Neural Methods in Automatic Speech Recognition

Neural Acoustic Models: Waibel et al (1988) to Povey et al (2016) Neural Language Models: Nakamura et al (1989) to Sundermeyer et al (2012) Connectionist Temporal Classification: Graves (2006) and Graves & Jaitly (2014) Deep Speech 2: Hannun et al (2014) & Attention-Based Models: Chorowski et al (2015)

The "source-channel" model for automatic speech recognition (ASR)

Hidden Markov models are popular as acoustic models

$$P(\mathbf{A} | \mathbf{W}) = \sum_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} P(\mathbf{A}, \mathbf{S} | \mathbf{W}) = \sum_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} P(\mathbf{A} | \mathbf{S}, \mathbf{W}) P(\mathbf{S} | \mathbf{W})$$

$$\approx \sum_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} P_E(\mathbf{A} | \mathbf{S}) P_T(\mathbf{S})$$

$$= \sum_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} P_E(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_T | s_1, s_2, \dots, s_T) P_T(s_1, s_2, \dots, s_T)$$

$$= \sum_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} \prod_{i=1}^T P_{\mathbf{S}}(\mathbf{a}_i | s_i) P_{\mathbf{S}}(s_i | s_i - s_i)$$

$$= \sum_{\mathbf{S}\in\mathcal{S}(\mathbf{W})} \prod_{t=1} P_E(\mathbf{a}_t \mid s_t) P_T(s_t \mid s_{t-1})$$

Dynamic programming is popular for "decoding," i.e. for hypothesis search

$$\begin{aligned} \widehat{\mathbf{W}} &= \arg \max_{\mathbf{W}} P(\mathbf{A} \mid \mathbf{W}) P(\mathbf{W}) \\ &= \arg \max_{\mathbf{W}} \sum_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} P(\mathbf{A} \mid \mathbf{S}) P(\mathbf{S}) P(\mathbf{W}) \\ &\approx \arg \max_{\mathbf{W}} \max_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} P(\mathbf{A} \mid \mathbf{S}) P(\mathbf{S}) P(\mathbf{W}) \\ &= \arg \max_{\mathbf{W}} \max_{\mathbf{S} \in \mathcal{S}(\mathbf{W})} \log P(\mathbf{A} \mid \mathbf{S}) + \log P(\mathbf{S}) + \log P(\mathbf{W}) \\ &\equiv \operatorname{Project} \left(\operatorname{Bestpath} \left(\operatorname{Compose} \left(\mathbf{A}_{\log P(\mathbf{A} \mid \mathbf{S})} \circ \mathbf{L}_{\log P(\mathbf{S})} \circ \mathbf{G}_{\log P(\mathbf{W})} \right) \right) \right) \end{aligned}$$

Composite HMM for "cat and hat"

Composite HMM for "cat and hat"

"Forward" Algorithm

$$P(\mathbf{y}|\mathbf{w}) = \sum_{\mathbf{s}\in\mathcal{S}(\mathbf{w})} P_{\vartheta}(\mathbf{y}|\mathbf{s}) P_{\tau}(\mathbf{s})$$
$$= \sum_{\mathbf{s}\in\mathcal{S}(\mathbf{w})} \prod_{i=1}^{n} P_{\vartheta}(y_i|s_i) P_{\tau}(s_i|s_{i-1})$$

Viterbi Algorithm

$$\hat{s} = \arg \max_{s \in \mathcal{S}(w)} P(s|y)$$

$$= \arg \max_{s \in \mathcal{S}(w)} \frac{P(y,s)}{P(y)}$$

$$= \arg \max_{s \in \mathcal{S}(w)} \prod_{i=1}^{n} P_{\vartheta}(y_i|s_i) P_{\tau}(s_i|s_{i-1})$$

Acoustic Modeling with Deep Neural Networks for Hybrid ASR Systems

Repurposing Algorithms Developed for HMM-based Architectures

A paper appeared in September 2011 ...

So, a lot of progress has been made since 1988

k	k	k	k	k	k	k	k	k	k	k	k	k	k	k	k	k	ae	t	ae	n	d	h	ae	t
•	÷	:	:	:	:	÷	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	:	÷
k	k	k	ae	ae	ae	ae	t	t	ae	ae	ae	n	n	d	d	h	h	h	h	ae	ae	ae	t	t
:	÷	:	:	÷	:	:	÷	:	:	:	:	:	÷	:	:	:	:	÷	:	:	:	:	:	÷
k	ae	t	ae	n	d	h	ae	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t

Maximum Mutual Information Estimation

INTERSPEECH 2016 September 8–12, 2016, San Francisco, USA

Purely sequence-trained neural networks for ASR based on lattice-free MMI

Daniel Povey^{1,2}, Vijayaditya Peddinti¹, Daniel Galvez³, Pegah Ghahremani¹, Vimal Manohar¹, Xingyu Na⁴, Yiming Wang¹, Sanjeev Khudanpur^{1,2}

¹Center for Language and Speech Processing, The Johns Hopkins University
 ² HLT CoE, The Johns Hopkins University
 ³Department of Computer Science, Cornell University
 ⁴Lele Innovation and Intelligence Technology (Beijing) Co., Ltd.

{dpovey,dt.galvez,asr.naxingyu}@gmail.com, {vijay.p,vmanohal,pghahrel,yiming.wang,khudanpur}@jhu.edu

Language Modeling with (Recurrent) Neural Networks

Efforts to Go Beyond *n*-gram Dependence in Language Models

Using Neural Networks to Estimate $P(w_t|h_t)$

A paper appeared in September 2010 ...

INTERSPEECH 2010

COGNITIVE SCIENCE **14**, 179–211 (1990)

Finding Structure in Time

JEFFREY L. ELMAN University of California, San Diego Recurrent neural network based language model

Tomáš Mikolov^{1,2}, Martin Karafiát¹, Lukáš Burget¹, Jan "Honza" Černocký¹, Sanjeev Khudanpur²

¹Speech@FIT, Brno University of Technology, Czech Republic ² Department of Electrical and Computer Engineering, Johns Hopkins University, USA

{imikolov,karafiat,burget,cernocky}@fit.vutbr.cz, khudanpur@jhu.edu

Abstract

A new recurrent neural network based language model (RNN LM) with applications to speech recognition is presented. Results indicate that it is possible to obtain around 50% reduction of perplexity by using mixture of several RNN LMs, compared to a state of the art backoff language model. Speech recognition experiments show around 18% reduction of word error rate on the Wall Street Journal task when comparing models trained on the same amount of data, and around 5% on the much harder NIST RT05 task, even when the backoff model is trained on much more data than the RNN LM. We provide ample empirical evidence to suggest that connectionist language models are superior to standard n-gram techniques, except their high computational (training) complexity.

Index Terms: language modeling, recurrent neural networks, speech recognition

Training Neural Networks without using HMM-Based Alignments

Connectionist Temporal Classification

Calculating the CTC loss for "cat and hat"

hat

Composite HMM for "cat and hat"

and	ae	n	d
cat	k	ae	t
hat	h	ae	t

and

cat

The CTC "<code>Blank</code>" Symbol (eta)

Phoneme HMMs

FSA of permissible CTC strings for "cat and hat"

t : t
: t t
t
t
:
t
•
β
Π
$\overline{\bigcirc}$

Neural Speech Recognition without HMMs (aka End2End ASR)

"Purely" CTC-Based Speech Recognition Architectures

End-to-End Speech Recognition

arXiv

Deep Speech: Scaling up end-to-end speech recognition

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, Andrew Y. Ng

Baidu Research - Silicon Valley AI Lab

The CNN Architecture

The CNN+LSTM Architecture

A Bidirectional LSTM Architecture (Deep Speech)

End-to-End Speech Recognition using Neural Networks with Attention

Applying ideas from machine translation to speech recognition

Attention-Based Speech Recognition

NeurIPS 2015

Attention-Based Models for Speech Recognition								
Jan Chorows University of Wrocław jan.chorowski@ii.uu	ki v,Poland ni.wroc.pl	Dzmitry Bahdanau Jacobs University Bremen, Germany						
Dmitriy Serdyuk Université de Montréal	Kyunghyun C l Université de Mor	ho ntréal	Yoshua Bengio Université de Montréal CIFAR Senior Fellow					

An Encoder-Decoder Architecture with Attention

Summary + Q&A

- Neural Acoustic Models: Waibel et al (1988) to Povey et al (2016)
- Neural Language Models: Nakamura et al (1989) to Sundermeyer et al (2012)
- Connectionist Temporal Classification: Graves (2006)
- CTC-Based Models: Hannun et al (2014) and Graves & Jaitly (2014)
- Attention-Based Models: Chorowski et al (2015)