLIP by cascading speech encoder with
CLIP’s text encoder as shown in Figure 10b. Following parallel
SpeechCLIP , the cascaded model is trained with contrastive
loss, but the difference lies in the summarization process of
utterances.

First, we add K learnable CLS tokens at the beginning
of an audio feature sequence, where K is a hyper-parameter
for the number of keywords obtained from an utterance. The
sequence is fed into a transformer encoder and projected to
the CLIP input embedding dimension. Next, the projected
CLS tokens are batch-normalized to match the mean and
variance of CLIP’s subword embeddings. We apply vector
quantization (VQ) to map the K normalized embeddings
to CLIP’s V' subword embeddings. This operation produces
keywords indicating the essential concepts in each utterance.

The VQ process is described as follows. We first compute
the cosine similarity between the k" normalized CLS embed-
ding (zj) and the o™ subword embedding (e,) as

1D
Next, we choose the subword embedding with the highest
similarity from the vocabulary, which can be expressed as

12)

Sky = €08 (2, €e,) .

e,~, where v* = argmax sy,.
1<v<V

Since e,« is not differentiable, we compute another embedding
by weighted summing all V' subword embeddings as

hj, = [e; ... ey]softmax ([skl s /T) , (13)

where each embedding e, is a column vector and 7 is a hyper-
parameter (7 = 0.1). Combining (12) and (13), we apply
straight-through gradient estimator [112] to obtain quantized
keywords

TABLE VI: Model details. The number of parameters varies
since they include parallel and cascaded models.

Audio CLIP Image Trainable Total
Model Encoder Encoder  Params (M) Params (M)
Base HuBERT Base  ViT-B/32 28_75 250 _ 257
95 M) (250 M)
Large HuBERT Large ViT-L/14 61-134 765— 772
(316 M) (422 M)
h, = ev* + hy —sg (h) (14)
where sg(z) = z and ‘Lsg(z) = 0 is the stop gradient

operator. The K keywords are then fed into the CLIP text
encoder for computing the contrastive objective.

Overall, the cascaded SpeechCLIP encourages the speech
encoder to extract subwords because of the supervision from
the CLIP text encoder. Hence, it is expected to capture more
semantic and content information from speech.

C. Setup

1) Dataset: SpeechCLIP is pre-trained and evaluated with
retrieval on Flickr8k Audio Captions Corpus [113] and Spo-
kenCOCO dataset [114]. Each image in both datasets is paired
with five spoken captions produced by humans uttering text
captions. Flickr8k consists of 8k images and 46 hours of
speech, while SpokenCOCO has 123k images and 742 hours
of speech. Following FaST-VGS , we use the Karpathy split
for SpokenCOCO [115].

2) Implementaion Details: We implemented Speech-
CLIP in two sizes: Base and Large, a detailed comparison is
shown in Table VI. Note that we omit the Base notation in the
following sections. The hidden dimension of the transformer
encoder is the same as that of the audio encoder. The feed-
forward network in the cascaded model’s transformer encoder
is removed for better performance. Parallel and cascaded



TABLE VII: Recall scores for image-speech retrieval on
Flickr8k and SpokenCOCO testing sets.

Speech — Image Image — Speech

Method R@] R@5 R@10 R@l R@5 R@10
Flickr8k
FaST-VGSco [13] 266 564 68.8 362 66.1 76.5
FaST-VGScrr [13] 293 586 71.0 379 685 799
MILAN [116] 332 627 739 49.6 792 875
Parallel 267 57.1 700 413 739 842
Cascaded 82 257 372 141 345 492
Parallel Large 39.1 72.0 83.0 545 845 932
Cascaded Large 147 412 551 21.8 520 67.7
SpokenCOCO
ResDAVEnet [117] 17.3 419 550 22.0 50.6 652
FaST-VGSco [13] 31.8 625 750 425 73.7 849
FaST-VGScrr [13] 359 663 779 488 782 87.0
Parallel Large 358 66.5 78.0 50.6 809 89.1
Cascaded Large 64 207 310 9.6 277 397

models have respectively eight and one attention head. We set
K to 8 in all experiments. All models are trained with Adam
optimizer with a weight decay of 10~°, batch size of 256, and
50k steps in total. The learning rate linearly increases to 10~*
in the first 5k steps and linearly decreases to 10~8 afterward.
All experiments are conducted on a 32GB V100 GPU except
for pre-training on SpokenCOCO , which uses two. The largest
model’s pre-training lasts approximately two days.

D. Experiment

1) Image-Speech Retrieval: In this section, we evaluate
SpeechCLIP on the image-speech retrieval task, showing how
well models can align speech with CLIP image embeddings.
As shown in Table VII, parallel SpeechCLIP models sur-
pass almost all baseline methods, especially for the Large
SpeechCLIP models. The parallel Base model on Flickr8k also
shows competitive performance with the FaST-VGS o model,
indicating that utilizing powerful pre-trained models and a
small set of learnable parameters is sufficient. Moreover,
the cascaded models obtain the lowest recall scores because
passing encoded speech through VQ and a CLIP text encoder
loses information. Overall, the results show the benefits of
integrating CLIP in VGS models even with minimal fine-
tuning.

2) Zero-shot Speech-Text Retrieval: This section highlights
parallel SpeechCLIP ’s capability to perform zero-shot speech-
text retrieval. Speech and text representations are respectively
computed from a pre-trained parallel SpeechCLIP ’s speech
encoder and a CLIP text encoder. The representations are
then used to calculate cosine similarity scores for retrieval.
Although this problem has been studied for a while, prior
studies require either paired speech-text training data [118],
[119] or pretrained image tagger [120].

Additionally, two supervised parallel SpeechCLIP models
respectively trained with paired spoken and text captions in
Flickr8k and SpokenCOCO are considered as toplines. These
models’ CLIP image encoders are replaced with CLIP text

TABLE VIII: Recall for speech-text retrieval on Flickr8k and
SpokenCOCO . ‘Sup.” indicates the supervised version of
parallel SpeechCLIP by replacing the image encoder with
CLIP text encoder in parallel SpeechCLIP .

Speech — Text Text — Speech

Method R@] R@5 R@10 R@l R@5 R@I10
Flickr8k
Random 0.10 050 099 0.10 050 0.99
Parallel Large 19.56 44.06 58.46 22.50 44.14 54.54
Parallel Large (Sup.) 97.06 99.24 99.46 97.88 99.76 99.90
SpokenCOCO
Random 0.02 0.10 020 0.02 0.10 0.20
Parallel Large 60.32 81.81 88.18 6545 85.82 91.27
Parallel Large (Sup.) 95.02 99.46 99.78 95.35 99.68 99.93

TABLE IX: Keyword hit rates for cascaded SpeechCLIP . Avg
denotes averaged hit rate. T and ¥ respectively denote models
trained on Flickr8k and SpokenCOCO .

Model kwl kw2 kw3 kw4 kw5 kw6 kw7 kw8 Avg

57.0 25.6 20.2 5.0 20.0 26.5 10.5 16.6 22.7
56.5 19.6 20.5 37.5 21.7 34.6 264 447 327
275 224 358 61.0 21.6 542 60.1 229 38.2

Base!
Large'
Largejc

encoders to align speech and text explicitly. When computing
recall, we regard retrieving speech and text captions related to
the same image as successful. Therefore, results only show
whether models retrieve semantically related samples, not
exact matching of speech and transcriptions.

According to Table VIII, proposed SpeechCLIP models
yield considerably better performance than random retrieval,
showing that speech and text embedding spaces are well
aligned. Specifically, parallel SpeechCLIP performs better on
this task when trained on a larger dataset like SpokenCOCO .
Although the performance gap between the proposed methods
and the supervised toplines remains, we show that bridging
speech and text with image is possible and promising.

We demonstrate that parallel SpeechCLIP retrieves noisy
transcriptions for speech signals. These transcriptions can then
be used for supervised or semi-supervised speech recogni-
tion model training. Furthermore, by replacing CLIP with
Multilingual-CLIP'2, we can retrieve noisy transcriptions of
different languages, thus performing speech translation.

3) Keyword Retrieval with Cascaded SpeechCLIP: Due to
the unique design of cascaded SpeechCLIP , we investigate
what and how well the speech encoder extracts keywords.
For each encoded and normalized CLS token zj, keywords
are retrieved by finding subwords with the highest cosine
similarities between zj; and the corresponding subword em-
beddings. Notice that previous works [120], [121] are also
capable of retrieving semantically related keywords from
speech. Nonetheless, they required pretrained image tagger
and the size of keywords set is very limited. For SpeechCLIP ,
we can apply the same method to other pretrained langange
models’ vocabulary, technically. Also, our setting is quite

2https://github.com/FreddeFrallan/Multilingual-CLIP



; man in |a| tie and suit frmigme} indifferent ;

kw#1 | [T Il I I I || dapper, stylish, professional, elegant, spectacular, handsome

kw#2 \ ] \ dapper, tuxedo, scarf, formally, boardroom, blazer

kw#3 [ ] [TH TN T ] blazer, formally, scarf, haircut, businessman, dapper

kw#4 \ TN |H]H .]] \ businessman, salesman, blazer, electrician, bartender, journalist

kw#5 [ ] | 1 /] holding, enjoying, holds, with, carrying, wearing

kw#6 ] [TTT [ 1] || dapper, scarf, haircut, dress, formally, shirt

kw#7 [ ] [] of, in, to, is, a, the

kw#8 [ | Il | || businessman, gesture, appropriate, relationship, person, manner
lal street I light | with | traffic signals an street sign i

kw#1 [[ ] 1] | il | | | | i | T 7] lights, signals, monitored, confusing, signalling, reflective

kw#2 [ ] /] lights, stopped, protecting, monitored, monitoring, signals

kw#3 [ ] Il ] Il | [ I | 1l /] lights, traffic, intersection, signal, signals, sign

kw#4 | /] sign, stop, signs, end, sign, signing

kw#5 [ ] [ | | | I B /] lights, stopped, stopping, driving, protecting, causing

kw#6 [ ] || i | [] road, street, roads, car, street, highway

kw#7 [ ] | I [] of. in, to, is, a, the

kw#8 [ ] | '] signage, sign, acknowledging, notification, signs, announcement

Fig. 11: Demonstration of a cascaded SpeechCLIP Large model retrieving words using its CLS tokens’ outputs. The two
utterances are from the SpokenCOCO test set. For each keyword in each sample, we show the transformer encoder’s attention
map over the whole sequence and the retrieved subwords on the right and sorted in decreasing cosine similarity. Subwords in

boldface indicate they exist in the ground truth caption.

different from [122], where the 8 keywords are discovered
from speech utterance without any text query in our work.
Namely, SpeechCLIP can automatically summarize the speech
by selecting 8 keywords. We offer quantitative and qualitative
analyses in the following paragraphs.

We inspect how well keywords are retrieved from speech
signals for the quantitative analysis. The evaluation metric is
hit rate, which is the percentage of successful top-1 keyword
retrieval of any word in the caption averaged over all testing
samples. In Table IX, some CLS tokens frequently retrieve
words in the ground truth captions, showing that the cascaded
architecture can directly capture words from speech. Moreover,
the first keyword’s hit rate for models trained on Flickr8k is
relatively high compared to other keywords. Probably because
the first word in a sentence has a higher chance to be “a”,
which is also the top-1 commonly retrieved subword from the
first keyword in Flickr8k . Another finding is that the Large
model obtains a higher averaged keyword hit rate than the
Base model on Flickr8k , which is consistent with the trend
in Table VII. Hence, retrieving correct keywords is related
to retrieving between speech and image samples. Although
some CLS tokens obtain reasonable hit rates, one might
question whether the retrieved words are meaningful instead
of stopwords. Hence, we next analyze the results qualitatively
to address this concern.

For the qualitative analysis, we offer two samples from
the SpokenCOCO testing set in Figure 11, showing their
attention maps in the transformer encoder and retrieved words
for each CLS token. In the first example, although only a
few retrieved keywords are in the ground truth caption, some
semantically related words are found. For instance, attention
maps of keywords 1, 2, and 6 focus on segments uttering
“tie” and “suit.” Meanwhile, they retrieve words related to
clothes and appearance, e.g., “dapper”, “tuxedo”, and “scarf.”
A similar trend can be found in the second sample, showing
that the cascaded objective makes the speech encoder captures
semantic information. Moreover, looking at both examples,

TABLE X: Top 10 successfully retrieved subwords for each
keyword on SpokenCOCO test set using the cascaded Large
model. The subwords are sorted in decreasing occurrence.

kwl kw2 kw3 kw4 kw5 kw6 kw7 kw8
a cat bathroom a a street in  train
pizza a skateboard of tennis  bathroom of  sign
the room room in with kitchen to cake
giraffe sheep horse man  eating train from clock
bathroom frisbee elephant  woman and beach for is
skateboard skis motorcycle dog  playing bed a bus
living bird kitchen train  the bus on truck
gira skateboard clock with  flying grass at  car
sheep surf tower is sitting  road the of
an kite bear to walking room - signs

each keyword seems to have a particular purpose, e.g., the
8th keyword tends to retrieve specific nouns from utterances
while the 7th retrieves prepositions. This observation leads us
to investigate the properties of each keyword.

In Table X, we list the top 10 successfully and frequently
retrieved subwords for each keyword in SpokenCOCO . Gen-
erally, commonly retrieved subwords are either stopwords like
“a” and “of” or objects like “skateboard” and “street.” In the
first case, the phenomenon might be caused by the supervision
from the CLIP text encoder because stopwords contain little
information about speech signals but are sometimes crucial
for maintaining the syntactic structures. Moreover, we find
the frequently retrieved words for objects sometimes appear
in SpokenCOCO ’s captions but not very frequently. Hence,
these words might be easier to be detected in speech, and
the corresponding objects are more concrete to be found in
images.

Additionally, we find that some keywords predict specific
subword categories successfully. For instance, keyword 7 tends
to output prepositions and articles, while keyword 5 mostly re-
trieves action words. As for the rest of the keywords, nouns are
mostly retrieved. Particularly, for keyword 2, “frisbee”, “skis”,
“skateboard”, and “surf” are all related to outdoor activities.

EEINT3
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Fig. 12: Normalized weights for layer summarization of Hu-
BERT in parallel and cascaded SpeechCLIP . CNN denotes the
HuBERT CNN feature extractor.

TABLE XI: Recall scores on Flickr8k for ablation studies.

Speech — Image

Image — Speech
R@]l R@5 R@10 R@l R@5 R@10
Batch Normalization

Cascaded (w/ BN) 8.2 257 372 141 345 492
Cascaded (w/o BN) 1.1 4.7 8.4 1.4 57 9.4

Keyword Num

Method

Cascaded (K =8) 82 257 372 141 345 492
Cascaded (K =4) 35 132 211 52 175 274
Cascaded (K =2) 2.1 84 144 27 106 176

“signs” are all related to traffic. This section demonstrates
the cascaded SpeechCLIP for retrieving semantically related
keywords from speech signals.

4) Layer Importance in SpeechCLIP Speech Encoder:
In this section, we show which HuBERT hidden layers are
crucial for SpeechCLIP to perform well in various tasks
discussed earlier. Hence, we visualize the learned weights
in the weighted sum mechanism mentioned in Section V-Bl
in Figure 12. Both parallel and cascaded SpeechCLIP utilize
the roughly the 8" to the 10" layers in HUuBERT , inferring
that HUBERT s top layers capture rich content and semantic
information. This result is consistent with prior works inves-
tigating the importance of different hidden layers in speech
SSL models [17], [28], [44], i.e., the top hidden layers contain
word meaning and content information. However, the cascaded
model’s weights distribute more evenly over the layers than
parallel SpeechCLIP , showing that the model architecture
design affects the utilization of HuBERT °’s layers.

5) Ablation Studies:

a) Batch Normalization in Cascaded SpeechCLIP :
Here, we demonstrate the importance of batch normalization
in the cascaded SpeechCLIP . We compare cascaded Speech-
CLIP with its variant without using batch normalization, as
shown in the first two rows of Table XI. Removing batch nor-
malization degrades retrieval performance significantly, show-
ing the significance of mean and variance matching described
in Section V-B3.

b) Number of Keywords in Cascaded SpeechCLIP :
This section discusses the impact of the number of keywords
in cascaded SpeechCLIP . We report retrieval results on
Flickr8k using different amounts of keywords in Table XI.
Results show that reducing keywords degrades retrieval per-
formance, indicating that using fewer keywords is incapable
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of passing information from the speech encoder to the CLIP
text encoder. Furthermore, the number of subword tokens in
a Flickr8k utterance is 11.3 £ 4.1, and some tokens carry
less information like stopwords. Therefore, we suggest 8 is
a reasonable number for K to obtain good performance with
cascaded SpeechCLIP . Although dynamically assigning K for
utterances of different lengths is more appropriate, we leave
this approach for future investigation.

VI. ADAPTER
A. Introduction

In the presence of various downstream tasks, fine-tuning
pre-trained models for each downstream task is parameter-
inefficient since massively self-supervised pre-trained models
are notoriously deep, requiring millions or even billions of
parameters. Due to this reason, adapting the SSL speech model
by fine-tuning requires large storage space. For example, Hu-
BERT X-Large [78] contains 964M parameters. This results

gloulsby
=1 SitFit
Veighted-sum

80 -
ddapterBias

acc (%)

grefix-tuning
70 1

T

65

dORA

1:)1 1rIJ2 1:)3 1rIJ4 1c||5 108 lnIJ? 163
Trainable-parameter of Upstream model (log)
Fig. 13: The trade-off between accuracy and number of trained
task-specific parameters, for several efficient tuning methods
and fine-tuning. The x-axis represents trainable parameter of
the upstream model, while the y-axis represents the accuracy
of Speaker Identification task (SID). The red point is fine-
tuning (FT), and the blue points are the efficient methods.

in requiring large storage space for each complete set of tuned
parameters per downstream task. Furthermore, overwriting the
pre-trained model parameters may not be the best way of
utilizing the pre-trained knowledge from the SSL model.

To overcome these shortcomings, researchers then utilize
the SSL speech model by only using the frozen represen-
tation [1]. In NLP, efficient tuning techniques have been
proposed for leveraging SSL models. One of the most popular
efficient methods is adapters [20], which introduce extra
tunable weights and freeze the original parameters of the
pre-trained language model (PLM). Adapters have demon-
strated comparable performance with fully fine-tuning the
entire model while being parameter-efficient. More recently,
the prompting technique has shown to be surprisingly effective
on PLM [123]. Both methods shows that “freezing” pre-trained
models is appealing, especially as model size continues to



increase. Rather than requiring a separate copy of the model
for each downstream task, a single generalized upstream model
can simultaneously transfer to many different tasks. Adapters
have been shown to work well for machine translation [124],
cross-lingual transfer [125], as well as transfer learning in
automatic speech recognition (ASR) [126]. However, these
efficient tuning methods are not systematically studied with
SSL speech models.

In order to utilize efficient tuning methods to the field
of SSL speech representation, in this work, we explore the
effectiveness of efficient tuning methods for self-supervised
speech models on the SUPERB benchmark [1]. We apply
different efficient tuning methods, including adapter tuning
and prompt tuning, on SSL speech models with different
training objectives. We propose an adapter framework for
multiple downstream speech processing tasks, including the
recognition tasks, classification, as well as speaker tasks. To
investigate the effectiveness of these efficient methods, we
conduct experiment on 3 SSL models with different training
objectives: HUBERT, Wav2vec2 [127], and DeCoAR2 [128].
The main concept of our work is shown in Figure 14. To our
best knowledge, this is the first comprehensive investigation of
various efficient tuning methods on different speech tasks. We
show that the performance parity can be achieved with over
90% parameter reduction. Furthermore, we show the pros and
cons of various efficient tuning techniques, e.g., the Houlsby
adapter [20] is the most efficient in the trade of between
performance and the number of parameters, and weighted sum
is a very suitable efficient method to use in SSL speech tasks.

B. Efficient tuning for self-supervised speech models

We propose a framework to consistently evaluate the effi-
cient tuning methods for SSL speech models. The framework
is designed based on three aspects of the experiment: gener-
alizability, coverage, and comparability.

1) Generalizability: For the purpose of examining the gen-
eralizability of the efficient tuning methods in SSL speech
models, this framework includes multiple downstream speech
processing tasks, involving the recognition tasks, classification
tasks, as well as speaker tasks. For recognition tasks, we
examine automatic speech recognition (ASR) and phoneme
recognition (PR); classification tasks include keyword spotting
(KS), slot filling (SF), and intent classification (IC); and for
the speaker tasks, we have speaker identification (SID) and
speaker diarization (SD). As for the upstream model, we
conduct experiments with different training objectives SSL
models: HuBERT, Wav2vec2, and DeCoAR2. The former
two models are discriminative models, while DeCoAR?2 is a
generative model.

2) Efficient tuning approaches: As for coverage, we imple-
ment mainstream efficient tuning methods in NLP, and conduct
experiments to understand different efficient methods, as well
as their integration with SSL model.

The structure of our framework is shown in Figure 14. In
our experiments, we apply adapters at the place where they
originally added in NLP. Based on different tasks, we apply
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Fig. 14: Illustration of the transformer architecture and
parameter-efficient tuning methods. The blocks with dashed
borderlines are the added parameters by the efficient method.
Wy, Wi, W, represents the weights of query, key and value,
respectively.

different downstream models (i.e. LSTM module, a linear
classifier) on top of the transformer network. A set of adapters
and the downstream model are trained per task, and the rest
of the network remains frozen.

a) Houlsby adapter: Houlsby adapters [20] are small
bottleneck modules consisting of a down-projection (£'Fgoun),
a non-linearity (GeLU), and an up-projection (F'F,,), with a
skip connection. Here, we add Houlsby adapters to the second
feed-forward layers of transformer layers. The fully connected
layers are initialized as a near identity function.

b) LoRA: LoRA [129] reduces the number of trainable
parameters by learning pairs of rank-decomposition matrices
(F'Fyown, F'F,p) while freezing the original weights. This
reduces the number of parameters for large language models
when adapted to specific tasks. In our work, LoRA is added
to the attention modules of transformer layers.

c) AdapterBias:  AdapterBias [130] adds frame-
dependent biases to the representation shifts by using a vector
(v) and a linear layer (L,). v represents the task-specific
shift, and L, produces the weights («) for input frames.
Thus, with the vector and the weights, AdapterBias can add
a frame-dependent shift to the transformer layer. We add
AdapterBias module to the second feed-forward layers of
transformer layers.

d) BitFit: Instead of adding additional parameters for
adaptation, Bitfit [19] tunes the bias term of each module. In
our method, we tune the weight of all modules in the upstream
model, such as HuBERT, Wav2vec2, and DeCoAR2.



e) Prefix tuning: For prompt tuning [123] in our unified
efficient tuning settings, we use prefix tuning, which could
be considered as a variant of adapter [131]. [ trainable prefix
vectors were prepended to the multi-head attention modules
of all transformer layers. To be more specific, the original
key (K) and value (V') are concatenated with trainable prefix
vectors Py, P, € R'? where d is the model dimension.
During training, only the prefix vectors and the downstream
model are updated, while the upstream model remains fixed.

f) Weighted sum: In the framework of [1], they weighted
the sum of multiple hidden states from the upstream model
as the final representation. In our framework, we regard the
weighted-sum technique as an efficient method.

3) Comparability: For the purpose of the comparability of
our proposed framework, we design our downstream model to
be similar to the SUPERB benchmark, so that our approach
is reproducible and comparable. The configuration setting and
the hyper-parameter search is consistent with the SUPERB
benchmark so that the efficient tuning methods could be eval-
vated from the aspect of performance, parameter efficiency,
as well as stability, and understand the pros and cons of each
method for SSL speech processing tasks.

Inspired by the SUPERB benchmark, we design our frame-
work to keep the downstream models and their fine-tuning
simple, while ensuring the performance across pre-trained
models with different efficient tuning methods is comparable.
PR, KS, SID, and IC are simple tasks that are solvable with
linear downstream models. Hence, we use a frame-wise linear
transformation for PR with CTC loss [132]; mean-pooling
followed by a linear transformation with cross-entropy loss
for utterance-level tasks (KS, SID, and IC). For ASR, a
vanilla 2-layer 1024-unit BLSTM is adopted and optimized
by CTC loss on characters. The trained model is decoded
with LibriSpeech [80]. Regarding SF, slot-type labels are
represented as special tokens to wrap the slot values in
transcriptions. Similar to the SUPERB benchmark, SF is also
re-formulated as an ASR problem. As for SD, we train SD
with permutation-invariant training (PIT) loss, which is also
used in the SUPERB benchmark.

C. Experiment

1) Performance on the SUPERB benchmark: We explore
different efficient methods in the SUPERB benchmark. Note
that "FT” represents fine-tuning. The ’Baseline’ here means
that we tune the downstream model only. The tasks we have
examined can be categorized into three: recognition task,
classification task, and speaker task. The result is shown in
Table XII. In general, most efficient methods perform better
than Baseline and FT. For the classification tasks (i.e. KS,
IC), Baseline already yields good performance. Thus, the
improvement in using efficient methods is not apparent. For
recognition and speaker tasks (i.e. ASR, PR, SD, SID), the
advantage of using efficient methods can be seen. Especially in
SID, Houlsby improves 23% accuracy compared to Baseline.
On average, Houlsby yields high and stable performance
among all efficient methods since it has the biggest trainable
parameter. For LoRA, it performs worst among efficient meth-
ods and even worse than Baseline in some tasks (i.e. PR, SD,
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SID). One thing worth mentioning is that Weighted-sum is a
powerful and efficient method for speech tasks, where it gets
comparable performances in the SUPERB benchmark by just
adding a few trainable parameters to the upstream model.

2) Upstream models with different training objectives: We
also examine the generalization ability of these efficient meth-
ods with upstream SSL speech models with different training
objectives. We use three different training objective models
as upstream models: HuBERT, DeCoAR2, and Wav2vec2. As
shown in Table XIII, efficient methods all gain comparable
performance when applied to different upstream models. For
example, in SD, Houlsby performs best when using Hu-
BERT, DeCoAR2, and Wav2vec2; in KS, BitFit performs
best. Moreover, the improvement of utilizing efficient methods
depends on the upstream model. If the upstream model already
yields strong performance in Baseline, the performance gain of
using efficient methods becomes less. In contrast, if Baseline
does not get a strong performance, the improvement of using
efficient methods is more significant. For ASR, we can observe
that Houlsby adapter improves 1.21% word error rate (WER)
than Baseline when the upstream model is HuBERT. However,
when the upstream model is DeCoAR2, using Houlsby adapter
improves 10.43% WER.

D. Low-resource Adaptation

In NLP, adapters are shown to have advantages over fine-
tuning when adapting to low-resource datasets [19], [130],
[133]. To see if this property also holds when applied in
speech tasks, we trained different efficient methods in the
low-resource settings. All methods were trained with 1-hour
and 10-hour datasets generated by Libri-Light and tested on
the testing set of LibriSpeech. We conducted experiments
on recognition tasks, including ASR and PR. As shown in
Fig 15, the efficient methods perform better than fine-tuning
in the low-resource settings. We observed a similar tendency
in speech tasks. As the training data becomes smaller, tuning
the majority of the parameters may result in a higher risk
of overfitting the training data. Using adapter methods helps
overcome this issue. Also, we found that LoRA failed to
achieve comparable performance in the low resource settings
as it cannot perform well in speech tasks generally. For PR,
fine-tuning performs better than Houlsby adapter in 100-hour
training data. However, as the size of training data decreases,
the benefit of efficient tuning methods started to emerge. As
shown in Fig 3, in 10-hour and 1-hour, Houlsby adapter started
to perform better than fine-tuning.

E. Analysis

In this part, we explore the benefit of efficient tuning meth-
ods beyond parameter-efficiency from two aspects: stability
and learning rate robustness.

1) The stability of low-resource adaptation: Here we use
the Libri-Light tool to split different low-resource data from
LibriSpeech with different random seeds. For each efficient
method, we run three random seeds and compute the mean and
standard deviation. From Table XIV, we can find that efficient
methods have more tolerant than FT when the training data
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Method Params ASR PR SD SID SF 1C KS
FT 94.7M 6.35 245 9.32 66.48 84.87 99.10 95.87
Baseline 0 7.09 7.74 7.05 64.78 86.25 96.39 95.32
Houlsby 0.60M 5.88 3.00 4.00 87.71 85.87 99.60 97.17
AdapterBias 0.02M 5.54 4.19 5.48 77.38 86.60 99.50 97.30
BitFit 0.10M 9.34 4.23 5.13 83.68 87.40 99.50 97.33
LoRA 0.29M 6.94 8.74 7.39 62.90 86.25 96.57 96.59
Prefix 0.10M 6.56 4.18 8.17 71.87 85.85 99.31 97.05
Weighted-sum 12 6.42 5.41 5.88 81.42 88.53 98.34 96.30

TABLE XII: Performance of different efficient methods in the SUPERB benchmark. The second column represents additional
trainable parameter used in upstream model. Note that except for the “Weight-sum” method, other methods directly use the
last layer representation of upstream model as the input of the downstream model.

ASR SD KS

Method HuBERT DeCoAR2 Wav2vec2 | HUBERT DeCoAR2 Wav2vec2 | HIBERT DeCoAR2 Wav2vec2
FT 6.35 25.46 6.01 9.32 12.67 12.38 95.81 27.36 97.50
Baseline 7.09 39.06 10.79 7.05 9.14 8.07 95.32 91.69 91.95
Houlsby 5.88 28.63 5.99 4.00 5.76 4.23 97.17 96.07 96.75
AdapterBias 5.54 29.89 5.96 5.48 6.95 6.16 97.30 96.23 91.56
BitFit 9.34 29.40 6.01 5.13 7.05 5.29 97.33 96.72 96.85
LoRA 6.94 39.52 11.32 7.39 8.78 7.92 96.59 25.38 92.80
Prefix 6.56 13.48 6.54 8.17 10.05 10.01 97.05 88.7 96.82
Weighted-sum 6.42 36.26 6.43 5.88 5.88 6.08 96.30 94.48 96.23

TABLE XIII: Performance of different upstream models. We used three different objective self supervise speech models:

HuBERT, DeCoAR2, and Wav2vec?2.

ASR

— FT
Baseline
—— Houlsby
—— AdapterBias
—— BitFit
—— LoRA
Prefix-tuning
—— Weighted-sum

ASR PR

Method 1hr 10hr Thr 10hr
FT 35.3846.02 | 15.30£1.73 | 15.60£5.56 | 6.15+£0.98
Baseline 51.5443.04 | 24.51£3.85 | 16.90+0.63 | 12.93+0.72
Houlsby 31.67+0.94 | 16.67£4.20 | 11.261+0.62 6.4410.13
AdapterBias 37.97+1.45 | 19.35+£5.92 8.831+0.32 6.961+0.39
BitFit 3547+£1.39 | 15.17+£2.54 | 8.8940.34] 6.934+0.09
LoRA 51.274+1.62 | 29.47+£8.20 | 15.964+0.32 | 14.85+1.64
Prefix 39.00+1.17 | 17.71£1.04 | 11.75%0.35 7.2540.08
Weighted-sum | 43.84+2.15 | 23.2247.77 | 13.58+£2.24 9.041-0.08

TABLE XIV: Performance of different low-resource data in
efficient methods. We train with three random seeds and report
the mean and standard deviation.

100nr

10hr
#Size of training data
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— FT
Baseline

—— Houlsby

—— AdapterBias

— BitFit

— LoRA
Prefix-tuning

— Weighted-sum

e 100hr

1o
#Size of training data

Fig. 15: Performance of different efficient methods in low-
resource adaptation. We train with 1 hour data and 10 hour
data from librilight and test models on LibriSpeech.

Method 5x10~F 5x10~5 5x10~1% 5x1073

FT 3.03£0.1 2.81£0.4 100£0 100£0
Houlsby 6.0940.49 | 3.2440.14 | 2.8140.03 | 3.0640.03
AdapterBias | 7.5440.06 | 4.5240.01 | 3.7940.02 | 3.7240.02

TABLE XYV: Performance of different methods with different
learning rates. The downstream task is PR. We run 5 different
random seeds and report the mean and standard deviation.

becomes less. Compared with ASR and PR, ASR has a bigger
standard deviation than PR. The reason may be that we use a
more complex downstream model (2 layers of LSTM) in ASR.
Training with low-resource data would make the complex
model more unstable than a simple downstream model (i.e.
a linear layer) used in PR.

2) Learning rate robustness of efficient tuning methods:
This part evaluates the tolerance of the learning rate in differ-
ent methods. Here we pick fine-tuning (FT), Houlsby adapter,
and AdapterBias since Houlsby adapter has the biggest train-
able parameters and AdapterBias has the lowest parameters.
In Table XV, we train on PR and learning rates ranging from
5x%107% to 5x10~2. We can observe that FT has less tolerance
than efficient methods. FT does not work on larger learning
rates, while efficient methods receive more stable perfor-
mance among a large range of learning rates. Comparing with
Houslby adapter and AdapterBias, AdapterBias has smaller



standard deviation than Houlsby adapter since AdapterBias has
less trainable parameters than those of Houlsby adapter. Thus,
with less trainable parameters, the model would not overfit to
training data.

3) Discussions: In this section, we discuss the strength and
limitation of efficient tuning methods in speech processing
tasks, as well as their behavioral difference from NLP.

a) Performance analysis of adapter methods: From the
experimental results, we found that Houlsby adapter performs
the best among all efficient tuning methods. This is different
from NLP, as in NLP, the overall performance gain of Houlsby
adapter is not that significant [131]. In the SUPERB bench-
mark, Houlsby adapter outperforms other efficient methods in
3 out of 7 tasks.

LoRA is an effective adapter in NLP, achieving comparable
performance with other adapters [129]. However, it performs
worst in the SUPERB benchmark. We guess that the position
added adapters play a crucial role. Both Houlsby adapter and
AdapterBias are added behind the second feed-forward layer,
while LoRA is added in the attention module. Therefore,
in SUPERB benchmark, adding adapters in the feed-forward
layer is more effective than adding adapters in the attention
module.

In NLP, prefix-tuning achieves comparable performance
with adapter methods [131]. Nonetheless, prefix-tuning does
not perform better than adapter methods in the SUPERB
benchmark. One reason may be the initialization of prefix-
tuning significantly affects the performance in speech tasks.
The embedding is discrete in NLP tasks, while in speech tasks,
each frame representation is continuous. Thus, we initialize
the prefix with the average of the hidden states of the first
batch of data. However, it is still worth designing a suitable
initialization of prompt in the future.

In addition, weighted-sum is not a common technique in
NLP. Nevertheless, weighted-sum improves a huge perfor-
mance in the SUPERB benchmark. In the work [17], they
find that output from each layer of speech SSL model contain
information related to different tasks. Therefore, weighted-sum
leverages information from different layers and receives high
performance in speech tasks.

b) Performance analysis of different types of tasks:
In NLP, most efficient methods work well on classification
tasks, but do not perform as well in generative tasks. In
the SUPERB benchmark, utilizing efficient methods achieves
good performance in general on not only classification tasks
(i.e. IC, KS), but also generative tasks, such as ASR. However,
there are some tasks (i.e. PR, SF) where efficient methods
do not work very well. In the future, it is worth designing a
suitable adapter for speech and considering more challenging
tasks, such as Out-of-domain Automatic Speech Recognition
Tasks (OOD-ASR).

VII. PROMPT
A. Introduction

In the Natural Language Processing (NLP) field, prompting
methods have gained researchers’ attention [21]. The meth-
ods scale up pre-trained language models (LMs) at serving
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multiple downstream tasks in a unified and efficient way. For
each downstream task, prompting methods aim to find task-
specific templates or a limited number of parameters that steer
LMs to generate results for the task without modifying LM’s
parameters. For example, in a sentiment classification task
for movie review, we can design a prompt “[X] The movie
is _ 7. The LM takes a sentence to be classified and fits
it into the template at [X]. By generating a sentiment word
from a pre-defined set of tokens (e.g. great, neutral, bad)
that one-to-one mapped to classification labels, we transform
the sentiment classification task into a generation problem.
Alternatively, prompts are not necessary to be readable by
humans. Researchers proposed prompt tuning methods that
learn continuous prompts [21], [123], [134], [135] in models’
embedding space. Studies have shown that prompt methods
can reformulate most NLP tasks as generation problems and
yield competitive performance [21].

The prompting paradigm is appealing as the number of
downstream tasks to be served increases. Rather than requiring
a specialized downstream model for each task, a single gen-
eralist model can simultaneously serve many different tasks
in one inference batch. Since parameters of tuned prompts
are usually several orders smaller than parameters of LMs
[136], the prompting paradigm significantly improves memory
and computation efficiency. Furthermore, there is a unified
inference process with the original pre-trained LM for all
downstream tasks in the paradigm. Hence, less human labor is
required in model authoring for each task. Despite the success
in NLP, there is little research on the prompting paradigm in
the speech community.

To bring the benefit of the prompting paradigm to the speech
processing field, we propose a prompt tuning framework
for multiple downstream speech processing tasks, including
Keyword Spotting (KS), Intent Classification (IC), Automatic
Speech Recognition (ASR), and Slot Filling (SF). The frame-
work unifies training and inference for multiple tasks by
leveraging the generation capability of the pre-trained LM.
To our best knowledge, our work is the first study in the
prompting paradigm that achieves competitive performance in
various speech processing tasks.

We utilize Generative Spoken Language Model (GSLM)
[137] as our backbone LM and apply prompting on top of
it. GSLM is used, for GSLM is the first generative speech
LM pre-trained on a large-scale speech dataset, and it has a
large model capacity to generate meaningful output. Experi-
ment shows that the proposed framework achieves competitive
accuracy (Acc) in single-label and multi-label speech classifi-
cation tasks. While the framework demonstrates the potential
of prompting GSLM, we also identify the limitations when
performing challenging sequence generation tasks and discuss
the potential research directions in the paper. We hope by
exploring and analyzing the novel prompting paradigm for
speech processing, this work can inspire the speech community
to explore more on this paradigm.

B. Related Works

1) SSL Speech Representations: Learning speech represen-
tations with SSL objectives has become a vital research topic
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Fig. 16: (a) The overview of the proposed framework. Task-specific prompts are applied to the unit language model (uLM) to
generate predictions. (b) The uLM performs generation conditioned on the discrete unit sequence and the task prompts.

in the speech community. For example, CPC [138] learns by
predicting future features in a contrastive manner. HuBERT [?]
maximizes the similarity between output representations and
clusters of acoustic features during pre-training. To leverage
SSL representations, a common way is to build specialized
downstream models on top of SSL representations and fine-
tune the entire models or only the downstream ones for
supervised downstream tasks. Based on this, SUPERB [1]
benchmarks speech SSL techniques with a wide variety of
downstream tasks. This work explores an alternative paradigm:
we add a fixed, pre-trained LM on top of SSL representations
and prompt the LM to generate predictions directly.

2) Generative Spoken Language Model: Researchers pro-
posed Generative Spoken Language Model (GSLM) [137]
to model the rich expressiveness of spoken language based
on discovered units of raw audio without any text or labels.
GSLM first leverages the representation learning ability of SSL
speech models and encodes raw speech into a sequence of
discrete units by an SSL model and the K-means clustering
algorithm. A generative unit language model (uLM), the
core component of GSLM, is then trained to perform speech
generation on top of discrete units. The technique shows
competitive performance to generate novel speech uncondi-
tionally or conditioned on a speech segment. GSLM can be
considered the speech version of GPT-3 [139] and is the first
generative speech LM trained on a large speech corpus. The
work opens the door to applying prompt tuning methods for
speech processing tasks.

3) Prompting and Reprogramming: Prompting refers to
techniques for finding task-specific instructions or templates
that steer a pre-trained LM without modifying its parameters
[21]. By concatenating examples and a task description to the
original sentence as the input, GPT-3 [139] performs in-context
learning to directly generate labels of the sentence. Although
in-context learning yields competitive results, it requires heavy
hand-crafted prompt engineering, and it is difficult to scale
to smaller pre-trained models [140]. To avoid hand-crafted
prompt engineering, automatically generating templates [141],
[142] is another research direction.

Under the premise of fixing pre-trained LMs’ parameters,
researchers further explore prompt tuning, where continuous
prompts are learned in the model’s embedding space. For

example, [134], [136] learn continuous prompts in LMs’
input embedding space. We refer to this kind of methods
as input prompt tuning. Another similar technique to input
prompt tuning is model reprogramming [143], where an input
transformation function is learned to reprogram a pre-trained
model to perform a target task. [144], [145] have explored
reprogramming acoustic models while focusing on single-label
classification tasks with a supervised model. In this work, the
proposed framework can perform various speech processing
tasks and is not limited to input transformation. Alternatively,
Prefix-Tuning [123] and P-Tuning v2 [135] performs deep
prompt tuning, in which prefix prompts are further prepended
at the input of model’s hidden layer. We mainly utilize deep
prompt tuning in this work. Meanwhile, we also investigate
applying prompts only at the input of the LM for comparing
different prompting techniques.

C. Method

We propose a prompting framework to adapt GSLM to a
given downstream task by conditioning the uLM on task-
specific prompts. Figure 16 illustrates the framework. An
utterance is first encoded into discrete units by an SSL speech
model and a K-means quantizer. The uLM then takes the
sequence of units as input and prepends it with task-specific
prompts. We then perform conditional generation with the
uLM to output units that will be mapped to task labels
with a pre-defined verbalizer. In the following, we describe
details in the framework, including applying prompts at uLM,
controlling the output of conditional generation, and the label
mapping with a verbalizer.

D. Prompt Tuning

A causal uLM M takes a discrete unit sequence u,, as input
and autoregressively outputs a sequence u, = M (u) until an
end-of-sentence token “[E0S]” is produced.

In prompt tuning, the parameters of the pre-trained uLM M
are fixed. Given M and a downstream task, a set of trainable
task-specific prompt vectors P is optimized during adaptation
with supervision from the task. The number of trainable pa-
rameters for each task is denoted as |P|. We adopt deep prompt
tuning similar to [123], [135] in our framework. Given an



utterance, the SSL model and the quantizer first encode it into
a sequence of discrete units w, = [uy,us, -+ ,ur),u; € U,
where T is the unit sequence length, and U/ is the unit space
of the uLM'3. Trainable continuous prompts are then applied
to (a) the input of the uLM in its embedding space and (b) the
input of the attention mechanism in each Transformer block.
(a) Prompts at the input of the uLM

Given an unit sequence u, as the original input, the input
embedding layer of the uLM e(:) : R — R? first trans-
forms it into a sequence of embedding vectors: e(u,) =
[e(u1),e(us), - ,e(ur)]. The sequence is then prepended
with continuous prompts and fed into the uLM:

lpl,pl, - pl, e(u,)] (15)

where p! are trainable vectors in P, and [ is the prompt length.
(b) Prompts at the input of the attention mechanism
Solely applying prompts to the input embedding may not be
powerful enough to steer a pre-trained LM [135]. Therefore,
we also apply prompts to the input of the self-attention
mechanism [111] in every Transformer block of the uLM.
Given a Transformer block that takes the embedding x =
[X1,X2,- - ,Xr] as input, we manipulate the key K and value
V in the attention function Attn(Q, K, V) [111]:

K= C’oncat(pK,aclH:T)WK
V= Concat(pv, a:lH:T)WV

(16)
a7

where pX and p" are trainable vectors in P. That is, we
replace the first [ vectors of a with the trainable prompt
vectors.

E. Conditional Generation and Verbalizer

To leverage the generation capability of the uLM for in-
ference in downstream tasks, we reformulate all tasks into
conditional generation problems. The uLM generates an output
sequence u, conditioned on the input unit sequence u, and
task-specific prompts P. Let y = (y1,...yn), ¥y € V, be a
sequence of n task labels and ) is the label space of a task.
The task label length |y| is flexible depending on the task.
For example, in classification tasks, y can be a single label
or multiple labels. In recognition tasks, y can be a character
sequence.

To connect the LM’s output with the labels of downstream
tasks, a verbalizer [140], [146] is introduced in the paradigm
of prompting LMs. The verbalizer is a one-to-one mapping
v : )Y — U that maps from the task label space to vocabulary
of the language model. In the case of the uLM, the vocabulary
is the units &. With the help of the verbalizer, the output
units can be mapped back to task labels. For example, in
Intent Classification, the output units u, = [4,40,27] can be
interpreted as intent labels [“Active”, “Lights”, “Bedroom”].

The trainable prompts are then optimized with a loss func-
tion £, which is cross-entropy for every task in this work:

P = argmin LIM(P,u,),v(y)) (18)
P

BFollowing GSLM [137], unit deduplication is also applied universally.
(e.g. the unit sequence 71 11 11 63 63 63 becomes 71 11 63.)
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TABLE XVI: Summary of downstream tasks used in the
work. SLU denotes Spoken Language Understanding. CLS:
Classification. SG: Sequence Generation. |y|: average label
length in the task.

l Task [ Type [ Nejass [ ly| [ Dataset l
KS Detection CLS 12 1 [147]
1C SLU CLS 24 3 [148]

ASR Recognition SG 29 173 [80]
SF Recogition + SLU SG 69 54 [149]

FE. Experiment Setup

1) Tasks and Datasets: We evaluate the proposed frame-
work on various speech processing tasks, including speech
classification tasks: Keyword Spotting (KS) and Intent Classi-
fication (IC); sequence generation tasks: ASR and Slot Filling
(SF). Table XVI gives a brief summary for each task. We
follow the same dataset and data splits as in SUPERB [1].

2) Implementation Details: uLM We use the checkpoints
of the pre-trained uLLMs corresponding to HuBERT and CPC
representation with 100 clusters on fairseq'* [79]. The uLM is
a causal LM consisting of 12 Transformer decoder layers with
151M parameters. All the parameters are fixed during prompt
tuning.

Verbalizer We utilize a simple frequency-based algorithm to
implement the verbalizer, in which no model estimation [146],
[150] is involved to simplify the pipeline. For N classes in
the task (c.f. Table XVI), we map those N classes into [NV
unique units by the following steps: (1) Find and sort top-
N frequent units in the input of the training data, denoted as
[u1, ua, ...un]. (2) Find and sort top-N frequent classes in the
ground truth of the training data, denoted as [c1, 2, ...cn]. (3)
Define the verbalizer v as an one-to-one function: v(¢;) = u;.
We find that applying the frequency-based verbalizer improves
the performance by a small margin compared to random
assignment. We do not show the experiment result of random
assignment due to space limitations.

Prompt Length We find that the optimal prompt length varies
between tasks. For speech classification tasks, we used as
fewer prompts as possible while keeping the performance
competitive. Regarding sequence generation tasks, we use
prompt length [ = 180, where 4.5M parameters, which equals
3% parameters of the uLM, are trainable.

G. Results

1) Speech Classification Tasks: Table XVII shows the result
of the proposed prompt tuning (PT) framework in multiple
tasks. For comparison, we also list the performance of fine-
tuning the uLM (FT-LM), where the same framework is
adopted but with the entire uLM trainable. We also list the
performance of fine-tuning the specialized downstream models
(FT-DM) as in SUPERB [1] as a strong baseline. SUPERB
utilizes linear models as downstream models for KS and
IC, and 2-layer Bi-LSTMs for ASR and SF. As shown in
Table XVIla, in speech classification tasks, prompt tuning

4https://github.com/pytorch/fairseq/tree/main/examples/textless_nlp/gslm
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achieves competitive performance with fewer trainable param-
eters. Notably, in IC, a multi-label classification task, prompt
tuning outperforms fine-tuning the entire uLM or downstream
models. The advantage might be that a sequence generation
model is suitable for learning the correlation between labels
[151] 15,

TABLE XVII: Performance of prompt tuning in various speech
processing tasks. Fine-tuning baselines are listed for com-
parison. PT: Prompt Tuning. FT-LM: Fine-Tuning the pre-
trained uLM. FT-DM: Fine-Tuning the Downstream Model
as in SUPERB.

#: Number of trainable parameters.

(a) Performance on speech classification tasks.

Scenarios KS [ IC

Acc 1 # Acc? #

HuBERT-PT 95.16  0.08M 98.40 0.15M

FT-LM 94.03 151M 97.63 151M

FT-DM 96.30 0.2M 98.34 0.2M

CPC-PT 93.54 0.05M 97.57 0.05M

FT-LM 93.48 151M 95.62 151M

FT-DM 91.88 0.07M 64.09 0.07M

(b) Performance on sequence generation tasks.
Scenarios ASR [ SF #

WER] CER] FIT CERJ

HuBERT-PT 34.17 26.14  66.90 59.47 4.5M
FT-LM 26.19 16.80  80.58 40.15 151M
FT-DM 6.42 148 88.53 25.20 43M
CPC-PT 59.41 37.12  65.25 60.84 4.5M
FT-LM 35.61 1790 79.34 42.64 151M
FT-DM 20.18 525 71.19 4991 42.5M

2) Sequence Generation and Curse of Long Sequences:
We further push the limit of the prompting paradigm to
perform challenging sequence generation tasks: ASR and SF.
As shown in Table XVIIb, we find that even fine-tuning the
ulLM (FT-LM) is not comparable to the performance of fine-
tuning the specialized downstream models (FT-DM), where
CTC loss and Bi-LSTMs are adopted. To better understand
the gap and possible mitigations of proposed prompt tuning,
we study the correlation between the label length |y| (i.e.,
sequence to be generated) and the character error rates (CERs)
of HuBERT-PT and HuBERT-FT-LM in ASR. Figure 17 shows
that the performance drops significantly when it comes to long
sequences.

We surmise that the performance drop results from that
the uLM is a causal, decoder-only model, which may be
unsuitable for recognizing long sequences. Similar phenomena
have also been observed in the NLP field. Due to the lim-
itation of the unidirectional attention mechanism, generative
models need more parameters and pre-trained data to work
on Natural Language Understanding (NLU) tasks [152]. In a
more complex task, text summarization, GPT-2 is also suffered
from long sequences [123]. Although GPT-3 [139] shows
competitive performance by performing NLU tasks as a gener-
ation problem, a much larger model (175B parameters) is also
required. The uLM has only 151M parameters and therefore
falls behind the fine-tuning of specialized downstream models

5For an example in IC, object “lights” can be “activated” but cannot be
“decreased.”
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Fig. 18: Comparison of input prompt tuning (Input PT) and

deep prompt tuning (Deep PT). Left: on Keyword Spotting.

Right: on Intent Classification.

in challenging sequence generation tasks, where label lengths
are way longer than those in [123] (c.f. Table XVI). We
will continue the discussion of the limitations of existing pre-
trained generative models and possible research directions in
Section VII-GS5.

3) Prompt Length: We vary the prompt length [ in
HuBERT-PT to study the effect of the number of trainable
parameters. In Figrue 17b, the result shows that as the prompt
length increases, there is a trend of increasing performance. It
is worth noting that it still achieves a reasonable accuracy with
prompt length only equal to 2, where 52K trainable parameters
are introduced.

4) Input Prompt tuning: When the inner parameters of pre-
trained LMs are not accessible, only input prompt tuning can
be applied. Thus, we further study the IC and KS performance
of our approach when prompts are only used at the input of
the uLM. Figure 18 shows that although deep prompt tuning
(i.e. applying prompts further at LMs’ hidden layer described
in section VII-D(b)) consistently outperforms input prompt
tuning, the latter can also achieve competitive performance
with sufficient trainable parameters.

5) Discussion and Future Works: Unlike prompt tuning in
NLP, the meaning of the uLM’s vocabulary is not obvious. In
NLP, it is usually simple to identify how to define the verbal-
izer [146], and often the verbalizer is even an identity function
when the prediction target is the vocabulary itself [140]. This
paper leverages a heuristic, frequency-based approach to define
the verbalizer. How to better identify the mapping between
discovered units and task labels is critical for performance
and remains unsolved.

Although the experiments show that the proposed frame-
work achieves competitive results in speech classification
tasks, we are restricted by the nature of the uLM when



performing challenging sequence generation tasks. In NLP,
prompting on text classification tasks has also achieved re-
markable results [21], [140], [146], [153]. However, to solve
more difficult text generation tasks (e.g. summarization, trans-
lation), larger and more powerful pre-trained LMs including
Prefix LMs (e.g. UniLMs [154], [155]) and Encoder-Decoder
LMs (e.g. TS [142], BART [156]) are often introduced [21],
[123], [135], [157]. For speech processing tasks, the problems
might be even more difficult since the model is expected to
perform recognition (KS, ASR), understanding (IC), or both
at the same time (SF), while there are few LMs available for
speech. We hope this work motivates the speech community
to invest in diverse and effective speech LMs.

VIII. SSL FOR PROSODY
A. Introduction

Self-supervised Learning (SSL) has revolutionized research
in many areas of artificial intelligence, including speech pro-
cessing. SSL pre-trained speech models have shown remark-
able performance and generalizability across a wide range of
tasks [1], [2], [158]. However, we do not currently have a
good understanding of what knowledge these models capture
nor of the limits of their power. This is true in particular for
the prosodic aspects of speech.

The speech signal contains not only lexical but prosodic
information. Broadly speaking, the latter has three realms
of function: paralinguistic, phonological, and pragmatic. Par-
alinguistic functions, such as marking speaker identity and
expressing emotion, are largely conveyed by prosodic settings
that are stable over the span of many utterances, and are often
evident from any sample of just a few syllables. Phonolog-
ical functions, notably marking the identity of syllables and
words with tones and stress patterns, are largely conveyed by
prosodic features whose temporal occurrence is tightly linked
to the units they mark. The utilities of SSL models for these
two realms have been demonstrated, by many recent studies
using tasks from the SUPERB [1] benchmark, among others.

However, for the third realm, the realm of pragmatic func-
tion, the question of the utility of SSL models has remained
open. Functions in this realm, include managing turn-taking,
marking topic structure and information structure, and express-
ing engagement, stance, attitude, and intent. These pragmatic
functions are especially important in dialog, and we expect that
future dialog systems will need more prosodic competence,
in order to enable more satisfying user experiences and to
support interaction in novel genres and situations [159]. In
many cases, these functions are expressed using multistream
temporal configurations of low-level prosodic features, where
these configurations can last from a few hundred milliseconds
to several seconds [160], [161], and may be only loosely
aligned with the lexical content. As these configurations are
fundamentally different from the forms of prosody in the other
two realms, it is an open question whether SSL models are
also useful for this realm.

Accordingly our research question is whether pre-trained
models have utility for prosody-conveyed pragmatic functions.
We investigate this in four ways. First, we assemble a set
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of prosody-intensive tasks and measure how well pre-trained
models support them. Second, we use pitch and energy re-
construction pseudo-tasks to measure how well these models
represent prosodic information. Third, we evaluate the utility
of these models for the prediction of future pitch and energy.
Fourth, we probe the pre-trained models to see in which layers
prosodic information is likely represented.

Our contributions are: 1) The finding that pre-trained SSL
models indeed can provide value for prosody-intensive tasks,
often reaching state-of-the-art performance. 2) Results for 15
recent SSL models span different model architectures and
pre-training objectives. 3) Analysis of the representation of
prosody in SSL models, including layerwise analysis. 4) An
open-source evaluation framework, SUPERB-prosody, exam-
ines the prosodic prowess of SSL models.

B. Related work

The most directly relevant study [162] aimed primarily to
evaluate a model for producing de-identified representations of
speech, but includes three aspects that are very relevant to our
research question. First, for evaluation purposes, several “spo-
ken language understanding” tasks were selected, of which
three of these were both pragmatics-relevant and prosody-
intensive. Second, six pre-trained models were tested against
this task set, showing various levels of performance. Third,
probing their own model, VQP, provided evidence that it was
encoding, to some extent, several prosodic features. Taken
together these results suggest that the answer to our research
question is yes, but the case is not settled for two reasons.
First, neither their performance results nor their probing results
were compared against non-pre-trained baselines, leaving open
the question of whether the pre-trained models were in fact
providing any benefit. Second, many aspects of their methods
are unclear, and no code is available to enable replication.
Thus, we need further investigation, and an open and trans-
parent evaluation framework for SSL models. Very recent
work has found that SSL. models are helpful for predicting
some perceptions of speaking style, but require additional
downstream sequence-modeling layers for best performance
[163].

Evaluation benchmarks have been critical in supporting and
evaluating the rise of SSL in the speech field. NOSS [5] is a
benchmark for non-semantic downstream tasks. SUPERB [1]
broadly examines SSL models for content, speaker, semantic
and paralinguistic aspects, demonstrating that SSL models
generalize across diverse downstream tasks. SUPERB-SG
[2] enhances the SUPERB benchmark with more challeng-
ing semantic and generative tasks. SLUE [30], another re-
cent benchmark, targets spoken language understanding tasks.
However, up to now, the speech community lacks an evaluation
benchmark/framework to measure the prosodic utility of SSL
models.

Analysis of speech SSL models has recently received
significant attention, with previous works examining various
aspects [17], [162], [164], [165]. [17], [165] mainly focus on
analyzing lexical information in SSL models. [164] investigate
acoustic, syntactic, and semantic characteristics, but they only
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Fig. 19: Diagram of SUPERB-Prosody framework. We
extract the hidden representations from a frozen SSL model,
and lightweight linear models are used for each downstream
task. P; means the value of the rule-based prosodic feature at
time frame .

experiment on two SSL models and probe only by utterance-
wise regression tasks. Accordingly, more focused analysis is
needed, especially regarding prosodic information.

C. The SUPERB-Prosody Framework

This section introduces our tasks — classification, prosody
reconstruction, and future value prediction task — and our
evaluation framework, including the upstream/downstream
setup.

1) Classification tasks: To evaluate the pragmatic and
prosody-related abilities of pretrained models, we need a set
of “prosody-intensive” tasks, that is, tasks where it is known
that prosodic abilities are useful. We chose three well-curated,
open-source, utterance-classification datasets, involving senti-
ment, sarcasm, and persuasiveness. To briefly describe each
task:

Sentiment Analysis (SA) involves detecting the degree of
positive or negative feeling in an utterance. While sentiment
and emotion are often conflated, and similar methods may
work for both tasks, sentiment is less visceral and of greater
practical importance. Specifically we chose the MOSEI [174]
corpus, in which each utterance is labeled from —3 to 3, rep-
resenting the degree of sentiment. Following previous works,
we experiment with two settings: binary classification, with
the dataset split by the labels in [—3,0) and (0, 3], and seven-
category classification. The evaluation metric is accuracy.

Sarcasm Detection (SarD) is perhaps the most obviously
prosody-intensive task, as a mismatch between the lexical
content and the prosodic message is frequently the major
marker of sarcasm. We chose the MUStARD [175] corpus,
in which each utterance has a label of 0 or 1, for sarcasm
or non-sarcasm. We follow the speaker-dependent setup in
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the original paper [175], using five-fold cross-validation for
evaluation. The evaluation metric is the F1 score.

Persuasiveness Prediction (PP) is the task of detecting
whether a presentation is likely to be convincing to others.
Correlates include how pleasant the speaker’s voice is and
their perceived confidence and dominance, all of which involve
prosody. We chose the POM [176] corpus. The labels are 0
or 1, for persuasive or non-persuasive. The evaluation metric
is accuracy.

2) Prosody reconstruction: Prosody Reconstruction (ProP)
is a pseudo-task designed to test whether SSL models embed
specific prosody features in their hidden representation. As
our target, we chose the two most commonly used prosody
features, pitch and energy. Given the SSL features, we use
a lightweight linear downstream model to predict each. The
pitch is represented in log scale, using as targets the values
computed by pYAAPT!®. For energy, we use the librosa
toolkit!”, again using a log scale. As data, we use Lib-
riTTS [177], a multi-speaker text-to-speech dataset, and for
both features, the evaluation metric is the Mean Square Error
(MSE) of the differences. No loss is computed for unvoiced
frames, that is, frames where pYAAPT detects no pitch.

3) Future value prediction: Future Value Prediction (FVP)
is designed to test whether the output from SSL models
can predict future prosody. The task setting is similar to the
prosody reconstruction task, using pitch and energy features as
the prediction targets and using LibriTTS dataset with MSE
objective. The task is, given the information from ¢t = 1 to
the current frame ¢, to predict the value at ¢ + h, where h
is the prediction horizon. Four prediction horizons h, namely
0.12, 0.24, 0.50, and 1.00 seconds, are used. Because most
SSL speech models are not causal (due to the inclusion of
either self-attention or bi-directional connections), we only test
causal SSL models or attention-based SSL models for which
we can apply an attention mask to avoid cheating with future
information'8. The evaluation metrics are MSE.

4) Evaluation framework: As suggested by Figure 19, our
framework consists of (1) an upstream SSL speech model
and (2) a linear downstream model for probing. Following
the procedure of SUPERB [1], the parameters of the upstream
models are fixed for all the downstream tasks. For each frame
of the input, we extract the representations x; from each
hidden layer ¢ of the upstream model, and we aggregate
those hidden representations per utterance into y = ZZL W;iXj
where the w; are trained per task. The resulting y, a two-
dimensional matrix (time x aggregated features), is the input
for the downstream model.

Upstream models — Speech SSL models: The SSL models
tested are summarized in Table XVIII. These are a diverse
collection, including modified CPC [170], APC [56], VQ-
APC [166], NPC [167], TERA [169], vg-wav2vec [172],
DistilHuBERT [44], HuBERT [78], wav2vec [171], wav2vec
2.0 [127], and WavLM [173]. The selected SSL models span

16http://bjbschmitt.github.io/AMFM_decompy/p YAAPT.html

Thttps://github.com/librosa/librosa

18We exclude WavLM for this task because it uses a gated relative position
bias, so simply modifying the attention mask would cause a model mismatch
between training and inference.
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Model Network | #Params | Stride | Input | Corpus | Pretraining
FBANK - 0] 10ms | waveform | - -
APC [56] 3-GRU 4.11M | 10ms | FBANK | LS 360 hr F-G
VQ-APC [166] 3-GRU 4.63M | 10ms | FBANK | LS 360 hr F-G + VQ
NPC [167] 4-Conv, 4-Masked Conv | 19.38M | 10ms | FBANK | LS 360 hr M-G + VQ
Mockingjay [168] 12-Trans 85.12M | 10ms | FBANK | LS 360 hr time M-G
TERA [169] 3-Trans 21.33M | 10ms | FBANK | LS 960 hr | time/freq M-G
modified CPC [170] 5-Conv, 1-LSTM 1.84M | 10ms | waveform | LL 60k hr F-C
wav2vec [171] 19-Conv 32.54M | 10ms | waveform | LS 960 hr F-C
vg-wav2vec [172] 20-Conv 34.15M | 10ms | waveform | LS 960 hr F-C + VQ
DistilHuBERT [44] 7-Conv 2-Trans 23.49M | 20ms | waveform | LS 960 hr KD
wav2vec 2.0 Base [127] 7-Conv 12-Trans 95.04M | 20ms | waveform | LS 960 hr M-C + VQ
wav2vec 2.0 Large [127] 7-Conv 24-Trans 317.38M | 20ms | waveform | LL 60k hr M-C + VQ
HuBERT Base [78] 7-Conv 12-Trans 94.68M | 20ms | waveform | LS 960 hr M-P + VQ
HuBERT Large [78] 7-Conv 24-Trans 316.61M | 20ms | waveform | LL 60k hr M-P + VQ
WavLM Base [173] 7-Conv 12-Trans 94.68M | 20ms | waveform | LL 60k hr M-P + VQ
WavLM Large [173] 7-Conv 24-Trans 316.62M | 20ms | waveform | Mix 94k hr| M-P + VQ

TABLE XVIII: SSL models examined. #Params includes parameters for both pre-training and inference. LS = LibriSpeech
and LS = LibriLight. For the pre-training methods, VQ = vector quantization, F = future, M = masked, G = generation, C =

contrastive discrimination, P = token prediction/classification, and KD = knowledge distillation.
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Fig. 20: Results for Sentiment Analysis (SA), Sarcasm Detection (SarD), Persuasiveness Prediction (PP), and Prosody
Reconstruction (PR). State-of-the-art (SOTA) values are from [174] for SA, [178] for SarD, [179] for PP, and REAPER
[180] for pitch reconstruction. Text-only baselines are only for the prosody-intensive downstream tasks, and thus not available

for PR.

different network architectures and pre-training objectives.
Downstream models — linear probing model: For the clas-
sification tasks, SA, SarD, and PP, the representation y is
mean-pooled along the time axis, forming a dense vector
of dimension (time x aggregated features) to (aggregated
features). This vector is then fed to a simple linear model
to project from model dimension to 1. The training objective
is Cross-Entropy Minimization.

In ProR and FVP, the goal is to predict the fine-grained
prosodic information. We use the frame-level representation
from each time step of y as the input, and the downstream
model is a linear model, projecting from model dimension to
1. MSE minimization is the training objective. We try multiple
learning rates for each task ([le=2, 1le73, le™*, 175, 1e~ %)),
and report the best performance. The training step is 3000 for
SarD and 50000 for the other tasks.

Baselines: As a baseline feature set, we use “FBANK,” the

80-dimensional Log Mel Filterbank features with delta and
delta-delta features (240 dimensions in total), chosen because
this is known to work well for many speech tasks. For the clas-
sification tasks, FBANK features are average-pooled across
each utterance. For pitch reconstruction, we also compare
the performance of another high-quality off-the-shelf pitch
extractor, Talkin’s REAPER. For future value prediction (FVP)
we design a baseline, FBANK + RNN, which feeds filterbank
features from ¢t = 1 to ¢ into a one-layer uni-directional
Recurrent Neural Network (RNN) with 128 hidden size to
predict the value at ¢t = i + h.

As an additional point of comparison, we also explore the
text-only performance for each classification task. Since all
datasets contain ground truth speech transcription, we take
these transcriptions as the input data. As the NLP model
we use the pre-trained RoBERTa [181] for SarD and SA,



and Longformer [59] for PP!°. We follow the typical method
to fine-tune the pre-trained NLP model: extract the sentence
embedding from the [CLS] token’s embedding, and feed it to
a linear classification model. No parameters are frozen during
fine-tuning. We vary the learning rate ([16’3, 1le 4, 1e75, and
1e=%]) and report the best performance.

D. Main Results

1) SSL models perform well on prosody-intensive tasks:
The experimental results for SA, SarD, and PP are shown in
Figure 20. In Figure 20 (a) and (b), we can see that all SSL
models yield better SA performance than the baseline FBANK
features in both 2-label and 7-label evaluations. The large SSL
models, wav2vec 2.0, HUBERT, and WavLM, even improve
on the state-of-the-art (SOTA) performance [174] in the 2-
label setup. In the 7-label setup, WavLM Large outperforms
audio-only SOTA performance. Around one-third of the SSL
models show better performance than the text-only baseline,
confirming the value of acoustic information for SA.

Figure 20 (c) shows the SarD result. Although Mockingjay,
wav2vec, and vg-wav2vec show inferior performance to the
baseline FBANK, the other SSL models do well, with Distil-
HuBERT, HuBERT, and WavLM improving on the previous
audio-only SOTA [178]. In SarD, all acoustic models, both
SSL models and FBANK, outperform the text-only baseline,
confirming that SarD requires acoustic information beyond
content for prediction.

Lastly, for the PP results, Figure 20 (d), shows that all SSL
models yield better performance than the FBANK features
and the previous audio-only SOTA [179]. APC, VQ-APC, vqg-
wav2vec, and HuBERT obtains superior or equal accuracy to
the text-only baseline.

2) SSL models encode prosodic information: While the
results above suggest that the SSL models are encoding
prosodic information, there is also direct evidence from the
ProR and FVP tasks, as seen in Figure 20 and Table XIX.

For PR, the two features, pitch and energy, have slightly
different results. In pitch reconstruction, Figure 20 (e), all the
SSL models perform better than baseline FBANK except for
vg-wav2vec. Several SSL models surpass REAPER perfor-
mance, with the WavLM the best. As for energy reconstruc-
tion, Figure 20 (f) shows that all SSL models greatly improved
over baseline FBANK. Although generation-based SSL mod-
els perform well on pitch reconstruction, they did relatively
worse on energy reconstruction. On the other hand, the SSL
models pre-trained by masked contrastive discrimination/token
prediction show strong performance on both pitch and energy
reconstruction. Overall, we observe that SSL models indeed
encode prosodic information.

FVP is more challenging than ProR since it requires the
model to capture both global and local prosodic informa-
tion for successful future prediction. From Table XIX, we
see, unsurprisingly, that the larger prediction horizons make
prediction harder. For pitch, HuBERT Large gets the best

19Longformer is based on RoBERTa, but can accept up to 4096 tokens
(versus 512 tokens for ROBERTa), and is used here because the transcriptions
of PP are too long for ROBERTa.
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performance, outperforming other SSL models and baseline
FBANK+RNN at all four horizons. Although the pre-training
objectives of APC, modified CPC, and wav2vec involve
future generation/discrimination, they still result in inferior
performance to wav2vec 2.0 and HuBERT. As for future
energy prediction, only wav2vec 2.0 and HuBERT consistently
outperform baseline FBANK. In general, we observe that
some SSL models are not good at FVP, but wav2vec 2.0 and
HuBERT outperform FBANK by a large margin. This result
suggests that wav2vec 2.0 and HuBERT do have the capability
to encode and summarize relevant prosodic information.

E. Further Analysis

1) Layerwise contribution analysis: In order to estimate the
contribution of each layer, we consider two factors. First, we
use the weight w; from each layer (through the weighted-sum
mechanism) to the downstream model. Second, because typical
feature magnitudes may vary, we also consider the values of
the hidden representation x in each layer, as measured by the
L2-norm of feature values for the testing data. After getting
the whole L2-norm features for each layer for each sample,
we take the mean across samples to get the feature magnitude
estimation. The contribution for each layer is then defined as:
ci = ||xi||]2 X w;, where i means the layer number.

The results are shown in Figure 21. From Figure 21(a), we
can see that for most SSL. models, the contribution is strongest
in the first few layers for both pitch and energy reconstruc-
tion. This shows that SSL tends to best represent prosodic
information in the front. One exception is Mockingjay, where
the largest contribution is located in the last layer. Because
Mockingjay’s pre-training objective is to reconstruct frame-
wise features, it is unsurprising that the later layers contain a
good representation of low-level prosody.

However, for the classification tasks SarD and PP, Figure 21
(c) and (d) shows that the distribution of layer contributions
is smooth, suggesting that both tasks need information across
multiple layers. As previous work has shown that later layers
represent more content information [17], [173], this suggests
that both prosodic and content information are needed for
SarD and PP. As for SA, in Figure 21(e), we observe a high
contribution value in the latter layers for the high-performing
models HuBERT and WavLM. This suggests that SA might
only require content information to perform well.

2) Feature integration: To further examine whether the
encodings in the first few layers bring the most benefit, we
designed a new experiment for three prosody-intensive tasks
using wav2vec 2.0 and HuBERT. We compare two settings,
concatenation of 1) the features from the first two layers and
the best layer we discovered?, and 2) the best layer with its
two neighbor layers. These concatenated features are passed
to the downstream model. The downstream model size of the
two settings is the same, so we can compare the performance
fairly. If the first setting is better than the second setting, this
would indicate that early-layer (low-level) information indeed
most benefits the final results.

20The best layer is determined by the contribution analysis above.



Pitch reconstruction

Mockingjay

wav2vec

va_wav2vec

wav2vec 2.0 Base

HuBERT Base

WavLM Base

o 1 2 3 4 5 6 7 8

Mockingjay

wav2vec

wsaaves [

wav2vec 2.0 Base

HUBERT Base

WavLM Base

. Mockingjay

wav2vec
vq_wav2vec
. wav2vec 2.0 Base

HUBERT Base

WavLM Base

9 10 1 12 o 1 2

Persuasiveness prediction

4 5 6 7 8 9 10

32

Energy reconstruction Sarcasm detection

Mockingjay - 030

wavavec
va_wav2vec

- 025

wav2vec 2.0 Base

HUBERT Base _ 020

WavLM Base
10 " 12 0 1 2 3 4 5 6 7 8 9
- 015
Sentiment analysis
Mockingjay

- 010

wav2vec

va_wav2vec

- 005

wav2vec 2.0 Base

HUBERT Base
- 0.00

WavLM Base

112 o 1 2 3 4 5 6 7 8 9 10 1 12

Fig. 21: The contribution analysis for each task. The darker the color, the higher the contribution. We only include models
which have 12 layers of representations.

Pitch w/ Prediction Horizon (s)J.

Energy w/ Prediction Horizon (s)J

Model 0.2 024 050 1.00 0.12 0.24 0.50 1.00
FBANK + RNN | 0.049 0.104 0.142 0157 | 052 1.42 2.06 2.46
APC 0033 0043 0052 0053 091 1.46 1.98 2.37
modified CPC 0038 0051 0062 0.065 0.79 1.37 1.94 247
wav2vec 0053 0064 0075 0075 0.68 1.15 1.70 231
Mockingjay 0.069 0077 0081  0.099 0.48 1.92 2.17 243
wav2vec 2.0 Base | 0.038 0047 0047  0.049 0.44 0.85 1.24 1.49
wav2vec 2.0 Large | 0.035  0.039  0.045  0.046 0.43 0.80 1.23 131
HuBERT Base 0029 0036 0041 0042 0.39 0.70 112 1.42
HuBERT Large | 0.025 0.027 0.028  0.037 0.41 0.77 1.21 1.36

TABLE XIX: The MSE loss for FVP. Lower values indicate better prediction, of future pitch or energy.

SarD F11 PP Acct SA Acct
Layer selection 0,1,12) (10,11,12)  (0,1,12) (10,11,12)  (0,1.83)  (7.3.9)
wav2vec 2.0 Base 70.6 66.3 81.3 81.3 73.6 74.0
HuBERT Base 72.0 70.0 85.8 83.8 75.2 76.2

TABLE XX: Experimental results for layer-limited feature integration for SarD, PP, and SA. The best layer, underlined, is
chosen based on the contribution analysis.

Method | ZH-p| PO-p| ZH-e| PO-el task as in previous experiments: specifically, attempting pitch
FBANK 0.050  0.096  0.849 0477 and energy reconstruction. While the pitch of one frame
vq-wav2vec 0022 0097 0490 0339 is primarily a physical phenomenon, in context there may
wav2vec 2.0 Base | 0.012 0.039 0.338 0.160 . .

HuBERT Base 0.009 0042 0232  0.149 be language dependencies. All the SSL models being pre-
WavLM Base 0.008  0.019 0233  0.192 trained in English, we try this for Mandarin and Polish, using

TABLE XXI: MSE for prosody reconstruction, showing cross-
lingual transferability. p = pitch, e = energy.

The results are shown in Table XX. In SarD and PP, we see
the integration of the first two layers yields better performance,
which means the low-level information improves the modeling
of SarD and PP. Yet the use of low-level information does not
improve SA performance, suggesting that SA may rely on
content rather than just low-level information.

3) Cross-lingual transferability: Further, we did a prelim-
inary investigation of whether SSL models may have cross-
lingual transferability for prosodic information, using the ProR

data from AISHELL-3 [182] multilingual LibriSpeech (MLS)
[183], respectively.

Table XXI summarizes the results. We note that WavLM
is good at pitch reconstruction, and HuBERT is superior at
energy reconstruction.

IX. SSL FOR LOW-RESOURCE SOUTH AFRICAN
LANGUAGES

A. Introduction

Automatic speech recognition (ASR) systems have recently
achieved great accuracy in well-resourced languages [127],
[184]. This accuracy has been achieved thanks to the mod-
elling improvements and thousands of hours of manually tran-



scribed speech. However, ASR performance in low-resource
languages is still lacking due to limited amounts of transcribed
data. (i) Cross-lingual transfer, (ii) self-supervised pre-training
and (iii) semi-supervised training have been proposed to solve
this problem in the past [184]-[186]. (i) In cross-lingual
transfer, we first train an acoustic model for a set of well-
resourced languages and then transfer the parameters of the
acoustic model to the new low-resource language. Finally,
we train the final acoustic model by fine-tuning a subset of
the parameters on a small amount of available transcribed
data [185]. (ii) In self-supervised pre-training, the acoustic
model parameters are pre-trained on thousands of hours of un-
transcribed data with a self-supervised loss. These parameters
are subsequently fine-tuned on the transcribed training data
with a standard supervised loss, for example, a Connectionist
Temporal Classification (CTC) loss [132], or a lattice-free
maximum mutual information (LF-MMI) loss [187]. Popu-
lar examples of pre-trained self-supervised models include
wav2vec 2.0 model [127] and its multilingual version XLSR-
53 model [184]. (iii) In semi-supervised training, we start
by training a seed model on the transcribed training data.
Then, we use this acoustic model with a language model to
produce pseudo-labels for the unlabelled data. These pseudo-
labels are then used as training targets for fine-tuning the
acoustic model [186]. Overall, cross-lingual transfer and self-
supervised pre-training can be used to train a robust seed
acoustic model to improve the impact of semi-supervised
training [188], [189]. The limiting factor of semi-supervised
training is the quality of the language model used to produce
the pseudo-labels [190]. A good language model typically
needs to be trained on large amounts of text data; in our experi-
ence, at least several hundred million words are needed to train
a strong general language model. Unfortunately, such large
amounts of text are not available online for many low-resource
languages [191]. Furthermore, the language modelling in these
low-resource languages is further exacerbated by the presence
of code-switching [192].

In this work, we study how self-supervised training and
semi-supervised training can be used to leverage untranscribed
audio data in underrepresented languages. In semi-supervised
training, the initial acoustic model is initialized with a flat-
start initialization or with cross-lingual transfer learning with
spectral representations as inputs. We propose another ini-
tial acoustic model which is trained on learned multilingual
speech representations. In particular, we explore how 200
hours of untranscribed South African soap operas data can
help to improve the initial acoustic model trained only on
12.7 hours of manually transcribed code-switched speech
between four South African languages and English [26]. We
show that continued pre-training of self-supervised XLSR-53
model [184] on the 200 hours of untranscribed speech data is
the best strategy for improving the initial model when we have
access only to a weak language model. Furthermore, when we
combine the continued self-supervised pre-training with semi-
supervised training, we gain additional slight improvement
without a strong language model.
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B. Related Work

Many approaches have been proposed to tackle the training
data scarcity for low-resource languages [184]-[186]. In this
section, we summarise two of them; self-supervised pre-
training and semi-supervised training. In addition, because
of the very specific nature of the South African linguistic
landscape, we briefly review literature about ASR for South
African languages.

In speech processing, models trained with self-supervised
learning (SSL) recognize latent speech representations from
waveforms with a contrastive loss, such as InfoNCE [138].
Thanks to SSL, only unlabelled data is needed to train a model.
These pretrained models work well on a variety of downstream
tasks when fine-tuning them with the addition of a projection
layer on top of them.

For English, wav2vec2.0 model [127] has been proposed
and has an architecture composed of a convolutional network
followed by a Transformer network [111] and finally a
quantization module. The model learns by predicting the best
sequence of acoustic units from a set of codebooks with
a contrastive loss. Furthermore, an auxiliary diversity loss
makes sure that all code words in the codebooks are used.
Alternatively, HuBERT models [78] separate the creation of
the codebook (built with the k-means clustering algorithm)
from the neural network parameters’ learning (via masked
predictions). For speech recognition, this fine-tuned model
is trained with the supervised CTC loss function [132]. In
low-resource speech recognition, pre-training models based
on wav2vec2.0 model with a set of various languages as
training data, as it is done for XLSR-53 and XLS-R models,
proves to be preferable than using a pre-trained English model
[184], [193], [194]. Additionally, using continued pre-training
with unlabelled in-domain data to further train the pre-trained
model can improve the results once the fine-tuning is done
[195], [196]. This procedure of continual learning (CL) [197]
alleviates the domain mismatch between the previous datasets
and the current dataset while retaining knowledge from the
previous training datasets.

Semi-supervised training (SST) uses a seed acoustic model
trained on small amounts of manually transcribed data to
produce pseudo-labels for the unlabelled data [186]. Tradi-
tional approaches for semi-supervised training use one-best
transcripts as pseudo-labels. However, these transcripts might
contain transcription errors negatively affecting the acoustic
model. Therefore, it is necessary to perform some form of
confidence filtering to discard utterances with noisy tran-
scripts [198]. Another option is to use lattices as pseudo-
labels [199]. This approach circumvents the issue of erroneous
one-best transcript by representing possible alternative tran-
scriptions and their corresponding uncertainties within the lat-
tice. Popular way of performing lattice-based semi-supervised
training is to use lattice-free maximum mutual information
criterion [187], [199]. It was also shown that semi-supervised
training is possible even with a very weak seed acoustic
model if provided with a strong language model [190]. In
the past, semi-supervised training have been successfully used
for many low-resource languages including building ASR
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Fig. 22: Diagram of the combination of self-supervised and semi-supervised trainings for 12.7 hours of labelled South African
data and 200 hours of unlabelled data from other South African soap operas. XLSR-53 is further trained with the 200 hours
of unlabelled data (continued self-supervised pre-training) and used as features extractor to train a TDNN. The TDNN model
can also be trained with MFCC features. The obtained TDNN model is the seed model for the subsequent semi-supervised

training with both labelled and unlabelled data.

for six languages spoken in India during the MUCS 2021
challenge [200]. This was possible because of having access
to large text corpus for all these languages extracted from
CommonCrawl.?!

ASR systems for South African languages from soap operas
have been proposed, with a main focus on dealing with the
lack of in-domain data for these languages [201]-[203]. An
effective way to work with under-resource languages is to use
training data from other related languages. For the acoustic
models of the Soap Operas data, multilingual training with
close-related languages has indeed been shown to be effective
for transfer learning [201]. Semi-supervised learning has also
been applied to take advantage of some available unlabelled
data but the code-switching in the transcriptions data makes
it hard to have a strong language model when only few code-
switching texts are available compared to the monolingual
texts. Consequently, studies mainly address how to segment
unlabelled data, either manually [202] or automatically [203].
Both types of segmentation have equally succeeded to improve
the accuracy of the speech recognition of the South African
languages, with the use of a five-lingual language model.
Following these works, we focus on building a five-lingual
model and taking advantage of some unlabelled data for self-
and semi-supervised training.

C. Improving the Acoustic Model with Unlabelled Data

The performance of ASR systems in low-resource lan-
guages is limited by the small amount of manually tran-
scribed data. In this section, we describe how we collected
untranscribed speech and how we used it to improved the
performance of ASR systems using self-supervised training
and semi-supervised training. The whole pipeline is illustrated
in Figure 22. For efficiency reasons, we used continued self-
supervised pre-training to continue training a multilingual self-
supervised pre-trained model on our untranscribed speech data.
This allowed us to use multilingual speech features to train a
better seed acoustic model for the semi-supervised training.

21 https://www.statmt.org/ngrams/

1) Dataset: We conducted experiments on the South
African Soap Operas dataset [26]. This dataset contains 14.3
hours of labelled speech with people alternating between
four Banto languages and English, in language-balanced sets,
making it a code-switched dataset We used the official training
(12.7 hours) and test splits (1.3 hours). The represented
pairs of languages are: English-Sesotho (eng-sot), English-
Setswana (eng-tsn), English-isiXhosa (eng-xho) and English-
isiZulu (eng-zul).

We also collected unlabelled speech. In our previous data
collection pipeline [190], [200] we used the most common
n-grams in YouTube queries to identify videos for collecting
unlabelled data for low-resource languages. Since this method
can be noisy and collect music videos or videos from other
languages we filtered these videos using mean confidence
and speaking rate thresholds. Even with filtering, this data
collection pipeline proved to be too noisy for South African
languages, therefore we opted for a different selection scheme.
We identified South African soap operas on Wikipedia and we
downloaded trailers for these soap operas. This method en-
sured that the crawled data is in-domain and contains relevant
languages together with other South African languages used in
the soap operas. In total we were able to collect 200 hours of
raw recordings which were segmented with WebRTC VAD??
for further processing.

2) ASR model training: Our multilingual five-lingual (four
Bantu languages + English) South African acoustic mod-
els used either 40-dimensional MFCC features or 1024-
dimensional XLSR-53 features as inputs. Both types of models
were trained using Kaldi toolkit [?] and had the same align-
ments obtained with a standard GMM model. We used a CNN-
TDNN architecture with 16.7M parameters for the acoustic
model using MFCC features and a TDNN-F architecture with
23.7TM parameters for the acoustic model using XLSR-53
features. The difference in sizes between models comes from
using LDA on features of more dimensionality. We did not use
convolutional layers with the XLSR-53 features because the
XLSR-53 itself acts as a convolutional front-end. Both types

22https://github.com/wiseman/py-webrtcvad
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of models were trained with the LF-MMI criterion [187] for
six epochs on speed-perturbed training data. The pronunciation
dictionaries for the four South African languages and English
were built using the NCHLT dictionaries and corresponding
grapheme-to-phoneme sets of rules [204]. Merging the five
dictionaries, the final dictionary has 88 phones, including 12
phones shared by all five languages. The vocabulary size
is 18.8k tokens. Furthermore, we used a 3-gram language
model trained only on the 155k tokens of available training
transcripts.

To improve the performance of the model using MFCC fea-
tures, we transferred parameters from a model trained either on
the NCHLT dataset [204], which contains read speech from 11
official South African languages, or on the MGB dataset [205],
which contains British English broadcast speech. To deal with
the mismatch in acoustic units, we replaced the final layer of
the pre-trained model and retrain the whole model. Based on
our experience with fine-tuning hybrid models, we used 10-
times smaller learning rate than during training with flat-start
initialization, for all layers except for the final layer.

3) Continued self-supervised pre-training: To adress the
lack of a strong language model, we used the collected
200 hours of South African speech unlabelled data for
self-supervised training. However, since training the self-
supervised models with a flat-start initialization is computa-
tionally expensive, we only performed continued pre-training
of a self-supervised model using these 200 hours with the
contrastive loss of wav2vec2.0 [127]. As pretrained model,
we chose to use the multilingual model XLSR-53, which is
based on wav2vec2.0 LARGE architecture and is trained on
53 languages for a total of 56k hours. Instead of using the
pre-trained model directly as an acoustic model, we used it
as a multilingual bottleneck feature extractor, extracting the
representations from the last layer with the S3PRL toolkit [1];
a standard hybrid TDNN model [187] was then trained on
these features.

We experimented with various pre-trained self-supervised
models and extracted the features from different layers and we
found that the last layer of XLSR-53 worked best in our sce-
nario.”> We up-sampled the extracted features to the standard
Kaldi frame rate of 100 frames per second. We performed the
continued self-supervised pre-training of the XLSR-53 model
with the fairseq toolkit [79] using the 200 hours of unlabelled
data. We kept the hyperparameters identical to the ones used
to train wav2vec2.0 LARGE [127] on Librivox. We continued
pre-training for 8k iterations equivalent to 67 epochs, with
a batch size of at most 1.4M tokens and we used gradient
accumulation to simulate training on a bigger batch size using
only two Tesla V100 GPUs.

4) Semi-supervised training: In semi-supervised training,
we first (i) trained a seed acoustic model on the small
amounts of manually labelled data. This acoustic seed model
was subsequently used with a language model trained on
available text corpora to (if) produce pseudo-labels for the
unlabelled speech. In this report, we trained the seed acoustic

ZNote that XLS-R [193] achieved better results than XLSR-53 in our
preliminary experiments. However due to its size we were not able to continue
pre-training it and therefore we left it for future work.
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model on the training part of the South African Soap Operas
dataset [26]. The semi-supervised training was done using the
lattice-free maximum mutual information (LF-MMI) training
criterion [187] and followed the semi-supervised training
approach proposed in [199]. We used the semi-supervised
training pipeline described in [190], [200]. We performed
semi-supervised training on a combination of the manually
transcribed training data and the unlabelled 200 hours. We
decoded this data with seed models trained on the 12.7 hours
of the labelled data with cross-lingual transfer from MGB
or trained on the 12.7 hours of labelled data with features
from XLSR-53 with continued pre-training on the unlabelled
200 hours. We used the decoded lattices as pseudo-labels for
semi-supervised training. Note that, we filtered the unlabelled
data with the minimum mean recording confidence threshold
of 0.8 and the minimum speaking rate threshold 1.25 words
per second prior to the semi-supervised training as in [200].
Similar to the supervised training, we trained the models for
six epochs using LF-MMI.

D. Results

1) Baselines acoustic models: In the first set of experi-
ments, we assessed how well cross-lingual transfer works for
South African languages. We compared training the acoustic
model with flat-start initialization, denoted as (1) in Ta-
ble XXII, using cross-lingual transfer from a model trained
on the NCHLT dataset (2) and using cross-lingual transfer
from a model trained on the MGB challenge dataset (3). Our
results demonstrated that a domain-match and data diversity
in the MGB dataset (3) is more important than training on
additional data for the target languages (2) with overall word
error rates (WER) of 50.8% and 52.0% respectively. This is
because the NCHLT data contains clean read speech, which
is acoustically very different from the speech in the Soap
Operas dataset. In addition to the noticeable background noise
in the Soap Operas dataset, the speech characteristics are
also very different, for example the average speaking rate in
the NCHLT dataset is three times slower than in the Soap
Operas dataset. Subsequently, we compared the model trained
with cross-lingual model from MGB (3) with a model using
the multilingual self-supervised hidden representations from
XLSR-53 as input features (5). We found that these two
approaches achieved similar WER of 50.8% and 50.9%. The
benefit of (3) is that it is trained on very well matched data
and (5) benefits from being pre-trained on large amounts of
multilingual data. We hypothesize that (3) would improve
if cross-lingual transfer was done from a model trained on
a diverse multilingual dataset, not only on British English
dataset.

2) Semi-supervised training vs self-supervised pre-training:
In the next set of experiments, we showed how 200 hours
of unlabelled data can help improve the performance. We
found that semi-supervised training with (3) as a seed model
achieves worse results (4), WER of 49.3%, than continued
self-supervised pre-training of the multilingual model XLSR-
53 (6), WER 46.5%. It is worth noting that it was crucial
to combine the labelled Soap Operas training data with the
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eng-sot  ent-tsn  eng-xho  eng-zul all
(1)  CNN-TDNN baseline 559 46.6 63.9 56.6 54.7
(2) CNN-TDNN with cross-lingual transfer from NCHLT 52.8 44.5 60.4 54.1 52.0
(3) CNN-TDNN with cross-lingual transfer from MGB 50.1 43.8 60.8 52.8 50.8
4) + semi-supervised training on 200h of unlabelled data 48.3 42.6 59.2 51.1 493
(5) TDNN-F using XLSR-53 bottleneck features 49.8 45.1 61.7 51.6 50.9
(6) + continued self-supervised pre-training on 200h of unlabelled data 455 40.9 56.2 47.6 46.5
(7 + semi-supervised-training on 200h of unlabelled data 443 38.5 56.5 46.4 45.2

TABLE XXII: Word Error Rate (WER) on the test set of the South-African soap opera dataset. The results are split by language
pairs: English-Sesotho (eng-sot), English-Setswana (eng-tsn), English-isiXhosa (eng-xho) and English-isiZulu (eng-zul).

200 hours of unlabelled data to make semi-supervised train-
ing work. Without the labelled Soap Operas data the semi-
supervised model was worse than the seed model. When
we combined the continued self-supervised pre-training with
semi-supervised training we achieved further gains (7), WER
of 45.2%. In total, we reduced the WER by 17% relative
compared to the baseline model trained with flat-start initial-
ization (1).

To overcome the code-switched aspect of the Soap Op-
eras dataset, we tried using a language model with South
African monolingual texts crawled from the web and MGB
[205] transcriptions but the resulting WER were worse than
using the in-domain language model trained only on the
transcriptions of the Soap Operas dataset. This shows that the
language model domain match is very important, especially
since this in-domain language follows clear transcription con-
ventions consistent with the test transcription. This explains
why the in-domain language model is stronger because not
all South African languages have standardised orthography
and the crawled online texts might follow different spelling
rules, which negatively affects the WER. Code-switching is
also a mostly unwritten phenomenon, which makes language
modelling even more difficult. Furthermore, the performance
of the model could be improved by fine-tuning the model
for each language pair individually, but we chose not to
do it since we were interested in building a unified five-
lingual model. Previous works on this South African data
indeed demonstrated that the semi-supervised training batch
by batch yields improvement over training in a single pass,
as does training bilingual acoustic models instead of a five-
lingual model [202]. Improvement also comes from adding
generated texts and automatic transcriptions to build a strong
LM. However, this type of bilingual training with a strong LM
is less practical because it requires to obtain unlabelled data
with a specific type of code-switching to train the model.

X. SSL wiTH UNSUPERVISED ASR
A. Unsupervised ASR Open-source Toolkit

1) Introduction: Over the past decade, end-to-end (E2E) su-
pervised ASR has achieved outstanding improvements. These
achievements keep pushing the limit of ASR performance in
terms of word error rate (WER). However, training the state-
of-the-art model still heavily relies on a reasonable amount of
annotated speech [206]-[208]. Unfortunately, labeled data is
quite limited for most of the 7000 languages worldwide [209].
The fast development of self-supervised learning (SSL) could

mitigate the issue to some extent by leveraging unlabeled data.
This paradigm first learns the speech representations from raw
audio and then fine-tunes the model on limited transcribed
speech data [78], [127], [173], resulting in reducing the need
for annotated speech.

However, as there is still a need for transcribed data for
downstream model training, it is difficult to directly apply
the system to all languages, especially those endangered
languages that are extremely difficult to obtain data [210],
[211]. Unsupervised ASR could be one possible direction to
solve the problem where the model can be trained with more
accessible unpaired speech and text data.

Wav2vec-U is the state-of-the-art UASR framework. It
utilizes both SSL (i.e., wav2vec2.0) and adversarial training
for the UASR task [28]. The framework is shown working
not only in English, where the wav2vec2.0 [127] is trained
on but also in several other mainstream languages [80], [183],
[212], as well as low-resource languages [213]. This finding
reveals the possibility of utilizing unsupervised learning for
more languages.

The authors of wav2vec-U have released their code in
FAIRSEQ [79], which greatly improves reproducibility. The
implementation mainly consists of 3 steps: data preparation,
generative adversarial training (GAN) [214], and iterative self-
training [215] followed by Kaldi LM-decoding [216]. Along
with this reproducibility direction, we develop an unsupervised
ASR toolkit named ESPnet Unsupervised ASR Open-source
toolkit (EURO). EURO complements the original FAIRSEQ
implementation with more efficient multi-processing data
preparation, flexible choices over different SSLs, and large
numbers of ASR tasks through ESPnet [217]. EURO also
integrates a weighted finite-state transducers (WFST) decoder
using the k2 [218] toolkit for word-level recognition. K2 is
the updated version of the popular ASR toolkit Kaldi [216]. It
seamlessly integrates WFST and neural models implemented
in PyTorch [219] by supporting automatic differentiation for
finite state automaton (FSA) and finite state transducer (FST),
which are commonly used in ASR as a natural representation
of the model’s architecture [220]. In EURO, k2 provides a
compact WEFST structured and efficient algorithm for decod-
ing. With these advantages, EURO can considerably benefit
the UASR study for the speech community, together with the
FAIRSEQ UASR implementation.

This report first introduces the toolkit and its features.
Then, we conduct experiments that explore mainstream self-
supervised models as speech feature extractors for UASR



TABLE XXIII: Framework comparison of EURO with

wav2vec-U
Features Details | Fairseq EURO
Model Frontend | 1 SSL 27 SSLs in [1]
Prepare single-thread multi-process
Efficiency  Train multi-GPU multi-GPU
Decode single-thread multi-process
. Prefix by FlashLight [221]  self-implemented
Decoding  \ypg ‘ by PyKaldi [222] by k2
espnet/
F——egs2/
| ———TEMPLATE/
. | f—— uasrl/
Bash script (uasr.sh) ‘ | L uasrsh
[ k2 decoder } ‘ b asrl/
Task related (uasr_inference_k2.py) | e stl/
(uasr.py) Prefix decoder ‘ e—ax
(uasr_inference.py) —— espnet2/
Feature extractor f—— tasks/
(S3PRL) | ——uasrpy
A f——— uasr/
| | —— espnet_model.py
—— bin/
LibriSpeech TIMIT Others

f|——— uasr_inference.py
L—— uasr_inference_k2.py

Fig. 23:
EURO

Architecture  of
Fig. 24: Directory of EURO

in different languages. Finally, we provide details of the
hyperparameters of our experiments.

2) Related works: This section briefly compares the frame-
work of EURO to wav2vec-U. As summarized in Table XXIII,
EURO provides more flexible choices of SSL model as the
acoustic feature extractor by integrating with the S3PRL
toolkit [1]. With the comprehensive pipeline in the template,
EURO enjoys a fast adoption to various datasets with a
limited data preparation effort (less than 20 lines of code
for a minimum runnable solution). Meanwhile, all the data
preparation stages in EURO are designed to enable computing
in parallel, which greatly minimized the preprocessing time
compared to wav2vec-U. Besides of WFST decoder introduced
in Sec. X-Al, EURO provides a self-implemented decoder to
eliminate external dependencies.

3) Functionalities of EURO: Figure 23 shows the architec-
ture of EURO. Similar to other ESPnet tasks, EURO includes
two major components: a Python library of network train-
ing/inference and a collection of recipes for running complete
experiments for a number of datasets. The library is built upon
PyTorch, while the recipes offer all-in-one style scripts that
follow the data format style in Kaldi [216] and ESPnet [217].
In addition, a WFST decoder is included to perform word-level
recognition.

As discussed in Sec. X-A2, we follow previous works in
using adversarial training to achieve UASR in EURO. To
be specific, we extend the Wav2vec-U framework into our
implementation.

Given a spoken utterance X € Dypeech, We first extract
the speech representation by using a speech SSL model as
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the feature extractor f(-), resulting in a sequence of hidden
representations H. Then, the sequence H is passed into a
preprocessor m(-) to form a segmented feature sequence S,
which is used for the generative adversarial network (GAN).
The preprocessor m(-) includes three steps, including adjacent
clustering pooling, principle component analysis (PCA) di-
mension reduction, and mean pooling. The adjacent clustering
pooling utilizes the K-Means cluster IDs from the input feature
H as guidance to merge the adjacent feature frames.

The network is mainly trained with a GAN-based loss and
some auxiliary supporting losses. Given the segmented feature
S and an unpaired phonemicized text sequence Y, € Dy,
the framework includes a generator G and a discriminator C as
the classic GAN framework. The generator G, which serves
as the ASR model, transcribes S into a phoneme sequence
P and the discriminator C tries to distinguish Y, from the
generated phoneme sequence P. The GAN-based loss Lgan
is as follows:

LGan = mgin m(zjxx]EYu [logC(Y,)] — Egllog(1 — C(G(S)))].

19)
To stabilize the training, three auxiliary losses are also pro-
posed, including (a) a gradient penalty loss L, to sample the
mixing rate of real and fake input for different steps:

Lo, =
® s v.,anU(0,1

)[(IIVC(QQ(S) +(1-a)Y,)|| - 1)%,

(20)
where « is the mixing weight sampled from a uniform distri-
bution [223]. (b) a smoothness penalty to penalize inconsistent
phoneme prediction between adjacent segments:

Ly = >

(Pn7p71+1)€g(s)

||pn _pn+1|‘27 21

where p, € P is the generator output distribution at the n’s
segment. (c) a phoneme diversity loss to prevent the generator
G from generating the same phoneme all the time:

Lpa=— Y Entropyg(G(8)), (22)
that is defined by the entropy of the average generator output
distribution over every frame. The final loss is defined as

‘C = ‘CGAN + )\Egp + ’YESp + 77£pd> (23)

where A, y,n are the weights for each term.

One of the major benefits of EURO compared to wav2vec-U
is its tight integration with S3PRL, a toolkit for speech/audio
self-supervised models, to avoid manually managing and
switching between different SSL. models. Born initially with
the official implementation of TERA [169], S3PRL has ex-
tended further to support various SSL models as a general
toolkit. Taking benefits from the SUPERB benchmark, S3PRL
has kept up-to-date with the latest SSL models in the speech
and audio domain. Based on the integration with S3PRL, by
simply changing one line of the configuration, EURO can
utilize up to 27 speech and audio SSLs with more than 70 of
their variants.?*

24The number is recorded in Oct. 2022.



Fig. 25: H topology of phone
set {k, ae, t}. It merges dupli-
cated adjacent phones in the
input sequence, e.g., (k, k, ae,
t, t) — (k, ae, t). The arc with
—1 is a special arc defined in

Fig. 26: L topology of lexi-
con {cat: k, ae, t; act: ae, k,
t} in k2. It maps the phone
sequence to the correspond-
ing word allowing optional
silence token (sil) between
words. e.g., (sil, k, ae, t, sil)

k2 pointing to the final state. — cat.

EURO offers two methods for decoding, including a self-
implemented prefix beam search method and a graph-based
search method using k2.

The prefix beam search utilizes the same decoding process
as the CTC prefix decoding [224], [225], but without the blank
symbols. Similar to other ESPnet tasks, the decoding can be
integrated with phoneme-level language models (LM) from
both n-gram LMs and neural LMs.

As briefly introduced in Sec. X-Al, the graph-based search
employs WFST for decoding. Different from the prefix beam
search method, the graph-based search can utilize word-level
LMs in the search graph, and can also be extended to word
recognition. The search graph T is a composition of three
functional graphs: an alignment graph H, a lexicon graph L,
and a grammar graph G:

T=HoLoG, (24)
where o is WFST composition. Specifically, H merges du-
plicated adjacent phones; L maps sequences of phonemes to
sequences of responding words; G is an n-gram word LM.
Figure 25 and Figure 26 show an example of H and L imple-
mented in k2. The lattice is generated during decoding [226],
which represents the set of most likely hypothesis transcripts
structured in a directed graph and can be easily integrated
with neural LMs by performing lattice scoring [227], [228].
The best hypothesis is obtained by searching the best path in
the lattice.

EURO follows the unified directory organization of ESPnet
as shown in Figure 24. Similar to other tasks (e.g., ASR,
speech translation (ST)), the recipe usar.sh and its related
bash scripts are stored under egs2/TEMPLATE /uasr/. The
model espnet_model.py and task uasr.py are stored at
espnet2/uasr/ and
espnet2/tasks/, respectively. Decoding scripts
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uasr_inference.py and uasr_inference_k2.py
are placed under espnet2/bin/.

The recipe in EURO follows the ESPnet2 style of task,
which provides the template uasr. sh. The stages are defined
as follows:

Stage 1-5: Data preparation. The initial data format starts
from the Kaldi style [216], but the text for transcription is
supposed to be unpaired with the speech data. Then, we offer
two optional data preprocessing stages: speed perturbation and
voice activity detection (VAD). The VAD results can be ap-
plied in silence removal as it is shown to be important for some
speech corpus for wav2vec-U. After the preprocessing, all
speech data is converted into a standard format, by resampling,
segmentation, silence removal, and dumping from pipe-style
formats.

Stage 6-7: Text tokenization and token list generation. Texts
are converted to phoneme tokens using the graphemes to
phonemes toolkit g2p-en. Tokens are collected from the
training text and formed into a corresponding token list for
modeling. For UASR, the unpaired text Y,, is fed into training
in a random fashion. For efficiency purposes, we initialize
a randomized text loader with the tokenized text, which is
especially useful for large text data.

Stage 8-11: LM preparation. These stages train and evaluate
LMs based on the unpaired text Diex;. The LMs include both
neural-based LMs and N-gram LM.

Stage 12: WFST graph construction. This stage creates the
WEST decoding graph for the k2 decoder.

Stage 13: UASR statistics collection. In this stage, EURO
collects necessary input statistics for batching and mean-
variance normalization (MVN). Optionally, the feature from
frontends (i.e., S3PRL module in EURO) can be extracted at
the stage to support efficient training in further stages.

Stage 14: UASR feature preprocessing. This stage applies the
preprocessing steps discussed in Sec. X-A3, including adjacent
clustering pooling, PCA, and mean pooling. The resulting
segments are used for UASR training.

Stage 15: UASR training. This stage conducts the adversarial
training as discussed in Sec. X-A3.

Stage 16: UASR decoding. EURO has two decoding schemes
as introduced in Sec. X-A3. This stage supports both decoding
methods.

Stage 17: UASR evaluation. The evaluation in this stage
utilizes the NIST sclite toolkit to compute the phone error
rate (PER) or the word error rate (if applicable).

Stage 18-20: Model packing and uploading. This stage auto-
matically packs the trained model checkpoint for easier sharing
of the pre-trained model. EURO also supports uploading
models to Huggingface for model sharing.

4) Experiments: TIMIT: The TIMIT dataset is a popular
benchmark for the UASR task [212]. It contains 6300
sentences (5.4 hours) of reading speech. All sentences are
manually transcribed to phonemes with time alignment. We
use the standard split of the train (3696 sentences), dev (400
sentences), and test (192 sentences) sets for our experiments.

Librispeech: The LibriSpeech dataset is a common bench-
mark for the ASR task [80]. It contains 960 hours of reading
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TABLE XXIV: PER (%) on TIMIT of different SSL models. SE-ODM [229] only reports results on the test set. The best
result is highlighted in bold. Experimental details can be found in Sec. X-A4.

Framework SSL model Layer LM TIMIT
dev test
SE-ODM [229] - - 5-gram - 36.5
wav2vec-U [28] wav2vec 2.0 15 4-gram 17.0 17.8
wav2vec 2.0 15 4-gram 18.5 19.8
EURO HuBERT 15 4-gram 14.9 16.4
WavLM 14 4-gram 14.3 14.6

TABLE XXV: PER/WER (%) on Librispeech of different SSL models. PER is from the prefix beam search decoder and WER
is from the k2 WFST decoder. The best result is highlighted in bold. Experimental details can be found in Sec. X-A4.

Librispeech
Framework SSL model Layer M dev clean dev other test clean test other
wav2vec-U wav2vec 2.0 15 4-gram 18.9/31.7 22.4/35.4 18.4/30.7 23.0/36.1
wav2vec 2.0 15 4-gram 16.2/26.5 19.3/29.8 15.7/25.6 19.8/30.7
EURO HuBERT 15 4-gram 15.2/23.1 20.7/29.3 15.1/22.8 21.1/29.8
WavLM 15 4-gram 18.0/23.0 21.2/31.0 16.6/22.9 21.4/31.0

speech automatically derived from the audiobooks of LibriVox.
This corpus is split into 3 training sets (100 and 360 hours of
clean speech, and 500 hours of other speech), 2 dev sets (each
has 5 hours), and test sets (each has 5 hours).

We explore three SSL models for UASR in EURO, wav2vec

2.0 (wav2vec2-large-1160k), HuBERT (hubert-large-1160k), and
WavLM (wavlm-large).” The three models have the same
architecture that consists of 24 layers of Transformer en-
coders [111] with a similar number of parameters. Among
them, wav2vec 2.0 and HuBERT are pre-trained on 60,000
hours of Libri-Light. In addition to Libri-Light [230], Wavim
uses 10,000 hours of Gigaspeech [231] and 24,000 hours of
VoxPopuli [232] for pre-training.
TIMIT: We test EURO on TIMIT to confirm that the toolkit
works properly. We use the text from the same training set for
unsupervised training. To make it comparable with wav2vec-
U, we adopt the same setup for EURO wav2vec 2.0. More
specifically, we use the model wav2vec2-large-1160k and the
features are extracted from the 15" layer of the model. For
Hubert and WavLM, we explore the performance of features
from different layers and report the best PER results.

Table XXIV shows the results on TIMIT. Wav2vec-U
serves as the baseline and achieves 17.0% and 17.8% PER
on dev and test sets, respectively. EURO with the same setup
gets 18.5% and 19.8% PER on the dev and test set which
is slightly worse than wav2vec-U. While our model is not
heavily tuned under this setup, the results are comparable with
wav2vec-U. For Hubert (hubert-large-1160k), EURO performs
best on features extracted from the 15" layer. The PERs on
the dev set and test set are 14.9% and 16.4%. Compared with
the wav2vec-U baseline and EURO wav2vec 2.0, it provides
a relative improvement of 10% and 20%, respectively.
WavLM (wavlm-large) provides further improvement. The
model trained using features extracted from 14" layer of
WavLM achieves 17% relative improvement compared with
baseline and 25% relative improvement compared with EURO
wav2vec 2.0 in terms of PER. It reduces the PER to 14.3%

2 Corresponding models can be found in https:/s3prl.github.io/s3prl/
tutorial/upstream_collection.html

on the dev set and 14.6% on the test set.

Librispeech: For Librispeech, because of the limitation
of computing resources, we use 100 hours of clean speech
for UASR training. Unlike TIMIT, we use the text from the
whole training set (960 hours) excluding the overlap part
with the training speech. The text is phonemicized using G2P
phonemizer [233]. In total, around 25m sentences are used
for UASR training.

We measure both the PER and WER of UASR systems
using different SSL models for this dataset. Wav2vec-U uses
a sophisticated decoder to convert phoneme sequences to word
sequences and it may not be easily applied to other datasets.
To make a fair comparison, we train the wav2vec-U model
using the same data and load the model into EURO. We
use the same prefix beam search decoder for PER and k2
WEST decoder for WER. Table XXV show the results of
LibriSpeech’s standard dev and test sets. All EURO models
outperform the baseline wav2vec-U. For phone recognition,
the HuBERT model performs best on clean sets. It achieves
PER 15.2 on the dev clean set and PER 15.1 on the test
clean set. Wav2vec 2.0 performs best on more difficult sets. It
achieves PER 19.3 and 19.8 on dev other and test other sets,
respectively. For word recognition, Hubert gets the best WER
of 29.3, 22.8, and 29.8 on dev other, test clean and test other
sets. WavLM performs best on dev clean and achieves 23.0
WER which is slightly better than HuBERT.

For training, we set A = 1.5, v 0.5, and n = 2.0
for TIMIT and A = 2.0,y = 1.0,7 = 4.0 for LibriSpeech
datasets. For (phone-level) prefix beam search decoding, we
set beam size = 2 and tunes the weight n-gram language
model in [0, 0.9]. For (word-level) graph-based WFST decod-
ing, we set search beam size = 30, output beam size = 15,
min active states = 14,000, and max active stats = 56, 000.
More details can be found in the configuration file under
egs2/TEMPLATE /uasr/conf/.

B. Usage Extension of Unsupervised ASR

1) Introduction: Transfer learning has been known as one
of the major methodologies in the deep learning era. It has
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demonstrated its success in speech and natural language [127],
[234]. In transfer learning, self-supervised learning (SSL) has
been a large branch of studies that focuses on leveraging large
amounts of unlabelled data. According to previous literature,
SSL can learn to extract contextual representations that greatly
improve the performances of various downstream tasks [1].

Many real-world tasks involve transforming one modal-
ity to another (e.g., image caption, speech recogni-
tion/understanding, songwriting, etc.) [235]-[237]. Usually,
there is a need to understand both modalities in those tasks.
Given the advances in pre-trained models, several previous
works have shown significant improvements by simply apply-
ing the pre-trained models [238]-[240]. In their applications,
pre-trained models over source modalities are easier to adopt.

Spoken language understanding (SLU) is an example of
modalities’ transfer, which aims to infer the semantic meaning
from spoken utterances. Conventional SLU methods usually
adopt a pipeline that consists of an automatic speech recog-
nition (ASR) module and a natural language understanding
(NLU) module [241]. However, in recent days, more re-
searchers have started to focus on end-to-end modeling as
it could avoid potential error propagation between the two
modules. Because end-to-end SLU involves both NLP and
speech processing knowledge, previous studies also revealed
that SSL in each modality could improve end-to-end SLU per-
formances. Some works have investigated the joint pre-training
with both speech and text modalities [242], [243]. While for
most other works, researchers adopted speech SSL as a feature
extractor, shown to receive improvements in both performance
and efficiency [1], [240], [244]-[247]. On the other hand,
textual SSLs are difficult to integrate into end-to-end SLU be-
cause of the mismatched modalities. Therefore, existing works
usually need specific designs to utilize those textual pre-trained
models, such as deliberation modules [248]-[250], two-stage
decoding [251], K-means clustering for “tokenization” [252].
All approaches could get decent performances on some SLU
downstream tasks. However, most of them complicate the
training/inference procedure and need further fine-tuning with
supervision when applied to downstream tasks.

To achieve a simple way of connecting SSLs between
two modalities for SLU, this report proposes a novel usage
of unsupervised ASR (UASR) to bridge SSLs between two
modalities in a fully unsupervised manner. We start with a
base framework that applies UASR to augment the speech SSL
model by considering unpaired textual information. Following
that, we introduce the method that uses UASR to bridge
speech and textual pre-trained models. In this work, we
focus on connecting wav2vec2 [127] and a phoneme variant
of ByT5 [253] with wav2vec-U 2.0 [85]. Our experiments
validate the advantages of our proposed methods in various
tasks and settings. Notably, we also reach the state-of-the-
art performance on the challenging NMSQA benchmark on
spoken question answering [252].

2) Background: SSL as a feature extractor: The SSL
task is to find better speech representation for downstream
tasks. Previous SSL-related works usually utilize a speech-
only corpus Dpeech. The encoder of the SSL model (i.e., f(-))
is primarily used, after training with designed self-supervised
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objectives. Given a speech signal X € Dypeech, the encoder f ()
generates a hidden representation H = (hy, ho, ..., hr), where
T is the number of frames of the representation. As illustrated
in Figure 27 (a), representation H is used as features for an
additional model, when applying to downstream tasks.
UASR: Unsupervised ASR focuses on utilizing unparallel
speech and text to realize speech recognition systems. Before
the application of SSLs, previous methods have investigated
the direction by learning acoustic-text alignment, adversarial
networks, and quantized auto-encoding [229], [254], [255].
Wav2vec-U 2.0: Extended from its previous version [28],
Wav2vec-U 2.0 is the state-of-the-art model in UASR, which
is trained in an end-to-end manner [85]. In the method, SSL
(i.e., wav2vec2) is employed as a feature extractor to extract
hidden representation H. The later setup follows generative
adversarial training. The generator G takes the segmented
acoustic features to generate pseudo phonetic sequences, while
the discriminator C focuses on distinguishing the pseudo
phonetic sequence from generator G(H) and the real phonetic
sequence Y* € Diex. Noted that Dy is a text-only corpus,
which is unpaired with Dgyeech. Apart from the adversarial
loss, wav2vec-U 2.0 also utilizes several other types of losses
(i.e., gradient penalty L4y, segment smoothness L, phoneme
diversity Lpq, and auxiliary K-means clusters Ly from Mel
frequency cepstral coefficients (MFCC)) to stabilize the train-
ing. The final optimization target is formulated as:

min maxEyu[log C(Y*")] — En[log(1 — C(G(H)))]
G [4 (25)
+ ALgp + VL + 1Lpa + 0 Lss,
where A, 7,7, are the weights for losses.

UASR with SSL provides the foundation of our follow-
ing investigation. In later sections, we primarily focus on a
simplified version of wav2vec-U 2.0 that is without auxiliary
cluster prediction (i.e., remove L), as we empirically find
the training is harder to converge with the proposed version
in [85].

3) Problem Formulation: As speech SSLs train on a large
number of speech signals from Dypeecp, it has shown impressive
performances in several speech tasks [1], [2]. However, recent
works also reveal that speech SSLs cannot handle some high-
level semantic tasks (e.g., spoken question answering) [252].
To reach reasonable performances, the framework needs the
following textual pre-trained model fey that trains on text-
only corpus Diex. To match the embeddings in textual pre-
trained models, previous work applied K-means clustering to
convert the speech SSL features into cluster IDs, which are
further used as a token ID for the textual model [252]. The
sequential application of speech and textual pre-trained models
results in an issue of modalities mismatch between speech and
text token IDs, so a fine-tuning stage is necessary to connect
these modalities. On the other hand, our method can connect
both SSL models in the pre-training stage without fine-tuning
thanks to UASR, and build an unsupervised speech-to-
semantic pre-trained model straightforwardly.

In the following subsections, we first add UASR as an
augmentation module to the speech SSL model as a base
framework, resulting in a speech-to-text pre-trained model.
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Fig. 27: The comparison between different frameworks: (a) the application of speech SSL models as a feature extractor to
downstream tasks, discussed in Sec X-B2. (b) the framework of using UASR as an augmentation module to the speech SSL,
introduced in Sec X-B4. (c) the framework of using UASR as a connector to utilize a pre-trained text model for downstream

tasks, proposed in Sec X-BS5.

Then, we further extend it by combining a textual pre-trained
model, where we utilize UASR as a connector and contract a
speech-to-semantic pre-trained model.

4) UASR as an Augmentation Module: In this subsection,
we propose using UASR as an augmentation module for the
speech SSL model for the following reasons.

Unsupervised property: As discussed in Sec. X-B2, the
UASR are jointly trained with inputs that include both X €
Dypeech and Y € Diey. As discussed in Sec. X-B2, adding
an unsupervised ASR network maintains the unsupervised
property of the whole model, which keeps the benefits of
learning from a vast amount of unsupervised data.
Textual benefits: The incorporation of text-only corpus Diex;
is the major difference between speech SSL and the proposed
method. According to (25), the textual information Y is
explicitly applied with the adversarial objective.
Performance stability: To keep the performance stable for
various tasks, we can always apply the original speech SSL
with the UASR representation.
The application of UASR follows the illustration of Fig-
ure 27 (b). In short, the augmented model is defined as follows,
fuasr (H) £ (H, UP(G(H))), (26)

where UP(-) is an upsampling function to match the resolution
of H and G(H).?® The fuasr(H) is used as the input of
downstream models for various tasks.

261n our experiments, we simply use the repeat upsampling.

5) UASR as a Connector: As discussed in Sec. X-B1 and
Sec. X-B3, the modalities mismatch issue blocks constructing
pre-trained speech-to-semantic models in an unsupervised
manner. Since UASR targets conducting recognition in an
unsupervised fashion, it could naturally be a glue to connect
the acoustic and textual pre-trained models. We argue that
using UASR as a connector would have three more benefits,
apart from the mitigation of the modalities mismatch issue.
Unsupervised property: Similar to fyasg in Sec. X-B4,
adding UASR as a connector can still maintain the unsuper-
vised property of the whole model.

Enhanced textual benefits: As explained in Sec. X-B4, the
UASR module can introduce implicit textual knowledge from
the adversarial objective. On the other hand, when applying
UASR as a connector, it can adopt explicit textual resources
that hold semantic information from the pre-trained text model
f text-

Fine-tuning free: As previous methods usually need fine-
tuning to mitigate the modalities mismatch between speech
and text modalities, using UASR as a connector can relax the
requirement for fine-tuning since the output of UASR is a text
(phoneme)-level distribution.

The application of the UASR connector follows Figure 27 (c).
The augmented model is defined in a similar manner to fyasg,
as follows,

Fupeeeh_toxe (L) 2 <H,UP’<Q<H>>,UP’(ftm(A[g(H)])”gm)



TABLE XXVI: Freeze setting experiments with UASR and
PT5: pre-trained models are frozen during the training. The
“+UASR” option utilizes the method explained in Sec. X-B4,
while the “+UASR +PT5” option utilizes the method showed
in Sec. X-B5.

SSL | PR()  ASR() IC(D)  ST()  SID(M)
wav2vec2 5.51 3.79 94.38 13.01 83.69
+UASR 4.53 3.76 94.33 13.00 82.85
+UASR +PT5 4.68 3.97 94.88 13.53 82.74

where UP'(-) is another upsampling function to match the
resolution of H and A is an assignment procedure that assigns
phone tokens to each frame, given a phonetic posteriorgram.
A can be a GumbleSoftmax module to keep the differentiable
property, but it can also be an argmax operation for simplicity.
Similar to Sec. X-B4, the fopeech_rext(H) is used as the input
of downstream models for tasks.

6) Experiments: Downstream Tasks and Datasets: To fully
investigate the proposed methods, we conduct experiments in
two folds: the first freezes the parameters of the pre-trained
model; the second fine-tunes the textual pre-trained model.
Freeze setting: In the freeze setting, we follow the exact
setting of SUPERB benchmark [1]. As discussed in the
previous section, we primarily focus on understanding tasks,
including intent classification (IC), emotion recognition (ER),
and speech translation (ST). However, as UASR are designed
for recognition tasks, we also conduct experiments in ASR and
phone recognition (PR). Meanwhile, we carry out the speaker
identification (SID) task to verify if the UASR and the pre-
trained text model are effective for semantic-related tasks.
Fine-tuning setting: In the fine-tuning setting, we only con-
duct experiments that fine-tunes the textual model to match
the configuration in [252] and to avoid joint training of a
large model. We adopt ESPnet [247], [256] that can support
stronger downstream models. We intentionally select some
different datasets that are larger than the ones in the SUPERB
benchmark, evaluating the proposed method apart from the
potential over-fitting issue in low-resource scenarios. Similar
to the freeze setting, we focus on understanding tasks, includ-
ing IC, ER, ST, and slot-filling (SF). We adopt SLURP [241]
for IC and ST, IEMOCAP for ER [257], and CoVOST?2 for
ST [258]. In addition, We also tested on a publicly available
spoken question answering (SQA) NMSQA dataset [252].

Three test sets included are derived from SQuAD [259],
NEWSQA [260] and QuAC [261], whereas the latter two are
reported together as out-of-domain (OOD) samples.

7) Experimental Settings: Speech SSL: Given that the

UASR model is based on wav2vec2 [127], we adopt pre-
trained wav2vec?2 that trained on LibriLight [230].
UASR: To keep the same as [85], we utilize Librispeech
speech data for the speech-only corpus Dgpeecn and Librispeech
language modeling data for the text-only corpus Diexi. AS
noted in Sec X-B3, we do not use L. For other settings,
we use the hyper-parameters released on Fairseq.?’

27 https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/
unsupervised/config/gan/w2vu2.yaml
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Pre-trained text model: As discussed in Sec. X-B1 and
Sec. X-B5, we select PhonemeT5 (PT5)?® as our main textual
pre-trained model, because it has the same token space as
our UASR model. PTS is a variant of ByTS [262], which
uses phonemicized text?® as input with the span reconstruction
objective.

Model candidates: For the freeze setting, aligned with Fig-
ure 27, we compare the models in three settings, including
speech pre-trained model (i.e., wav2vec2), speech pre-trained
model with UASR, and speech pre-trained model with UASR
+ textual pre-trained model (i.e., PTS). For the fine-tuning
setting, we compare four settings: A utilizes only the speech
pre-trained model; B applies UASR as an augmented module
to the speech pre-trained model; C employs K-means as
a connector between speech and textual pre-trained models
[252]:%° D uses UASR instead of K-means as a connector.

To further investigate the effects of different pre-trained text
models, we provide two other models with the same network
architecture, namely randomized T5 (RT5) and textual T5
(TTS5). RTS5 is a model with the same architecture as PT5
but with randomized parameters. TTS is the original version
of ByT5 that is pre-trained on text data [262]. Because of
the token mismatch (i.e., phone tokens from UASR and byte-
level tokens from ByT5), we utilize a randomly initialized
dictionary to map UASR’s phone tokens into bytes, similar to
the K-means approach [252]. Given the same framework as
D, we name E as the one with RT5 and F as the one with
TTS5. Except for SQA which utilizes whole pre-trained models
(i.e., both encoder and decoder), other tasks only employ the
encoders of the T5 variants (i.e., D, E, and F).

Dowstream models: For the freeze setting, we follow exact
settings as the SUPERB public benchmark, which adopts
simple downstream models (e.g., stacked linear or recurrent
layers). For the fine-tuning setting, we utilize ESPnet [247],
[256] for the downstream models except for SQA. For IC,
SF, and ER, we adopt a conformer-based encoder-decoder
network with the hybrid connectionist temporal classification
(CTC)/attention style of training [208], [225]. While for ST,
we adopt a transformer-based encoder-decoder with auxiliary
ASR loss computed from CTC. Detailed network settings
follow the corresponding configuration.! For classification
tasks like IC and ER, we also include ASR transcriptions as
a joint learning objective. For all models in ESPnet, we apply
specaugment to the hidden states from pre-trained models [1].
For SQA, it is difficult to hold the whole speech SSL features
for the spoken context of answers. Therefore, we employ a
two-step approach. Specifically, questions and contexts are
converted into time-coded phoneme sequences by UASR.
Given questions and contexts, the PT5 is fine-tuned to predict
answer time spans in the context. The model is trained for 3

28https://gilhub.com/voidful/tSlephone

2Each phoneme token is mapped to a single character with a predefined
mapping dictionary to reduce the sequence length.

30We adopt the official K-means checkpoint at https://dl.fbaipublicfiles.com/
textless_nlp/gslm/w2v2/km50/km.bin. 50-cluster version is selected because UASR has
a similar vocabulary size (i.e., 45).

31 https://github.com/espnet/espnet/blob/master/egs2/{slurp_entity,slurp,iemocap,
covostl }/{asrl,stl}


https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/unsupervised/config/gan/w2vu2.yaml
https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/unsupervised/config/gan/w2vu2.yaml
https://github.com/voidful/t5lephone
https://dl.fbaipublicfiles.com/textless_nlp/gslm/w2v2/km50/km.bin
https://dl.fbaipublicfiles.com/textless_nlp/gslm/w2v2/km50/km.bin
https://github.com/espnet/espnet/blob/master/egs2/{slurp_entity, slurp, iemocap, covost1}/{asr1, st1}
https://github.com/espnet/espnet/blob/master/egs2/{slurp_entity, slurp, iemocap, covost1}/{asr1, st1}

43

TABLE XXVII: Fine-tuning setting experiments with UASR and PTS5: textual pre-trained models are jointly fine-tuned with
downstream models during training. B utilizes the method explained in Sec. X-B4, while D utilize the method showed in
Sec. X-B5. Other models (i.e., A and C) and more detailed configurations are introduced in Sec. X-B7.

| Connector  Text Model | IC(1) SF(t) ER(1) ST(1)
A / / 82.82  65.82 66.35 22.1
B UASR / 82.93 64.93 64.11 22.2
C K-means PT5 86.41 71.70 72.61 22.5
D UASR PT5 87.10 74.03 73.57 24.3

TABLE XXVIII: Effect of different textual pre-trained models
when using UASR as a connector: E employs a TS architecture
with randomized parameters; F uses the original ByteT5; D
applies the phoneme T35 introduced in Sec X-B7.

| Text Model | IC(t) SF(t) ER(f) ST(1)
E RT5 86.61 7183 7219 239
F TTS 8593 7231 7219 246
D| PT5 | 8710 7403 7357 243

TABLE XXIX: Effect of different textual pre-trained models
for SQA when using UASR as a connector. The Longformer
model is the state-of-the-art model in [252].

SQuAD 00D
‘ Text Model ‘ AOS(t)  FFI(1) | AOS()  FFI(D)
[252] | Longformer 49.1 55.9 / /
F TTS 56.0 61.5 38.4 424
D | PTS | 658 697 | 421 462

epochs with a 3e-4 learning rate and the best model is selected
based on the performances on the development set.
Evaluation metric: For PR, we adopt phone error rate (PER),
while for ASR, we utilize word error rate (WER). For IC and
ER, we employ the accuracy rate. For slot-filling, we apply the
slot-type F1 score. For ST, we use the BLEU score. For SQA,
we adopt the same evaluation metrics as [252], including the
area overlapping score (AOS) and frame F1 (FF1). Note that
when the answers cannot be extracted from the given context,
we set AOS and FF1 to 0.

8) Experiments: Results and Discussion: We first discuss
the results of the freeze setting as shown in Table XXVI. As
UASR is optimized for PR, it is reasonable to have better
performances in PR. However, ASR does not have significant
gain with UASR, which shows that the PR advantage from
UASR may not directly enhance the speech SSL. When it
comes to understanding tasks (i.e., IC and ST), the one with
UASR and PT5 achieves the best performance, demonstrating
the semantic benefits introduced by PT5. Given the wav2vec2,
UASR, and PT5 do not update their parameters, we could infer
that the UASR as a connector could mitigate the modalities
mismatch issue discussed in Sec. X-B3. Last, it is reasonable
that UASR and PT5 cannot improve the performances of
speaker identification, as their features barely contain speaker-
related information at the design level.

Table XXVII shows the results in the fine-tuning setting.
For all the selected tasks, D achieves the best performance
by using UASR as a connector. When applying K-means as a

connector (i.e., C), we find similar performance improvements
in all four tasks as [252]. However, with UASR as a connector,
the improvements are even larger.

As in the ablation study shown in Table XXVIII, the one
with PT5 (i.e., D) reaches the best performance for IC, SF, and
ER, while the one with TTS (i.e.,F) has the best performance
for ST. Based on the experimental results, we would argue that
there is a balance between modalities matching and textual
semantics. As for text generation tasks, F has better results.
Table XXIX shows our proposed method on SQA. We only
conduct the model with textual pre-trained models, as we
find the text information is essential to train the model. For
example, model E can hardly converge for the task, resulting
in 0.0 scores for the test sets. On the contrary, the model D
with matched modalities has shown outstanding performances,
significantly better than the model F and the best model in
[252].

XI. CONCLUDING REMARKS

Here we summarize what we have achieved:

o We study several standard compression techniques for
Transformer-based speech SSL models, including weight
pruning, head pruning, low-rank approximation, and
knowledge distillation. We comprehensively analyze the
compression-performance trade-off, charting the land-
scape of model compression for speech SSL models
in Section II. In addition, we study fixed-length sub-
sampling along the time axis in self-supervised learning
and propose a variable-length subsampling approach in
Section III. We found that ASR with larger word pieces
is more resistant to more aggressive subsampling, while
ASR with characters can only sustain subsampling up to
approximately 25 Hz. Subsampling while training SSL
models not only improves the overall performance on
downstream tasks under certain frame rates but also
brings significant speed-up in inference. Variable-length
subsampling performs particularly well under low frame
rates. Moreover, if we have access to phonetic boundaries,
we find no degradation in performance for an average
frame rate as low as 10 Hz. For future work, the effect
of subsampling on large SSL models, particularly, by
training them with subsampling from random initializa-
tion, is largely unexplored. And we believe it is even
possible to encode an utterance into a single vector [263],
independent of the input length. Much research is needed
in this direction.

e We find that though having similar performance as
original SSL. models, distilled SSL. models suffer from



performance degradation even more than their original
versions in distorted environments. We propose cross-
distortion mapping (CDM) during distillation to improve
the generalizability of distilled SSL models. Results
show consistent improvements under both in- and out-of-
domain distorted setups for different downstream tasks
while keeping efficient model size. Please refer to Sec-
tion IV for the complete results.

We introduces SpeechCLIP , a novel framework in-
tegrating CLIP into visually grounded speech mod-
els, in Section V. We demonstrate significant improve-
ments in image-speech retrieval with CLIP’s supervision.
Moreover, the proposed methods can perform zero-shot
speech-text retrieval and capture semantically related key-
words in speech signals. Results indicate that bridging
speech and text domains with CLIP’s supervision is
possible and promising. Overall, SpeechCLIP opens a
new research direction of indirectly supervising speech
models with text via other modalities. We suggest some
topics in SpeechCLIP are worth investigating in the
future, including integrating parallel and cascaded in the
same model and cascaded structure with variable length
prediction aiming for unsupervised ASR. Furthermore,
extending SpeechCLIP to a multilingual model is pos-
sible using spoken captions from other languages or
Multilingual-CLIP models. Finally, we wish to inspect
how CLIP can enhance speech SSL models’ performance
on downstream problems like speech recognition and
intent classification.

We explore the effectiveness of efficient tuning meth-
ods for SSL speech representation transfer. Extensive
experiments are conducted to investigate the various
adapter types on different SSL speech models on a wide
range of speech processing tasks in Section VI. Other
than finding adapters capable of achieving comparable
performance to the fully fine-tuned models, we further
examine the stability of adapters compared with fine-
tuning. We then discussed comparing efficient methods
in NLP and Speech. To our best knowledge, this is the
most comprehensive work exploring adapter methods on
a wide range of downstream speech tasks so far. In
addition, we propose a prompt tuning framework based
on Generative Spoken Language Model (GSLM) for
speech processing tasks in Section VII. The experiment
results show that the language model can be guided to
directly generate the answers by tuning a limited number
of task-specific vectors. In classification tasks, the frame-
work achieves competitive performance compared to fine-
tuning the entire downstream models. We also investigate
the limitation of the framework on challenging sequence
generation tasks. This work is the first exploration of
prompt tuning paradigm for speech processing tasks.
We believe this study can motivate the speech research
communities to explore the prompting paradigm more.
We explore the utility of SSL models for prosody-
conveyed pragmatic functions. Using the newly-proposed
SUPERB-prosody evaluation framework, we find that
SSL models provide significant value for prosody-
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intensive tasks, and that they are good at extracting
prosodic information in pseudo tasks. Furthermore, we
analyze the layer contribution and discover that most
SSL models tend to store prosodic information in the
first few layers. However, the field still lacks a good
understanding of why different SSL models are better
for different tasks [264], and this is an important topic
for future work.

We explored using unlabelled speech data to improve
the accuracy of the ASR of South African languages,
using a small amount of manually transcribed speech
data along with a weak language model. We confirmed
the previous findings [190] that semi-supervised training
with a weak language model does not work very well.
The best approach to improve the initial acoustic models
(WER of 54.7%) is to continue self-supervised pre-
training of the multilingual model XLSR-53 (WER of
50.9%), which does not require any language model. This
approach is beneficial in South African code-switching,
where we can only train a weak language model due to
the lack of sufficient amount of in-domain text. When we
subsequently used this model as a seed model for semi-
supervised training, we obtained a relative improvement
of 17% (WER of 45.2%) compared to the supervised
baseline model trained with MFCC features. However,
these improvements were much smaller than we would
expect with a strong language model. For this reason, in
the future, we would like to explore ways of training
better language models in low-resource and especially
code-switched settings to improve the performance during
semi-supervised training and decoding. We would also
like to use the large XLS-R pre-trained multilingual
model [193] because it achieved better performance than
the multilingual model XLSR-53 [184] in our preliminary
experiments. Finally, we would also like to follow [196]
and use better regularization methods during continued
self-supervised pre-training. Both these methods should
allow for a more efficient continued pre-training. We
believe our findings will apply to other low-resource
languages with limited amounts of text corpora available.
We introduce a new toolkit for unsupervised ASR,
namely EURO. The toolkit is developed as an open
platform for the research field of unsupervised ASR. The
current architecture of EURO is based on the Wav2vec-
U framework but greatly improves the reproducibility
with flexible frontends of almost 30 SSL models and
a faster preparation/inference compared to its original
implementation in FAIRSEQ. By integrating with k2,
EURO provides a WFST decoder for word recognition.
Our experiments on TIMIT and LibriSpeech show that
we could get comparable performances with wav2vec-
U in FAIRSEQ but even better results with Hubert and
WavLM as new frontends.

Though pre-trained models in speech and languages have
shown to be effective, it is difficult to sequentially apply
speech and language pre-trained models to scenarios of
spoken language understanding. In Section X-B, we pro-
pose using unsupervised ASR to mitigate the mismatch



between modalities. We first show that adding unsuper-
vised ASR could enhance the original speech pre-trained
model, then unsupervised ASR is applied as a connector
between speech and textual pre-trained models. Extensive
experiments, in various tasks and settings, demonstrate
the effectiveness of our proposed method, which also
shows possible solutions to other scenarios other than
speech and language.

The six-week workshop was a resounding success, with our
international team making significant advancements in speech
SSL technology. Our efforts paid off, as five cutting-edge
papers were accepted and presented at SLT 2022 [9], [12],
[18], [22], [25]. And the cherry on top, one of these papers
was awarded the Best Paper Award at the conference [25].
Our team pushed the boundaries of speech SSL technology
in several areas, including computation, robustness, visual
enhancement, and efficient usage of these models. We have
made great progress in improving speech SSL models in
different aspects individually, but there was simply not enough
time to fully integrate all of our findings into a single, cohesive
model. However, the spirit of collaboration and innovation
lives on, as some members of the team continue their work to
build upon and integrate the technology we developed during
the workshop. The team made remarkable achievements in just
six short weeks, and we are eager to see where our continued
work will take us. The future of speech SSL technology is
bright, and we are proud to have played a role in shaping it.
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