

Speaker Recognition and Diarization

Paola García, Jesús Villalba, Najim Dehak

Center for Language and Speech Processing Johns Hopkins University

Special Thanks: Lukas Burget, Fei Wu

Goals

• Aim

- To provide an overview of theory and operation of modern lowdimensional speech representations and their application to automatic speaker recognition and speaker diarization
- Participants should gain an introduction to and understanding of:
 - Subspace Representation of Speech Signals
 - Algorithms for Total-Variability Modeling (i-vectors)
 - Discriminative neural network embeddings (x-vectors)
 - Application of subspace representations to automatic speaker recognition and diarization systems

Roadmap

Introduction

- Terminology, tasks, and framework

Low-Dimensional Representation

- Sequence of features: GMM
- Low-dimensional vectors: i-vectors
- Processing i-vectors: inter-session variability compensation and scoring
- DNN i-vectors
- BNF i-vectors
- X-vectors
- Applications
 - Speaker verification
 - Speaker diarization

Roadmap

Introduction

- Terminology, tasks, and framework

Low-Dimensional Representation

- Sequence of features: GMM
- Low-dimensional vectors: i-vectors
- Processing i-vectors: compensation and scoring
- DNN i-vectors
- BNF i-vectors
- X-vectors
- Applications
 - Speaker verification
 - Speaker diarization

Extracting Information from Speech

Identification

- Determine whether a test speaker matches one of a set of known speakers
- One-to-many mapping
- Often assumed that unknown voice must come from a set of known speakers – referred to as closed-set identification

Verification/Authentication

- Determine whether a test speaker matches a specific speaker
- One-to-one mapping
- Unknown speech could come from a large set of unknown speakers – referred to as open-set verification
- Adding "unknown class" option to closed-set identification gives open-set identification

Diarization Segmentation and Clustering

- Diarization answers the question: Who speaks when?
- Involves:
 - Determine when a speaker change has occurred in the speech signal (segmentation)
 - Group together speech segments corresponding to the same speaker (clustering)
- Prior speaker information may or may not be available

Speech Modalities

Application dictates different speech modalities:

Text-dependent

Text-independent

- Recognition system knows text spoken by person
- Examples: fixed phrase, prompted phrase
- Used for applications with strong control over user input
- Knowledge of spoken text can improve system performance

- Recognition system does not know text spoken by person
- Examples: User selected phrase, conversational speech
- Used for applications with less control over user input
- More flexible system but also more difficult problem
- Speech recognition can provide knowledge of spoken text

Framework for Speaker/Language Recognition Systems

JSALT19, CLSP, JHU

Roadmap

- Introduction
 - Terminology, tasks, and framework

Low-Dimensional Representation

- Sequence of features: GMM
- Low-dimensional vectors: i-vectors
- Processing i-vectors: compensation and scoring
- DNN i-vectors
- BNF i-vectors
- X-vectors
- Applications
 - Speaker verification
 - Speaker diarization

Information in Speech

- Speech is a time-varying signal conveying multiple layers of information
 - Words
 - Speaker
 - Language
 - Emotion
- Information in speech is observed in the time and frequency domains

Feature Extraction from Speech

- A time sequence of features is needed to capture speech information
 - Typically some spectra based features are extracted using sliding window
 20 ms window, 10 ms shift

Frequency (Hz)

Cepstral Features

Modeling Sequence of Features Gaussian Mixture Models

 For most recognition tasks, we need to model the distribution of feature vector sequences

100 vec/sec

Modeling Sequence of Features Gaussian Mixture Models

 For most recognition tasks, we need to model the distribution of feature vector sequences

• In practice, we often use Gaussian Mixture Models (GMMs).

Gaussian Mixture Models

A GMM is a weighted sum of Gaussian distributions

$$p(\vec{x} \mid \lambda_s) = \sum_{i=1}^{M} p_i b_i(\vec{x})$$

$$\lambda_{s} = (p_{i}, \vec{\mu}_{i}, \Sigma_{i})$$

 p_i = mixture weight (Gaussian prior proability) $\vec{\mu}_i$ = mixture mean vector Σ_i = mixture covariance matrix

$$\Sigma_i = mixture covariance matrix$$

$$b_i(\vec{x}) = \frac{1}{(2\pi)^{D/2} |\Sigma_i|^{1/2}} \exp(-\frac{1}{2}(\vec{x} - \vec{\mu}_i)' \Sigma_i^{-1}(\vec{x} - \vec{\mu}_i))$$

Gaussian Mixture Models Log Likelihood

- To build a GMM, we need to do two things
 - 1 Compute the likelihood of a sequence of features given a GMM
 - 2 Estimate the parameters of a GMM given a set of feature vectors

Gaussian Mixture Models Log Likelihood

- To build a GMM, we need to do two things
 - 1 Compute the likelihood of a sequence of features given a GMM
 - 2 Estimate the parameters of a GMM given a set of feature vectors
- If we assume independence between feature vectors in a sequence, then we can compute the likelihood as

$$p(\vec{x}_1,...,\vec{x}_N \mid \lambda) = \prod_{n=1}^N p(\vec{x}_n \mid \lambda)$$

Gaussian Mixture Models Log Likelihood

- Using a GMM involves two things:
 - 1 Compute the likelihood of a sequence of features given a GMM
 - 2 Estimate the parameters of a GMM given a set of feature vectors
- If we assume independence between feature vectors in a sequence, then we can compute the likelihood as

$$p(\vec{x}_1,...,\vec{x}_N \mid \lambda) = \prod_{n=1}^N p(\vec{x}_n \mid \lambda)$$

Usually written as log likelihood

$$\log p(\vec{x}_1, ..., \vec{x}_N | \lambda) = \sum_{n=1}^N \log p(\vec{x}_n | \lambda)$$
$$= \sum_{n=1}^N \log \left(\sum_{i=1}^M p_i b_i(\vec{x}_n) \right)$$

Gaussian Mixture Models Parameter Estimation

GMM parameters are estimated by maximizing the likelihood given a set of training vectors

$$\lambda^* = \arg \max_{\lambda} \sum_{n=1}^{N} \log p(\vec{x}_n \mid \lambda)$$

Gaussian Mixture Models Parameter Estimation

GMM parameters are estimated by maximizing the likelihood of on a set of training vectors

$$\lambda^* = \arg \max_{\lambda} \sum_{n=1}^{N} \log p(\vec{x}_n \mid \lambda)$$

 Setting the derivatives with respect to model parameters to zero and solving

$$Pr(i | \vec{x}) = \frac{p_i b_i(\vec{x})}{\sum_{j=1}^{M} p_j b_j(\vec{x})} \qquad p_i = \frac{1}{N} \sum_{n=1}^{N} Pr(i | \vec{x}_n)$$

$$\vec{\mu}_i = \frac{1}{n_i} \sum_{n=1}^{N} Pr(i | \vec{x}_n) \vec{x}_n$$

$$n_i = \sum_{n=1}^{N} Pr(i | \vec{x}_i) \qquad \sum_i = \frac{1}{n_i} \sum_{n=1}^{N} Pr(i | \vec{x}_n) \vec{x}_i \vec{x}_i' - \vec{\mu}_i \vec{\mu}_i'$$

Gaussian Mixture Models Expectation Maximization (EM) E-Step

<u>M-Step</u>

Probabilistically align vectors to model

Update model parameters

Detection System GMM-UBM

• Realization of log-likelihood ratio test from signal detection theory

- GMMs used for both target and background model
 - Target model trained using enrollment speech
 - Background model trained using speech from many speakers (often referred to as Universal Background Model – UBM)

MAP Adaptation

- Target model is often trained by adapting from background model
 - Couples models together and helps with limited target training data
- Maximum A Posteriori (MAP) Adaptation (similar to EM)
 - Align target training vectors to UBM
 - Accumulate sufficient statistics
 - Update target model parameters with smoothing to UBM parameters
- Adaptation only updates parameters representing acoustic events seen in target training data
 - Sparse regions of feature space filled in by UBM parameters
- Side benefits
 - Keeps correspondence between target and UBM mixtures (important later)
 - Allows for fast scoring when using many target models (top-M scoring)

Adapted GMMs

 Probabilistically align target training data into UBM mixture states

Adapted GMMs Mean-only adaptation

Probabilistically align target ۲ training data into UBM mixture states

- Accumulate sufficient statistics from probabilistic alignment
 - Mean-only adaptation empirically found to be better

UBM

Adapted GMMs Mean-only adaptation

- Probabilistically align target training data into UBM mixture states
- Accumulate sufficient statistics from probabilistic alignment
 - Mean-only adaptation empirically found to be better
- Update target model parameters using sufficient statistics and adapt parameter (α)
 - Relevance factor r controls rate of adaptation
 - $r \rightarrow 0$, MAP $\rightarrow EM$
 - $r \rightarrow \infty$. No adaptation

 $\vec{\mu}_i = \alpha_I E_i(\vec{x}) + (1 - \alpha_I) \vec{\mu}_i^{ubm}$

GMM-UBM Recap

The story of i-vectors begins...

Johns Hopkins University The Center for Language and Speech Processing 2008

Roadmap

- Introduction
 - Terminology, tasks, and framework

Low-Dimensional Representation

- Sequence of features: GMM
- Low-dimensional vectors: i-vectors
- Processing i-vectors: compensation and scoring
- DNN i-vectors
- BNF i-vectors
- X-vectors
- Applications
 - Speaker verification
 - Speaker diarization

Total variability model (i-vectors)

• The super-vector mean of the GMM of a given recording is written as

 $\mathbf{M} = \boldsymbol{m} + \mathbf{T}\boldsymbol{w}$

- w standard Normal random (total factors intermediate vector or i-vector)
- m : A supervector mean (can be the UBM-GMM)
- **T** : low rank Total variability matrix

$$\begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_1 \\ \mu_2 \\ \mu_1 \\ \mu_2 \\ \mu_1 \\ \mu_2 \end{bmatrix} = \begin{bmatrix} m_1 \\ m_2 \\ m_1 \\ m_2 \\ m_1 \\ m_2 \end{bmatrix} + \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \\ t_{11} & t_{12} \\ t_{21} & t_{22} \\ t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

Why call it an i-vector?

	μ_{11}	
GMM components: 2048 Feature dimension: 60	μ_{12}	
GMM-SV : 60*2048=122880	μ_{21}	
	μ_{22}	
	μ_{31}	
	,,	

Visual Interpretation of i-vectors

 To obtain robust estimate of an utterance specific GMM, the mean super-vector is constrained to live in a linear high variability subspace with
 High variability subspace

[µ ₁]	$\begin{bmatrix} m_1 \end{bmatrix}$	[t ₁₁ t ₁₂]	
μ ₂	m ₂	t ₂₁ t ₂₂	
μ ₁ =	$\left \begin{array}{c} m_1 \end{array} \right _{+}$	t ₁₁ t ₁₂	$\begin{bmatrix} W_1 \end{bmatrix}$
µ ₂	m ₂	t ₂₁ t ₂₂	W ₂
μ ₁	m ₁	t ₁₁ t ₁₂	
μ ₂	m ₂	t ₂₁ t ₂₂	

W
W ₂

[µ ₁]		[m ₁]		t ₁₁ t ₁₂		
μ ₂		m ₂		t ₂₁ t ₂₂		
μ ₁	=	m ₁	+	t ₁₁ t ₁₂	W ₁	
μ ₂		m ₂		t ₂₁ t ₂₂	W ₂	
μ_1		m ₁		t ₁₁ t ₁₂		
μ_2		m ₂		t ₂₁ t ₂₂		

	⁻ μ ₁	$\begin{bmatrix} m_1 \end{bmatrix}$	└ t ₁₁ t ₁₂	
	μ ₂	m ₂	t ₂₁ t ₂₂	
	μ ₁ =	$\left \begin{array}{c} m_1 \right _+$	t ₁₁ t ₁₂	W
	μ ₂	m ₂	t ₂₁ t ₂₂	W ₂
	μ ₁	m ₁	t ₁₁ t ₁₂	
	μ2	m ₂	t ₂₁ t ₂₂	
I			I	

μ ₁		m ₁		t ₁₁ t ₁₂	
μ ₂		m ₂		t ₂₁ t ₂₂	
μ ₁	=	m ₁	+	t ₁₁ t ₁₂	W
μ ₂		m ₂		t ₂₁ t ₂₂	vv 2
μ ₁		m ₁		t ₁₁ t ₁₂	
μ ₂		m ₂		t ₂₁ t ₂₂	

[µ ₁]		m ₁		t ₁₁ t ₁₂	
µ ₂		m ₂		$t_{21} t_{22}$	
μ ₁	=	m ₁	+	t ₁₁ t ₁₂	
µ ₂		m ₂		t ₂₁ t ₂₂	vv ₂
μ1		m ₁		t ₁₁ t ₁₂	
μ ₂		m ₂		t ₂₁ t ₂₂	

Advantages

Robustness:

 Limiting the adaptation directions of the UBM makes the model more robust to noise, reverberation and other artifacts of the signal

Requires less data than GMM-UBM

- For GMM-UBM, to adapt all the Gaussians the recording needs to be long enough to contain several frames for all the Gaussians.
- For i-vectors, we don't need to have data for all the Gaussians.
 - * Use data from a few Gaussians to estimate w
 - * Use M=m+Tw to get the positions of the unseen Gaussians

Compression:

- We summarize a recording of several MB into a small vector.
- The i-vector is a new feature for other machine learning algorithms

i-vector Calculus

- In practice, the i-vector is computed using the Bayes Theorem:
 - We get the posterior distribution for w as

$$P(w|X) = \frac{P(X|w)P(w)}{P(X)} = \frac{\prod_{t} P(x_t|m + \mathbf{T}w, \Sigma)N(w|0, I)}{P(X)} = \dots = N(w|E[w], l^{-1})$$

- The i-vector is the mean $\widehat{w} = E[w]$ of the posterior distribution
- What is the formula for E[w] and l?

Baum-Welch (Sufficient) Statistics

Gaussian responsibilities

$$\gamma_t(c) = P(c \mid \vec{x}_t, \theta_{\text{UBM}}) = \frac{\pi_c P_c(\vec{x}_t \mid \mu_c, \Sigma_c)}{\sum_{i=1}^C \pi_i P_i(\vec{x}_t \mid \mu_i, \Sigma_i)}$$

- Zeroth Order $N_c(u) = \sum_{t=1}^{L} P(c \mid \vec{x}_t, \theta_{\text{UBM}}) = \sum_t \gamma_t(c)$
- First Order $F_c(u) = \sum_{i=1}^{L} P(c \mid \vec{x}_t, \theta_{\text{UBM}}) \cdot \vec{x}_t = \sum_{i=1}^{L} \gamma_t(c) \cdot \vec{x}_t$
- Centered First order: $\tilde{F}_c(u) = \sum_t \gamma_t(c) \cdot (\vec{x}_t m_c)$

where c = 1, ..., C for each UBM component

Some more notation

$$N(u) = \begin{bmatrix} N_1(u) \cdot I_{F \times F} & 0 & \cdots & 0 \\ 0 & N_2(u) \cdot I_{F \times F} & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \cdots & 0 & N_C(u) \cdot I_{F \times F} \end{bmatrix}$$
F is the dim of MFCC

$$\widetilde{F}(u) = \begin{bmatrix} \widetilde{F}_1(u) \\ \widetilde{F}_2(u) \\ \vdots \\ \widetilde{F}_C(u) \end{bmatrix}$$

The i-vector Calculus

Finally the mean of the w Gaussian Posterior is

$$E[w(u)] = l^{-1}(u)T^{t}\Sigma^{-1}\tilde{F}(u)$$

and covariance matrix

$$\operatorname{cov}(w(u), w(u)) = l^{-1}(u)$$

where

$$l(u) = I + T^{t} \Sigma^{-1} N(u) T$$

Kenny, P., Boulianne, G. and P. Dumouchel. Eigenvoice Modeling with Sparse Training Data. IEEE Transactions on Speech and Audio Processing, 13 May (3) 2005 : 345-359.

The EM Algorithm

- Initialize m and \sum as defined by our UBM covariance matrices
- Pick a desired rank R for the Total Variability Matrix T and initialize this CF x R matrix randomly.
- E-step:
 - For each utterance u, calculate the parameters of the posterior distribution of w(u) using the current estimates of m, T, Σ
- M-step:
 - Update T solving a set of linear equations in which the w(u)'s play the role of explanatory variables

Iterate until parameters / data likelihood converges...

Kenny, P., Boulianne, G. and P. Dumouchel. Eigenvoice Modeling with Sparse Training Data. IEEE Transactions on Speech and Audio Processing, 13 May (3) 2005 : 345-359.

The M-step

• In the M-step we maximize the objective function

$$P(X|\mathbf{T}) \ge Q(\mathbf{T}, \mathbf{T}_o) = \sum_{u} \mathbf{E}[\log P(X_u, w_u|\mathbf{T})|P(w_u|X_u, \mathbf{T}_0)]$$

- Differentiate and isolate T

$$\frac{\partial Q(\mathbf{T},\mathbf{T}_0)}{\partial T} = \mathbf{0} \Longrightarrow \mathbf{T}$$

 Computing T involves solving one linear equation system per Gaussian in the GMM.

Roadmap

- Introduction
 - Terminology, tasks, and framework

Low-Dimensional Representation

- Sequence of features: GMM
- Low-dimensional vectors: i-vectors
- Processing i-vectors: compensation and scoring
- DNN i-vectors
- BNF i-vectors
- X-vectors
- Applications
 - Speaker verification
 - Speaker diarization

Scoring and channel Compensation

• Cosine scoring

$$score = \frac{\langle w_{enroll}, w_{test} \rangle}{\|w_{enroll}\|\|w_{test}\|}$$

- Channel Compensation techniques
 - Linear Discriminant Analysis
 - Within Class Covariance Normalization [Hatch2006]
 - Nuisance Attribute projection [Campbell 2006]

Intersession compensation

• LDA [Dehak 2009,2011]

A is matrix of eigenvectors from $S_b \cdot v = \lambda \cdot S_w \cdot v$

$$S_b = \sum_{j=1}^{S} (w_j - \overline{w})(w_j - \overline{w})^t$$
$$S_w = \sum_{s=1}^{S} \frac{1}{n_s} \sum_{i=1}^{n_s} (w_i^s - w_s)(w_i^s - w_s)^t$$

Probabilistic Linear discriminant Analysis (PLDA)

- Probabilistic version of LDA
- i-vector j of class i is decomposed as a sum of several terms

$$w_{ij} = \mu + \mathbf{V} y_i + \epsilon_{ij}$$

- μ is the class-independent mean of all the i-vectors
- V is low rank matrix defining the inter-class variability space
- $y_i \sim N(0, I)$ are the coordinates of the speaker in the space defined by **V**
- $\epsilon_{ij} \sim N(0, \mathbf{W})$ were W is the intra-class covariance.

PLDA Evaluation

- Evaluation based on Bayesian model comparison
 - Likelihood ratio between two hypothesis:
 - * Probability for enrollment and test i-vectors were generated by the same speaker (have the same y)
 - * Probability for enrollment and test i-vectors were generated by different speakers (have different y)

$$LLR = \log \frac{P(w_1, w_2 | same)}{P(w_1, w_2 | diff)} = \log \frac{\int P(w_1 | y) P(w_2 | y) P(y) dy}{\int P(w_1 | y) P(y) dy \int P(w_2 | y) P(y) dy} = \log \frac{\int N(w_1 | \mu + \mathbf{V}y, W) N(w_2 | \mu + \mathbf{V}y, W) N(y | 0, I) dy}{\int N(w_1 | \mu + \mathbf{V}y, W) N(y | 0, I) dy \int N(w_2 | \mu + \mathbf{V}y, W) N(y | 0, I) dy}$$

– In practice, the LLR is a quadratic equation:

$$LLR = w_1^T A w_2 + w_1^T B w_1 + w_2^T B w_2 + C^T w_1 + C^T w_2 + D$$

– μ , V and W are trained using EM algorithm

Graph Visualization

- Work at exploring behavior of speaker matching for large data set mining (Zahi Karam)
 - Visualization using the Graph Exploration System (GUESS) [Eytan 06]
- Represent segment as a node with connections (edges) to nearest neighbors (3 NN used)
 - NN computed using blind TV system (with and without channel normalization)
- Applied to 5438 utterances from the NIST SRE10 core
 - Multiple telephone and microphone channels
- Absolute locations of nodes not important
- Relative locations of nodes to one another is important:
 - The visualization clusters nodes that are highly connected together
- Colors and shapes of nodes used to highlight interesting phenomena

Colors represent speakers

JSALT19, CLSP, JHU

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic_CH13 Mic_CH02 Mic_CH07 Mic_CH05 \blacktriangle = high VE ■= low VE ●= normal VE ♦=room LDC * =room HIVE

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic_CH13 Mic_CH02 Mic_CH07 Mic_CH05 \blacktriangle = high VE ■= low VE ●= normal VE ♦=room LDC * =room HIVE

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic_CH13 Mic_CH02 Mic_CH07 Mic_CH05 \blacktriangle = high VE ■= low VE ●= normal VE ♦=room LDC * =room HIVE

MIC

=room LDC

* =room HIVE

Females with full blind TV system

Cell phone Landline 215573qqn 215573now Mic_CH08 Mic_CH12 Mic_CH13 Mic_CH02 Mic_CH07 Mic_CH05 \blacktriangle = high VE ■= low VE ●= normal VE ♦=room LDC * =room HIVE

JSALT19, CLSP, JHU

Females with full blind TV system

Roadmap

- Introduction
 - Terminology, tasks, and framework

Low-Dimensional Representation

- Sequence of features: GMM
- Low-dimensional vectors: i-vectors
- Processing i-vectors: compensation and scoring

- DNN i-vectors

- BNF i-vectors
- X-vectors

Applications

- Speaker verification
- Speaker diarization
- Language recognition

DNN posterior i-vector system

- DNNs became popular
- Not an easy task for end-to-end system
 - DNN need fixed classes and lots of data per class
 - In speaker recognition task doesn't match theses condition
 - * Test speakers are different from training speakers
 - * Test speakers have few data (in the order of seconds).
- An alternative way was to use what we knew from ASR
 - Indirect method that can improve the system
- New idea
 - DNN as employed in ASR can be used to refine the Gaussian responsibilities in the GMM-UBM.
 - Supervised partitioning of the feature space vs. unsupervised

DNN posterior motivation

- In practice, any recording distribution is close to the UBM
- So, when adapting UBM to an utterance the Gaussians needs to move just a bit.
- To simplify the i-vector estimation, we let UBM decide the alignments of frames to GMM components.

DNN posterior motivation

i-vector can be analytically calculated from the sufficient statistics

GMM Supervised by DNN

- How good are the clusters defined by GMM-UBM components?
- Would not be clusters corresponding to phonemes more reasonable?
- DNN trained for phoneme recognition decides the alignment of frames to clusters (GMM components). The rest is as before.

DNN posterior i-vectors system

- Compute senone posteriors from MFCC
- Use those posterior as Gaussian responsibilities to compute sufficient statistics

Roadmap

- Introduction
 - Terminology, tasks, and framework
- Low-Dimensional Representation
 - Sequence of features: GMM
 - Low-dimensional vectors: i-vectors
 - Processing i-vectors: compensation and scoring
 - DNN i-vectors
 - BNF i-vectors
 - X-vectors
- Applications
 - Speaker verification
 - Speaker diarization

Bottleneck Features

Use DNN to compute a phoneme discriminant feature

• It is a small (bottleneck) intermediate layer of a DNN trained to recognize phonetic units (senones)

Bottleneck i-vector system

- Once the DNN bottleneck features (BNF) are computed, the rest is as before.
 - BNF allows unsupervised GMM to get a better partitioning of the feature space.
 - More efficient than DNN-posteriors i-vectors because it can use less Gaussian components than the number of senones.

Different flavors are possible

- BNF only
- Concatenate BNF + MFCC
- BNF only to compute responsibilities, MFCC to accumulate first order sufficient statistics.

Roadmap

- Introduction
 - Terminology, tasks, and framework
- Low-Dimensional Representation
 - Sequence of features: GMM
 - Low-dimensional vectors: i-vectors
 - Processing i-vectors: compensation and scoring
 - DNN i-vectors
 - BNF i-vectors
 - X-vectors

Applications

- Speaker verification
- Speaker diarization

x-Vectors

- Motivation:
 - BNF and DNN i-vectors are still a linear generative model
 - * DNN only used indirectly to improve frame alignments
 - Can we improve performance by using non-linear models?
 - DNN trained to discriminate between speakers to produce better embeddings.
- Objective:
 - The objective function is cross-entropy

$$L = -\sum_{i=1}^{M} \log P\left(y_i = t_i | \mathbf{X}_i\right)$$

- At the input we have feature sequences of variable length (MFCCs, Mel filter-banks, Bottleneck features)
- The output of the DNN is the posterior probability for the speaker labels
- Requires more training data than i-vectors:
 - * Otherwise it over-fits to the training speakers
 - * Augmenting training data by adding noise and reverberation improves

x-Vectors

- This DNN has three parts:
 - Encoder: extracts frame level representations
 - Pooling: pooling layer that computes mean and standard deviation.
 - Classification: predicts posterior probabilities for the target speakers
- Once trained:
 - The softmax layer is removed.
 - Embeddings are extracted from the layers after the pooling layer.
 - Typically x-vectors are extracted from the first layer after pooling before applying the non-linear activation function

CENTER FOR LANGUAGE

AND SPEECH PROCESSING

JSALT19, CLSP, JHU

t-25

06/18/2019

* Has the ability to capture features in a wider window as it gets deeper

t+25

- TDNN encoder
- **TDNN x-Vector**

X-vector inside

F-TDNN x-Vector

- Factorized TDNN with skip connections
 - Factorizes the weight matrix of each TDNN layer into the product of two low-rank matrices.
 - Reduces network parameters
 - First factor constrained to be semiorthogonal
 - Matrix rows orthogonal between them
 - Assures that neurons in the bottleneck don't learn redundant information.
 - Skip-connections
 - Between bottleneck representations
 - Representations are concatenated instead of added
 - Allows to make network deeper by alleviating vanishing gradients

JSALT19, CLSP, JHU

ResNet x-Vector

- TDNN encoders are replaced by residual networks (ResNet)
- The MFCCs are replaced by log-Mel filter banks
- ResNet are two-dimensional convolutions (2D-CNN)
- The residual block composed of two 2D convolutions separated by a ReLU
- The input to the block is added to the output

x-Vector Temporal Pooling

- Pooling methods
 - * Mean+Standard Deviation:
 - Standard method computes mean and stddev of frame level representations
 over time
 - * Learnable dictionary encoder (LDE)
 - Frame level representations are modeled as a GMM (Similar to i-vectors)
 - The probability that frame t belongs to Gaussian component c is

$$w_{t,c} = \frac{\exp(-s_c \|\mathbf{x}_t - \boldsymbol{\mu}_c\|^2 + b_c)}{\sum_{c=1}^{C} \exp(-s_c \|\mathbf{x}_t - \boldsymbol{\mu}_c\|^2 + b_c)}$$

- Compute one embedding per component by averaging the frames of that component
- Concatenate component embeddings to form a super-vector

$$\mathbf{e}_{c} = rac{\sum_{t=1}^{T} w_{t,c}(\mathbf{x}_{t} - \boldsymbol{\mu}_{c})}{\sum_{t=1}^{T} w_{t,c}}$$
 $c = 1, \dots, C$

$$\mathbf{e} = (\mathbf{e}_1^{\mathrm{T}}, \dots, \mathbf{e}_C^{\mathrm{T}})^{\mathrm{T}}$$

- * Multi-head Attention
 - Similar to LDE but weights are normalized to sum up to one over time.
 - Attends to the most important frames in the sequence for cluster c

$$w_{t,c} = \frac{\exp(-s_c \|\mathbf{x}_t - \boldsymbol{\mu}_c\|)}{\sum_{t=1}^T \exp(-s_c \|\mathbf{x}_t - \boldsymbol{\mu}_c\|)}$$

X-vector

CENTER FOR LANGUAGE AND SPEECH PROCESSING

- Backend:
 - LDA,
 - Centering, whitening
 - length normalization
 - PLDA scoring
- Same back-end as the one used for i-vectors.

- Low dimensional representation simplifies life
 - Mixture of Gaussians
 - Supervector of Gaussian mean components
 - Low-dimensional i-vector
- i-Vector transforms a sequence of features into a unique vector
- Easy way to compare between sequences of features with different duration
- Classical pattern recognition approaches like LDA, PLDA or SVM can be used to compare i-vectors
- Adding DNNs in the i-vector pipeline produces a better clustering of the feature space of the GMM-UBM and improves performance.
- X-vectors are now the state-of-the-art.

Roadmap

- Introduction
 - Terminology, tasks, and framework
- Low-Dimensional Representation
 - Sequence of features: GMM
 - Low-dimensional vectors: i-vectors
 - Processing i-vectors: compensation and scoring
 - DNN i-vectors
 - BNF i-vectors
 - X-vectors

Applications

- Speaker verification
- Speaker diarization

Speaker Verification

Speaker Verification Problem

Speaker Verification

Speaker Verification: Accepts or rejects a user based on his speech signal.

➢ Input:

- ➢ Speech signal X
- \succ Claimed identity i

Output:

$$d = \begin{cases} \text{accept} & \phi(X,i) > \tau_i; \\ \text{reject} & \text{otherwise} \end{cases}$$

 $\phi(X,i)$ is a confidence measure

Score Distribution

- ♦ Binary classifier with the following confidence measures (*scores*).
- ♦ The rightmost Gaussian
 belongs to the *target speaker*.
- ♦ The leftmost Gaussian
 belongs to the *imposter speaker*.
- ♦ Key point: a decision threshold.

Each accredited speaker has its own model, known as target model, λ_i , prototype of his/her speech.

And an imposter model λ_i is the impostor's prototype. When all the imposters share the same model (they are "tied"), called: UBM Universal Background Model.

Log-Likelihood Ratio

The likelihood ratio provides a tool to perform a statistical decision (score function in log domain):

Hypothesis Testing

Hypotheses Testing is a suitable framework for detection problems:

 \succ H0, the null hypothesis, accepts the identity of the speaker as *legitimate*.

> H1, the alternative hypothesis, rejects the user (*imposter*).

What if something goes wrong in the system?

Types of Errors

For a classifier, there are two sources of statistical errors:

If H0 is rejected when H0 is actually from the speaker (reject a legitimate user), false negative, miss or false rejected.

If it fails to reject H1, when H1 is false (accepts an impostor), false positive (FP), false alarm or false accepted.

Types of Errors

those errors.

The tradeoff between the errors depend on the application.

Speaker verification system performances

00000

ROC vs DET curves

Metrics

i-vector System

GMM i-vector vs DNN i-vector

- NIST SRE10, five conditions, females
- 2048 component UBM, 600 dimensional i-vector
- DNN trained on 250 hours of Fisher

	Conditio	n 1 (int-int sam	ne mic.)	Condition 2 (int-int diff. mic.)			
	minDCF10	minDCF08	EER (%)	minDCF10	minDCF08	EER (%)	
GMM-UBM	0.183	0.051	1.30	0.311	0.088	1.94	
DNN-UBM	0.142 0.032		0.77	0.205	0.053	1.32	

	Со	ndition 3 (int-te	el)	Condition 4 (int-mic)			
	minDCF10	minDCF08	EER (%)	minDCF10	minDCF08	EER (%)	
GMM-UBM	0.316 0.091		2.07	0.223	0.050	1.00	
DNN-UBM	0.204 0.049		1.18	0.130	0.024	0.53	

	Condition 5 (tel-tel)						
	minDCF10	minDCF08	EER (%)				
GMM-UBM	0.390	0.110	2.21				
DNN-UBM	0.209	0.056	1.21				

GMM/BNF/DNN i-vector

- NIST SRE10, condition 5, females
- 2048 component UBM, 600 dimensional i-vector
- Multilingual BNF is used with 80 dim. bottleneck

Alignment	Suff. stats	Fea. dim	minDCF1 0	minDCF08	EER (%)
MFCC	MFCC	60	0.423	0.108	2.13
BN	BN	80	0.225	0.067	1.68
BN – full cov.	BN – full cov.	60	0.201	0.057	1.24
BN+MFCC	BN+MFCC	140	0.159	0.048	1.06

• SBN architecture with 80 dim. bottleneck trained on 250h of Fisher

DNN poster.	MFCC	60	0.209	0.056	1.21
BN+MFCC	BN+MFCC	140	0.140	0.041	0.94

• BN+MFCC outperform the DNN alignment approach.

X-vectors

• Some results...

Systems	SRE	E18 DEV C	CMN2	SRE18 EVAL CMN2			
	EER	Min Cp	Act Cp	EER	Min Cp	Act Cp	
GMM-i-vector	10.37	0.664	0.685	11.85	0.723	0.725	
BNF-i-vector	10.51	0.639	0.657	11.69	0.71	0.712	
TDNN(8.5M)-sre16	7.2	0.505	0.51	7.93	0.515	0.518	
TDNN(8.5M)	5.76	0.384	0.392	6.68	0.446	0.447	
E-TDNN(10M)	5.88	0.392	0.398	5.97	0.409	0.41	
F-TDNN(11M)	4.96	0.326	0.33	5.3	0.37	0.371	
F-TDNN(17M)	5.1	0.355	0.372	4.95	0.346	0.349	
ResNet(8M)-MHAtt-SPLDA	5.46	0.326	0.34	5.64	0.392	0.395	
ResNet(8M)-MHAtt-DPLDA	5.64	0.319	0.337	6.81	0.499	0.524	

X-vectors

System	SITW EVAL CORE			SITW EVAL CORE-MULTI			SRE18 DEV VAST			SRE18 EVAL VAST		
	EER	Min Cp	Act Cp	EER	Min Cp	Act Cp	EER	Min Cp	Act Cp	EER	Min Cp	Act Cp
16 kHz systems												
BNF-i-vector	5.77	0.257	0.262	6.02	0.26	0.26	11.52	0.185	0.222	17.46	0.508	0.571
TDNN(8.5M)	3.4	0.185	0.188	3.86	0.191	0.191	3.7	0.337	0.424	12.06	0.468	0.578
E-TDNN(10M)	2.74	0.162	0.165	3.2	0.171	0.172	3.7	0.305	0.305	13.02	0.442	0.527
F-TDNN(9M)	2.39	0.144	0.15	2.79	0.153	0.153	4.53	0.309	0.383	11.75	0.412	0.508
F-TDNN(10M)	2.37	0.135	0.138	2.86	0.145	0.146	3.7	0.337	0.42	10.79	0.403	0.503
F-TDNN(11M)	2.05	0.137	0.14	2.57	0.145	0.147	3.7	0.305	0.387	11.11	0.409	0.487
F-TDNN(17M)	1.89	0.124	0.126	2.33	0.135	0.137	7	0.37	0.498	12.06	0.388	0.474
ResNet(8M)	3.01	0.187	0.191	3.47	0.198	0.198	3.7	0.412	0.498	11.43	0.464	0.554
8 kHz systems												
GMM-i-vector	8.22	0.384	0.393	8.67	0.386	0.387	18.52	0.486	0.568	20.32	0.543	0.75
BNF-i-vector	7.8	0.353	0.365	8.42	0.352	0.354	14.81	0.412	0.568	17.9	0.533	0.638
TDNN(8.5M)-sre16	5.21	0.278	0.284	5.6	0.287	0.287	11.11	0.3	0.691	13.33	0.475	0.636
TDNN(8.5M)	3.58	0.197	0.202	3.93	0.206	0.207	7.41	0.296	0.535	12.93	0.431	0.596
E-TDNN(10M)	2.9	0.172	0.175	3.29	0.183	0.183	7.41	0.337	0.461	12.6	0.41	0.561
F-TDNN(11M)	2.84	0.158	0.163	3.18	0.165	0.166	7.41	0.222	0.461	12.06	0.385	0.52
F-TDNN(17M)	2.46	0.148	0.151	2.83	0.155	0.156	4.53	0.259	0.383	11.75	0.377	0.514

Roadmap

CENTER FOR LANGUAGE AND SPEECH PROCESSING

- Introduction
 - Terminology, tasks, and framework
- Low-Dimensional Representation
 - Sequence of features: GMM
 - Low-dimensional vectors: i-vectors
 - Processing i-vectors: compensation and scoring
 - DNN i-vectors
 - BNF i-vectors
 - X-vectors

Applications

- Speaker verification
- Speaker diarization

Speaker Diarization

Audio Diarization

The task of marking and categorizing the different audio sources within an unmarked audio sequence

Speaker Diarization

"Who is speaking when?"

Segmentation

- Determine when a speaker change has occurred in the speech signal
- Clustering
 - Group together speech segments from the same speaker

- As a pre-processing step for other downstream applications
 - Annotate transcripts with speaker changes and labels
 - Provide an overview of speaker activity
 - Adapt a speech recognition system
 - Do speaker detection on multi-speaker speech

Diarization Error Measures

- Diarization Error Rate (DER)
 - Miss (speaker in reference but not in hypothesis)
 - False Alarm (speaker in hypothesis but not in reference)
 - Speaker Confusion (confusing one speaker's speech as from another)
- Indirect Measures
 - Effect on the results of a speaker detection system / speech recognizer

System Diagram

i-vector Speaker Diarization

Advantages

 We have seen how well factor analysis-based methods perform in speaker recognition.

Difficulties

- Decisions made on very short (~1 second) speech segments
- Poor speaker change detection can corrupt speaker models
Speaker Diarization System

i-vector Visualization

i-vector Visualization

Lingering Issues

- Diarization of speech containing more than two speakers
 - How can we estimate the number of speakers?

Overlapped speech segments

- Though not scored, we still have to deal with them during diarization
- Not much previous work on this (Boakye, 2008)

The Problem With Overlap

The Problem With Overlap

Estimating Speaker Number

- Proposed solution: Variational Bayes (VB)
 - Fabio Valente (2005), Patrick Kenny (2010)
- Advantages of being Bayesian
 - In theory, Bayesian methods are not subject to the over-fitting that plagues maximum likelihood methods
- Variational Approximation
 - Hypothesize K speakers
 - Two hidden variables:
 - * i-vector: w_i i-vector for speaker j
 - * Speaker labels:
 - θ_i one-hot K dimensional vector for frame i
 - $\theta_{ij} = 1$ if frame i belongs to speaker j
 - Joint posterior of w and θ is intractable:
 - * Factorize the posterior as the product of two variational distributions
 - $P(\theta, w|X) \approx q(\theta)q(w)$
 - Solve $q(\theta)$ and q(w) iteratively
 - As we iterate some speakers don't get frames assigned and they can be removed

A Quick Visualization

Another Visualization

CALLHOME Results

• Callhome:

- CTS collection between familiar speakers
- Conversations recorded in a single channel
- Between 2 and 7 speakers
- Languages: Arabic, English, German, Japanese, Mandarin and Spanish

	Unsupervised Calibration		Oracle Calibration		
	AHC clustering	+VB resegm	AHC clustering	+VB resegm	
GMM i-vectors	13.5	11.5	13.3	11.0	
DNN i-vectors	12.9	10.3	12.6	10.2	

D. Garcia-Romero, D. Snyder, G. Sell, D. Povey, and A. Mccree, "Speaker Diarization Using Deep Neural Network Embeddings," in *Proceedings of ICASSP 2017*, pp. 4930–4934.

- Several problems: annotations, noisy data

Dihard results

- Who speaks when? •
 - Children's speech and speech in the wild (YouTube) is now the main problem.

speech

While speaking •

Diarization: true example

JSALT19, CLSP, JHU

Dihard evolution

Distization Mathed	Track 1 DER		Track 2 DER	
	Dev Set	Eval Set	Dev Set	Eval Set
Declare there's only 1 speaker!	36.0%	39.0%	48.7%	55.9%
"Out of the Box" (CALLHOME)	26.7%	31.6%	40.9%	50.8%
i-vectors, 16 kHz data, no VB	21.7%	28.1%	33.7%	40.4%
x-vectors, 16 kHz data, no VB	20.0%	25.9%	31.8%	39.4%
i-vectors, 16 kHz data, with VB*	19.7%	25.1%	31.3%	37.4%
x-vectors, 16 kHz data, with VB*	18.2%	23.7%	29.8%	37.3%
(i+x)-vector fusion, 16 kHz, VB*	18.2%	24.0%	30.3%	37.2%

Observations

Factor analysis-based approach to speaker diarization

- Inspired by Total Variability and i-vectors
- Attained state of the art results in Callhome dataset.
- X-vector becoming the state-of-the-art in diarization.

Unsolved Issues

- Detecting and removing overlapped speech segments
- Better estimation of the number of speakers

* Variational Bayes overestimates number of speakers in many cases

Final Words

- You have learned
 - Subspace Representation of Speech Signals
 - * i-vectors
 - * BNF i-vector
 - * DNN i-vector
 - * X-vectors
 - * PLDA
 - Application of subspace representations to
 - * Speaker recognition
 - * diarization systems
 - Take a look at Kaldi recipes to learn more:
 - * Sre08, sre10, sre16, sitw
 - * Callhome
 - * Dihard

References

- Dehak, N " Discriminative and Generative Approaches for Long- and Short-Term Speaker Characteristic Modeling : Application to Speaker Verification " PhD thesis, ETS, Montreal 2009.
- Dehak, N., Kenny, P., Dumouchel. P., Dehak, R., Ouellet. P., «Front-end factor analysis for speaker verification » in IEEE Transactions on Audio, speech and Language Processing 2011.
- Najim Dehak, Réda Dehak, Patrick Kenny, Niko Brummer, Pierre Ouellet and Pierre Dumouchel, Support Vector Machine versus Fast Scoring in the Low-Dimensional Total Variability Space for Speaker Verification. In Proc INTERSPEECH 2009, Brighton, UK, September 2009.
- Kenny, P., Ouellet, P., Dehak, N., Gupta, V. and Dumouchel, P. "A Study of Inter-Speaker Variability in Speaker Verification" IEEE Transactions on Audio, Speech and Language Processing, 16 (5) July 2008 : 980-988.
- D. Reynolds, T. Quatieri, and R. Dunn, "Speaker verification using adapted Gaussian mixture models," Digital Signal Processing, vol. 10, pp. 19–41, 2000.
- Adar, Eytan, "GUESS: A Language and Interface for Graph Exploration," CHI 2006
- Z. N. Karam, W. M. Campbell "Graph-Embedding for Speaker Recognition", Submitted to Interspeech 2010

Reference

- Lopez-Moreno I ., et al.: Automatic Language Identification Using Deep Neural Networks. In: Proceeding of ICASSP 2014
- Y Lei, N Scheffer, L Ferrer, M McLaren: A novel scheme for speaker recognition using a phonetically-aware deep neural network, ICASSP 2014.
- Matějka et al., "Neural network bottleneck features for language identification," in IEEE Odyssey: The Speaker and Language Recognition Workshop, Joensu, Finland, 2014.
- S. Yaman, J. Pelecanos, and R. Sarikaya: Bottleneck Features for Speaker Recognition, Odyssey 2012.
- F. Grézl, E. Egorova, and M. Karafiát, "Further investigation into multilingual training and adaptation of stacked bottle-neck neural network structure," in Spoken Language Technology Workshop (SLT), South Lake Tahoe, Nevada USA, 2014
- Fér Radek, Matějka Pavel, Grézl František, Plchot Oldřich and Černocký Jan: Multilingual Bottleneck Features for Language Recognition. In: Proceedings of Interspeech 2015. Dresden, 2015.
- D. Garcia-Romero, D. Snyder, G. Sell, D. Povey, and A. Mccree, "Speaker Diarization Using Deep Neural Network Embeddings," in *Proceedings of ICASSP* 2017, pp. 4930–4934.

Reference

- Snyder, D., Garcia-Romero, D., Povey, D., & Khudanpur, S. (2017). Deep Neural Network Embeddings for Text-Independent Speaker Verification. In *Proceedings* of INTERSPEECH 2017 (pp. 999–1003). Stockholm, Sweden: ISCA.
- Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., & Khudanpur, S. (2018). X-Vectors : Robust DNN Embeddings for Speaker Recognition. In *Proceedings of ICASSP 2018* (pp. 5329–5333). Alberta, Canada: IEEE.
- Villalba, J., Chen, N., Snyder, D., Garcia-romero, D., Mccree, A., Sell, G., ... Dehak, N. (2018). *The JHU-MIT System Description for NIST SRE18*.
- Sell, G., Snyder, D., Mccree, A., Garcia-Romero, D., Villalba, J., Maciejewski, M., ... Khudanpur, S. (2018). Diarization is Hard: Some Experiences and Lessons Learned for the JHU Team in the Inaugural DIHARD Challenge. In *Proceedings of INTERSPEECH 2018* (pp. 2808--2812). Hyderabad, India.
- Garcia-Romero, D., Snyder, D., Sell, G., Povey, D., & Mccree, A. (2017). Speaker Diarization Using Deep Neural Network Embeddings. In *Proceedings of ICASSP 2017* (pp. 4930–4934). New Orleans, LA, USA: IEEE.
- Cai, W., Chen, J., & Li, M. (2018). Exploring the Encoding Layer and Loss Function in End-to-End Speaker and Language Recognition System. In *Odyssey* 2018 Les Sables d'Olonne, France: ISCA.