Code-Switching and Multilingual ASR
JSALT 2022
July 6 2022
- WP1 - ASR
- WP2 - CS Generation
- WP3 - Evaluation
- WP4 - Linguistic Aspects of CS
Can we train code-switching ASR systems using only monolingual data?
Mandarin - English ASR

Monolingual Baseline

- AISHELL-2 (Mandarin)
- Tedlium-3 (English)

SEAME
Mandarin - English ASR

<table>
<thead>
<tr>
<th></th>
<th>LF-MMI</th>
<th>CTC</th>
<th>RNN-T</th>
<th>EncDec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tedlium + Aishell</td>
<td>86.4</td>
<td>81.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ Fine-tune 34h mono-lingual SEAME</td>
<td>42.6</td>
<td>55.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ CS LM</td>
<td>27.5</td>
<td>50.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topline trained on all Seame data</td>
<td>22.1</td>
<td></td>
<td>16.7</td>
<td></td>
</tr>
</tbody>
</table>
Mandarin - English ASR

- SEAME corpus is code-switched Mandarin-English
 - Accented English
- Errors due to:
 - missed switches
 - detecting the wrong language
 - accent mismatch
Mandarin - English ASR (Example Errors)

- **Wrong language Missed Switch** (phonetically similar):

 HYP: the dont turn it jara even the online no quite quite the foreign they also

 REF: 很多人都在讲了 even the online 那 种 怪 怪 的 forum they also

 Hěn duō rén dōu zài jiǎngle Nà zhǒng guài guài de

- **Accent?**

 Ref: my mum keeps scold-

 Hyp: my monkey is good
Telugu - English ASR

- Access to small amounts of monolingual Telugu (~50 hours) and larger amounts of Indian-accented English (~150 hours).
- Evaluated on Telugu-English code-switched corpus. 15 hours of CS speech (train) available.
- WER using monolingual Telugu + English + Telugu-English CS speech: 52.3 %
 - Hypothesis contained many instances of intra-word code-switching (E.g., మీడియా -> MEDIA, PLATFORM -> PLATFORM)
 - Higher fraction of switch points (compared to Mandarin-English CS)
South African ASR

Code-switching is present in low-resource languages, where it might be hard to get transcribed monolingual audio.

Comparison of self-supervised and semi-supervised approaches: labelled English - Xhosa CS data (~3h) + hundreds hours of unlabelled audio data

- Adapting self-supervised pretrained models with LF-MMI
 - Baseline: TDNN + LF-MMI, Pytorch implementation of LF-MMI available in PyChain toolkit
- Standard adaptation with CTC: Hubert as pretrained model + CTC (s3prl): 95.17 without LM

Hyp: BEDELA KUBA SIOFFISINI NOYUKUBA UBENOMKAKGOSE AC YOU
Ref: KUBHETELE UBESE OFFICE KUNOKUBA UBENOMKAKHO OSE I. C. U.

- Extracting features: XLSR-53 features
WP2 - CS Generation
BiBERT (for En-Ar code-switched text generation)

We perform sequential sampling on the BiBERT pretrained on English and Arabic:

a. Start with a code-switched sentence as the seed masked in the first token position.
b. Pass it through the model
c. Decode the predicted masked position in one of the three ways:
 i. Greedy decoding
 ii. Top k (3) decoding
 iii. Top k% (15%) decoding
d. Pass the decoded sequence now masked in the next position back into the model and repeat...
A couple examples...

<table>
<thead>
<tr>
<th>mobile تقدری تعيشی من غير</th>
<th>wedding planner یه لیه کت فی دماکک</th>
</tr>
</thead>
<tbody>
<tr>
<td>هل تقدری تعيشی من غير؟</td>
<td>یه wedding planner کت فی دماکک؟</td>
</tr>
<tr>
<td>ایلا budget هل تستطيع أن تنمي على؟</td>
<td>یه wedding dress ماذا في حقيقة و؟</td>
</tr>
<tr>
<td>یه yourself into a relationship هل تستطيع أن تحصل؟</td>
<td>یه black market ماذا عن ظاهرة و؟</td>
</tr>
<tr>
<td>یه in a puddle throw هل يجوز ان المال؟</td>
<td>ماذا عن ظاهرة الثلج black؟</td>
</tr>
</tbody>
</table>
Pointer-Generator Networks

- The model can choose to copy (attention distribution) or generate new words (vocab distribution) from a fixed vocabulary.
- Output is code-switched sentence
- Input1 and input2 can be paired monolingual sentences (L1 and L2)
- Input1 can be monolingual sentence (L1), input2 can be phrase or monolingual sentence containing the to-be-switched phrase from L2
Constrained Decoding

- The model is a (transformer) encoder-decoder model
- Input is two sentences, monolingual L1 and monolingual L2, translations of each other
- Model is trained to output the same L1 sentence half the time and the same L2 sentence half the time
- To generate code-switched output, use grid-beam-search to do constrained decoding among sentences with different number of switch points
Synthetic Audio Data Generation

We want to generate audio for sentence: “god it ﻣﻠو you وقعت لا الهوا رماك you”
We use word-based unit-selection with units extracted from monolingual corpora
Synthetic Audio Generation

These audio segments are spliced together with padding to create code switched audio:
WP3 - Evaluation
<table>
<thead>
<tr>
<th></th>
<th>Hyp-Ref</th>
<th>Hyp-Min.Cor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WER</td>
<td>70.0</td>
<td>40.8</td>
</tr>
<tr>
<td>CER</td>
<td>47.4</td>
<td>20.0</td>
</tr>
</tbody>
</table>

WER/CER Example

Ref: و او لو عونناتمارين برضه او لو عاوزين بقى نتفسح يعني two families ال فبنزور weekends mainly family

Hyp: و او لولا عونناتمارين بوردو او لو عايزين بقى نتفسح يانغ families فا بالنسور

Min.Cor.: و او لو عونناتمارين بوردو او لو عايزين بقى نتفسح يعني two families ال فبنزور ال الويك أند زمايلي فاعلي

الویک آندز ماینلی فامیلی
Overall Plan

- Guidelines for human minimal correction annotation: https://docs.google.com/document/d/1S_LXwfcFR9gDZIJ0V8Pp-7r1dMm3GEen_hsFuxYNfZI/edit
- Use hypotheses from 3 systems; 1 HMM-DNN and 2 E2E
- Annotate 2h of speech (1.3k sentences) X 3 systems
- Evaluation metrics:
 - WER, CER, and MER (Match Error Rate)
 - Transliteration
 - Phone edit distance
- Languages: Egyptian Arabic-English and Telugu-English
Results [Ar-En] - Data and Correlations

- **Annotation data:**
 - The 3.9K sentences (1.3KX3 systems) are being annotated by 4 Ar-En bilingual annotators.
 - We sampled 200 sentences to be annotated by all annotators for IAA. These sentences are already annotated.
 - For the rest of the data, we have 1000/3700 sentences annotated.

- **Correlations between Hyp-HMC (CER) and Hyp-Ref Scores (for the 200 sentences):**

<table>
<thead>
<tr>
<th></th>
<th>CER</th>
<th>WER</th>
<th>MER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation</td>
<td>0.763</td>
<td>0.422</td>
<td>0.503</td>
</tr>
</tbody>
</table>
Results [Ar-En] - Transliteration

<table>
<thead>
<tr>
<th></th>
<th>Hyp</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>اlkبده يعاريفن احن اختفت بقى احنا عارفين كده</td>
<td>ال هوبيس يعاريفن احن اختفت بقى احنا عارفين كده hobbies</td>
</tr>
<tr>
<td>Tr-En</td>
<td>Alajbez Bettati Akhtift Boca Ahana Arvin Kadeh</td>
<td>al hobbies Bettati Akhtift Ahana Arvin Kadeh</td>
</tr>
<tr>
<td>Tr-Ar</td>
<td>الخبيز بتاعتي اختصت بقى إحنا عارفين كده</td>
<td>ال هوبيس بتاعتي اختصت بقى إحنا عارفين كده</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Transliteration CER</th>
<th>CER</th>
<th>Transliteration WER</th>
<th>WER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tr-En</td>
<td>Tr-Ar</td>
<td>Tr-En</td>
<td>Tr-Ar</td>
</tr>
<tr>
<td>Error Rate</td>
<td>22.1</td>
<td>22.1</td>
<td>27.6</td>
<td>46.1</td>
</tr>
</tbody>
</table>
Results [Ar-En] - Phone similarity edit distance

- Map the script from the two languages into IPA phones
- Use the phoneme error rate with substitution weight scaled by the similarity between the phones
- Measure the similarity between the phonemes based on the articulation feature vectors: nasal, front, back, labial etc
- Example:
 - Arabic: ا کا بند اف
 - English: a kind of
 - Arabic phonetics: a kajnd aof
 - English phonetics: ə kajnd ʌ
 - PER: 0.5
 - PER_sim: 0.155
WP4 - Linguistic Aspects of CS

Are the methods being developed in other work packages generalizable?
A systematic analysis of code-switching across languages and domains

- Ideally, methods developed within the other work packages should be generalizable …
- … but code-switching as a linguistic phenomenon is ill-defined and variable:
 - Amount of code-switching (symmetric or asymmetric)
 - Code-switch points and predictors/triggers of code-switch points
 - Acoustic properties at switch points
- We predict this variability is not random but influenced by factors like:
 - The language pair (typologies of each language; the linguistic, socio-historic, genealogical relationship between them)
 - The domain / context / situation
 - The speakers (e.g. personality, gender, age of each speaker; the relationship between the speakers)
- Can we identify, systemize, and model this?
First steps

● Collecting data-sets across many different languages and domains, including:
 ○ Mandarin-English (e.g. SEAME; Datatang)
 ○ Spanish-English (Bangor Miami)
 ○ isiXhosa-English (Soap Opera data; self-collected WhatsApp voice notes)
 ○ Scottish Gaelic-English (audiobooks; web-scraped; MG Alba)

● Defining ‘code-switching richness’ metrics: deciding upon features which can help us identify the ‘richness’ of code-switching in any one data-set
 ○ Extracting features for baseline variants of this metric, e.g. POS counts, language token counts …
 ○ Assigning preliminary code-switching richness scores to all data-sets

● Considering variables which may affect, explain, or predict this code-switching richness
 ○ E.g. topic; sociolinguistic, historical, or geographical properties of the language(s); formality
 ○ Quantifying these variables; Building feature extraction pipelines
Formality

- Heylighen and Dewaele (1999): *Formality of Language: definition, measurement and behavioral determinants*
 - F-score metric to calculate level of formality in text using distribution of parts of speech
 \[F = \frac{\text{noun freq.} + \text{adjective freq.} + \text{preposition freq.} + \text{article freq.} - \text{pronoun freq.} - \text{verb freq.} - \text{adverb freq.} - \text{interjection freq.} + 100}{2} \]
 - + POS are correlated with greater formality; - POS are correlated with less formality
- Is this metric reliable?
 - Calibrated on
 - informal Switchboard corpus (F-score = 42% formal)
 - informal TV corpus (F-score = 43% formal)
 - formal broadcast news corpus (F-score = 67% formal)
 - formal legal corpus (F-score = 71% formal)
- SEAME Mandarin-English corpus dev. set
 - F-score = 50% formal on original data
 - F-score = 34% formal excluding code-switched English
- So, Mandarin in code-switching contexts seems to be informal → is this true across languages? We will perform the same analysis on other language corpora.
Original SEAME devset

- Nouns: 37.1%
- Verbs: 26.8%
- Adjectives: 3.8%
- Prepositions: 5.6%
- Articles: 3.6%
- Interjections: 1.2%
- Adverbs: 11.0%
- Pronouns: 10.9%
SEAME devset without code-switched English words

- Interjections: 2.4%
- Adverbs: 18.7%
- Nouns: 15.2%
- Adjectives: 4.9%
- Articles: 6.3%
- Pronouns: 15.8%
- Verbs: 36.7%
Questions?
Synthetic Audio Data Generation

Words not in the corpora used to generate these mappings are skipped.