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Goals ( AND SPEECH PROCESSING

 Aim
— To provide an overview of theory and operation of modern low-

dimensional speech representations and their application to
automatic speaker recognition and speaker diarization

- Participants should gain an introduction to and
understanding of:

— Subspace Representation of Speech Signals
— Algorithms for Total-Variability Modeling (i-vectors)
— Discriminative neural network embeddings (x-vectors)

— Application of subspace representations to automatic speaker
recognition and diarization systems

JSALT19, CLSP, JHU 06/18/2019
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Roadmap )+ D SPEECH PROCESSING
- Introduction
— Terminology, tasks, and framework

- Low-Dimensional Representation
— Sequence of features: GMM
— Low-dimensional vectors: i-vectors

— Processing i-vectors: inter-session variability compensation and
scoring

— DNN i-vectors
— BNF i-vectors
— X-vectors
- Applications
— Speaker verification
— Speaker diarization

JSALT19, CLSP, JHU 06/18/2019
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Roadmap )+ D SPEECH PROCESSING
- Introduction
— Terminology, tasks, and framework
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Extracting Information from Speech ( AND SPEECH PROCESSIG

Goal: Automatically extract information
transmitted in speech signal

Speech
Recognition Words
“‘How are you?”

Language

Recognition Language Name
English

Speaker

Recognition Speaker Name

James Wilson

Speaker Who Speaks When

Diarization Bob: Meeting tonight?
Alice: yes!  oen8010

JSALT19, CLSP, JHU
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Identification ( AND SPEECH PROCESSING

- Determine whether a test speaker matches one of a set of
known speakers

* One-to-many mapping

« Often assumed that unknown voice must come from a set of
known speakers — referred to as closed-set identification

Whose voice is this?

JSALT19, CLSP, JHU 06/18/2019
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Verification/Authentication ( AND SPEECH PROCESSING

- Determine whether a test speaker matches a specific
speaker

- One-to-one mapping

- Unknown speech could come from a large set of unknown
speakers — referred to as open-set verification

- Adding “unknown class” option to closed-set identification
gives open-set identification

Is this Bob’s voice?

JSALT19, CLSP, JHU 06/18/2019



Diarization
Segmentation and Clustering

"%, CENTER FOR LANGUAGE
)5 MNDSPEECHPROCESSIG

- Diarization answers the question: Who speaks when?

* Involves:

— Determine when a speaker change has occurred in the speech signal

(segmentation)

— Group together speech segments corresponding to the same speaker

(clustering)

- Prior speaker information may or may not be available

Where are speaker
changes?

JSALT19, CLSP, JHU

Which segments are from
the same speaker?
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Speech Modalities ( AND SPEECH PROCESSING

Application dictates different speech modalities:

Text-independent

* Recognition system knows
text spoken by person

* Examples: fixed phrase,
prompted phrase

* Used for applications with
strong control over user input

* Knowledge of spoken text can
improve system performance

JSALT19, CLSP, JHU

Recognition system does not know text
spoken by person

Examples: User selected phrase,
conversational speech

Used for applications with less control
over user input

More flexible system but also more
difficult problem

Speech recognition can provide
knowledge of spoken text

06/18/2019
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Framework for Speaker/Language ( AND SPEECH PROCESSING
Recognition Systems

Training Phase
Model for each

Known train
!”” : speaker
Feature - Training .‘ ; :
extraction algorithm
A
Algorithm
parameters

Recognition Phase

? Feature | Recognition Decision
) extraction ! algorithm

Unknown test

Speaker/language set _I

JSALT19, CLSP, JHU 06/18/2019
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Roadmap )+ D SPEECH PROCESSING

- Low-Dimensional Representation
— Sequence of features: GMM

JSALT19, CLSP, JHU 06/18/2019
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Information in Speech ( AND SPEECH PROCESSING

- Speech is a time-varying signal conveying multiple
layers of information
— Words
— Speaker
— Language
— Emotion

- Information in speech is observed in the time and
frequency domains
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Feature Extraction from Speech ( AND SPEECH PROCESSING

- A time sequence of features is needed to capture speech
information

— Typically some spectra based features are extracted using sliding
window - 20 ms window, 10 ms shift

Fourier

> Magnitude S
Transform / I)\ML,\

Produces time-frequency evolution of th€ spectruy
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Cepstral ( ANDSPEEG PROCESSNG
Features :

T

Fourier ‘ , R Cosine
Transform | _Magnitude - I/W)OO<\ Log() transform

|
¢+ OO ONW W
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Modeling Sequence of Features ( AND SPEECH PROCESSING
Gaussian Mixture Models

- For most recognition tasks, we need to model the
distribution of feature vector sequences
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Modeling Sequence of Features ( AND SPEECH PROCESSING
Gaussian Mixture Models

- For most recognition tasks, we need to model the
distribution of feature vector sequences

iy o = |[]

—_— 1
100 vec/sec
* In practice, we often use Gaussian Mixture Models (GMMSs).
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Gaussian Mixture Models ( AND SPEECH PROCESSING
- A GMM is a weighted sum of Gaussian distributions
M

p(x|A)= Zpibi(x)
i—1

ﬂs :(piaﬁiazi)

p; = mixture weight (Gaussian prior proability)

M, = mixture mean vector

2. = mixture covariance matrix

1
- (272_)D/2 ‘zl

b,(x)

‘1/2 CXp _%()?_ﬁi)'zi_l(f_ﬁi))
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Gaussian Mixture Models ( NP
Log Likelihood
+ To build a GMM, we need to do two things
1 — Compute the likelihood of a sequence of features given a GMM

2 — Estimate the parameters of a GMM given a set of feature
vectors

JSALT19, CLSP, JHU 06/18/2019



Gaussian Mixture Models ( NP
Log Likelihood
+ To build a GMM, we need to do two things
1 — Compute the likelihood of a sequence of features given a GMM

2 — Estimate the parameters of a GMM given a set of feature
vectors

- If we assume independence between feature vectors in
a sequence, then we can compute the likelihood as

N
P&, %y D) =] | PG, 1 2)
n=1

JSALT19, CLSP, JHU 06/18/2019



Gaussian Mixture Models ( NP
Log Likelihood °
- Using a GMM involves two things:
1 — Compute the likelihood of a sequence of features given a GMM

2 — Estimate the parameters of a GMM given a set of feature
vectors

- If we assume independence between feature vectors in
a sequence, then we can compute the likelihood as

N
PG %, 1M =] ] pE, 14)
n=1

- Usually written as log likelihood
N
log p(,,....%, | 4) = Y log p(%, | A)
n=1

M
-1

N
= Elog E pb (%)
n=1 I

JSALT19, CLSP, JHU 06/18/2019
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Gaussian Mixture Models ( AND SPEECH PROCESSING
Parameter Estimation

- GMM parameters are estimated by maximizing the
likelihood given a set of training vectors

N
A =arg maleog p(x |A)
n=1

A

JSALT19, CLSP, JHU 06/18/2019
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Gaussian Mixture Models ( AND SPEECH PROCESSING
Parameter Estimation

- GMM parameters are estimated by maximizing the
likelihood of on a set of training vectors

N
A =arg maXZlog p(x, | 1)
A n=1

- Setting the derivatives with respect to model
parameters to zero and solving

I QY 5=
P= 2 PR

P | )= 2D !
p]bj(f) - _ 1 N Pr(; - \ —
; ‘ui n En=1 r(l |xn)xn
N
l En=l ( | t) Zi — iEJV_IPr(l | ’)_én)xlfl - Al_’iiﬁl"
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Gaussian Mixture Models
Expectation Maximization (EM)

E-Step -

Probabilistically align vectors to model

E Pr(x|1)
ﬂ Pr(x|3)

Pr(l | 5(«:) — Mpibi(x)
2 pb; (%)
Jj=1
N . —_
n, = E Pr(i|X)
Accumulate n=1
sufficient

— N . — —
statistics El- (X)= En=1 Pr(i | xn)xn
N
E(&)=Y Pr(i|%)%,

JSALT19, CLSP, JHU
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) AND SPEECH PROCESSING
M-Step

Update model parameters

X
x X x
@ 0
X
P _in
i N
1 .
u, =—E(X)
n,
1 eyl | o !
2, =_Ei(xx )_‘ui‘ui
n.

1
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Detection System ( ANDSPEECH PROCESSING
GMM-UBM

* Realization of log-likelihood ratio test from signal detection theory

LLR = A =log p(X |target) —log p(X | target)

551, - )?N Target model
o A >80 Accept
Extraction A <60 Reject
Background
model

* GMNMs used for both target and background model
— Target model trained using enrollment speech

— Background model trained using speech from many speakers
(often referred to as Universal Background Model — UBM)

JSALT19, CLSP, JHU 06/18/2019
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MAP Adaptation ( AND SPEECH PROCESSING

Target model is often trained by adapting from
background model

— Couples models together and helps with limited target training data

Maximum A Posteriori (MAP) Adaptation (similar to EM)
— Align target training vectors to UBM
— Accumulate sufficient statistics

— Update target model parameters with smoothing to UBM
parameters

Adaptation only updates parameters representing
acoustic events seen In target training data

— Sparse regions of feature space filled in by UBM parameters

Side benefits

— Keeps correspondence between target and UBM mixtures
(important later)

— Allows for fast scoring when using many target models (top-M
scoring)

JSALT19, CLSP, JHU 06/18/2019
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Adapted GMMs ( & ANDSPEECH PROCESSIG

Target

* Probabilistically align target Pr(i | ¥) = b (X) n <= tainng
training data into UBM mixture

data
states Z p;b;(x) ‘ /
1

s -

JSALT19, CLSP, JHU 06/18/2019
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Adapted GMMs ( AND SPEECH PROCESSIG
Mean-only adaptation

Target
tra|n|ng
XX data

* Probabilistically align target Pr(i | ¥) = Plbz (¥) A
training data into UBM mixture

states ijb (x) ‘

07 -
>

* Accumulate sufficient statistics N
from probabilistic alignment n; = Zn:1 Pr(i|x,)

— Mean-only adaptation empirically . N D= —
found to be better E (X)= anl Pr(i|X,)x,

JSALT19, CLSP, JHU 06/18/2019
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Adapted GMMs ( AND SPEECH PROCESSIG

Mean-only adaptation

Target
* Probabilistically align target Pr(i | ¥) = b (X) A gg;g'ng
training data into UBM mixture -
states Z p;b;(X)
* Accumulate sufficient statistics N
from probabilistic alignment n; = Zn:1 Pr(i|x,)
— Mean-only adaptation empirically .y OV = —
found to be better E (X)= anl Pr(i|X,)x,
A
Q. !
* Update target model parameters S
using sufficient statistics and adapt 7.
arameter (o) o. = l Target
P ! Model
— Relevance factor r controls rate of n,+r
adaptation

— r=>0 MAP 2> EM

) —>ubm
— r 2. No adaptation

u=aE(x)+(-«a

JSALT19, CLSP, JHU 06/18/2019
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GMM-UBM Recap ( AND SPEECH PROCESSING

(1) Extract feature vector
sequence from speech
signal

WWWWWM*-}”H

UBM I
>
(2) Train UBM with speech

from many speakers using
EM

JSALT19, CLSP, JHU 06/18/2019
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GMM-UBM Recap ( AND SPEECH PROCESSING
(3) Adapt target model from UBM

Target
' Model
>

Mw-[”] o)

A UBM /
>
(2) Train UBM with speech

from many speakers using
EM

JSALT19, CLSP, JHU 06/18/2019

A

(1) Extract feature vector
sequence from speech




GMM-UBM Recap

"%, CENTER FOR LANGUAGE
)5 MDSPEECH PROCESSING

(3) Adapt target model from UBM

(1) Extract feature vector
sequence from speech
signal

WWWWW—}”H

Target

A Model

.. ¢
YA

(4) Compute likelihood
ratio of test data

LLR(X)=
log p(X | target) log p(X | ubm)

o)

A UBM

@ /
0o/

(2) Train UBM with speech
from many speakers using

EM

JSALT19, CLSP, JHU
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The story of i-vectors begins... ( AND SPEECH PROCESSIG

Johns Hopkins University
The Center for Language
and Speech Processing
2008

“ass -

JSALT19, CLSP, JHU
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Roadmap )+ D SPEECH PROCESSING

- Low-Dimensional Representation

— Low-dimensional vectors: i-vectors

JSALT19, CLSP, JHU 06/18/2019
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Total variability model (i-vectors) ( AND SPEECH PROCESSIG

* The super-vector mean of the GMM of a given recording 1s
written as

M=m+Tw

- w standard Normal random (total factors — intermediate vector
or 1-vector)

— m : A supervector mean (can be the UBM-GMM)
— T : low rank Total variability matrix

Mg [ My [ gy b ]
M2 m; 1tz |
Mo M| |t e Wi
M2 m; oyt || W2
M m tyti |
M2 m; 1 T

JSALT19, CLSP, JHU 06/18/2019
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Why call it an i-vector? ( AND SPEECH PROCESSING
It is definitely not
an Apple product

|- for Intermediate
representation
GMM components: 2048
Feature dimension: 60 lu12 I
GMM-SV : M \E/ v
60*2048=122880 71
C F |Feature dimension 60
Uy 0 2
O C
‘u 31 Actually between
100 to 1000
U5 |

JSALT19, CLSP, JHU 06/18/2019
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Visual Interpretation of i-vectors ( D SPEECH PROCESSOR

- To obtain robust estimate of an utterance specific GMM, the
mean super-vector is constrained to live in a linear high

variability subspace with High variability subspace
(400 bases)

M=m+Tw N
LMl [ My [t
' M2 my 1tz |

M1 || Ma|, |ttt ||
M2 my tog t | W2
U1 m; tigt, |

' M2 m to1 t2

/N

Utterance specific mean
super-vector

JSALT19, CLSP, JHU 06/18/2019
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Visual Interpretation of i-vectors ( A SPEECH PROCESSOG

L Mgl [ M) [t 2 ]
M2 m; 1tz |
M M|, [tz | [V
M2 m; fog o || W2
M m it |
M2 m; o1 1

JSALT19, CLSP, JHU 06/18/2019
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Visual Interpretation of i-vectors ( AN SPEECH PROCESSING

M1 mqi] [ty te2
M2 m, toq to

M1 my t to || WY

]
+

M2 m, tog to | |W2
U1 my tigty |
M2 m, toq to

JSALT19, CLSP, JHU 06/18/2019
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Visual Interpretation of i-vectors ( ANDSPEECH PROCESSING

L Mgl [ M) [t 2 ]
M2 mo 1tz |
M1 f2| M|, | [t te Wi
M2 m; gty | | W2
M m it |
M2 m; o1 1

JSALT19, CLSP, JHU 06/18/2019



Visual Interpretation of i-vectors

M1
M2
M1
M2
M1
M2

JSALT19, CLSP, JHU
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gt

o1 1
t1q t12
o1 I
t1q 112

toq to
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Visual Interpretation of i-vectors

M1
M2
M1
M2
M1
M2
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- 1y t2

1 122
t11 12
o1 122
t11 42

toq to
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Visual Interpretation of i-vectors

M1
M2
M1
M2
M1
M2
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- 1y t2

1 122
t11 12
o1 122
t11 42

toq to
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Visual Interpretation of i-vectors

M1
M2
M1
M2
M1
M2
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t11 12
o1 122
t11 42

toq to
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Visual Interpretation of i-vectors

M1
M2
M1
M2
M1
M2
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1 122
t11 12
o1 122
t11 42

toq to
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Visual Interpretation of i-vectors

M1
M2
M1
M2
M1
M2
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- 1y t2

1 122
t11 12
o1 122
t11 42

toq to
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Advantages )< NDSPEECH PROCESSING

 Robustness:

— Limiting the adaptation directions of the UBM makes the model more
robust to noise, reverberation and other artifacts of the signal

- Requires less data than GMM-UBM

— For GMM-UBM, to adapt all the Gaussians the recording needs to be
long enough to contain several frames for all the Gaussians.

— For i-vectors, we don’t need to have data for all the Gaussians.
* Use data from a few Gaussians to estimate w
* Use M=m+Tw to get the positions of the unseen Gaussians
- Compression:
— We summarize a recording of several MB into a small vector.
— The i-vector is a new feature for other machine learning algorithms

JSALT19, CLSP, JHU 06/18/2019
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i-vector Calculus ( AND SPEECH PROCESSING

- In practice, the i-vector is computed using the Bayes
Theorem:

— We get the posterior distribution for w as

PXIw)P(w) 1 P(x¢lm + Tw,Z)N(w|[0,1)
P(X) P(X) -

P(w|X) = o= N(w|E[w],1™1)

— The i-vector is the mean w = E[w] of the posterior distribution
— What is the formula for E[w] and [ ?

JSALT19, CLSP, JHU 06/18/2019
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Baum-Welch (Sufficient) Statistics ( ANDSPEECH PROCESSING

- Gaussian responsibilities

- ﬂ:c})c(';ét I C’ZC)
v (¢) = P(c1%.,0,,,) = H

C
> mPE .2

L
- Zeroth Order N (u) = EP(C | X,,050) = E y,(c)
t=1 !

L
. FirstOrder  F.(u) = ¥ P(c 1%, 0) ¥, = Y.7,(c) %,
t=1 t

« Centered First order:

F.(u)=Yy,c) (& -m,)

where c =1,...,C for each UBM component

JSALT19, CLSP, JHU 06/18/2019
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Some more notation ( AND SPEECH PROCESSING

Nl 0 e 0
0 N, (u)-1 0 :
N(l/l) _ | 2( z) FxF ) O
i 0 0 Nc(u)’]FxF_
_ﬁ (u) ] F is the dim of MFCC
1
- E
Fw=| "
_ﬁc (u)_

JSALT19, CLSP, JHU 06/18/2019
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The i-vector Calculus ( AND SPEECH PROCESSING
- Finally the mean of the w Gaussian Posterior is
Elw)] =" ()T'Z"F(u)
and covariance matrix
cov(w(u),w(u)) = 1" (u)

where

(w)=1+TZ'NwT

Kenny, P., Boulianne, G. and P. Dumouchel. Eigenvoice Modeling with Sparse Training
Data. IEEE Transactions on Speech and Audio Processing, 13 May (3) 2005 : 345-
359.

JSALT19, CLSP, JHU 06/18/2019
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The EM Algorithm ( AND SPEECH PROCESSIG

- Initialize m and Y as defined by our UBM covariance
matrices

- Pick a desired rank R for the Total Variability Matrix T and
initialize this CF x R matrix randomly.

- E-step:

— For each utterance u, calculate the parameters of the posterior
distribution of w(u) using the current estimates of m, T, >

* M-step:

— Update T solving a set of linear equations in which the w(u)’s play the
role of explanatory variables

- lterate until parameters / data likelihood converges...

Kenny, P., Boulianne, G. and P. Dumouchel. Eigenvoice Modeling with Sparse Training Data. IEEE Transactions on Speech
and Audio Processing, 13 May (3) 2005 : 345-359.

JSALT19, CLSP, JHU 06/18/2019
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The M-step ( AND SPEECH PROCESSING
- In the M-step we maximize the objective function

PXIT) 2 Q(T,Ty) = ) E[log P(Kyy Wi T)|P(wy Xy, To)]

— Differentiate and isolate T

0 Q (T,To)

pye =0=T

— Computing T involves solving one linear equation system per Gaussian
in the GMM.

JSALT19, CLSP, JHU 06/18/2019
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Roadmap )+ D SPEECH PROCESSING

- Low-Dimensional Representation

— Processing i-vectors: compensation and scoring

JSALT19, CLSP, JHU 06/18/2019
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Scoring and channel Compensation ( AND SPEECH PROCESSING
- Cosine scoring

< Wenroll» Wtest =

”Wenroll | ”Wtest”

Score =

- Channel Compensation techniques

— Linear Discriminant Analysis
— Within Class Covariance Normalization [Hatch2006]
— Nuisance Attribute projection [Campbell 2006]

JSALT19, CLSP, JHU 06/18/2019
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Intersession compensation ( ANDSPEECH PROCESSING

. LDA [Dehak 2009,2011]

A is matrix of eigenvectors from S, v = A.S v 41

Sy = Y (w, —W)(w, - W)’

S = Enizs(w; —w )W —w)'

s=1 ""s i=1

JSALT19, CLSP, JHU 06/18/2019



Probabilistic Linear discriminant ( ADSEDH RO
Analysis (PLDA)

- Probabilistic version of LDA

- i-vector jof class iis decomposed as a sum of several terms

Wij - U ~+ Vyl + Eij
- u is the class-independent mean of all the i-vectors
— Vis low rank matrix defining the inter-class variability space

- y; ~N(0,1) are the coordinates of the speaker in the space defined by V
- € ~N(0,W) were W is the intra-class covariance.

u+Vy,

JSALT19, CLSP, JHU 06/18/2019
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PLDA Evaluation ), WD SPEECHPROCESSING
- Evaluation based on Bayesian model comparison

— Likelihood ratio between two hypothesis:

* Probability for enrollment and test i-vectors were generated by the
same speaker (have the same vy)

* Probability for enroliment and test i-vectors were generated by
different speakers (have different y)

P(wy w2|same) _ J P(W1|y)P(W2|y)P(y)dy _
P(w1,w|dif f) [ P(W1|y)P()dy [ P(Wo|y)P(v)dy

J N(wi |+ Vy, W)N(w,|p + Vy, WIN (|0, )dy
[ N(wylu+ Vy, W)N(y|0,Ddy [ N(w,|u + Vy, W)N(y|0,]) dy

LLR = log

log

— In practice, the LLR is a quadratic equation:

LLR = wl Aw, + w; Bw; + waBw, + CTw; + CTw, + D
- u, V and W are trained using EM algorithm

JSALT19, CLSP, JHU 06/18/2019
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Graph Visualization ( AND SPEECH PROCESSIG

- Work at exploring behavior of speaker matching for large data set mining
(Zahi Karam)

— Visualization using the Graph Exploration System (GUESS) [Eytan 06]

- Represent segment as a node with connections (edges) to nearest
neighbors (3 NN used)

— NN computed using blind TV system (with and without channel normalization)

- Applied to 5438 utterances from the NIST SRE10 core
— Multiple telephone and microphone channels

- Absolute locations of nhodes not important

- Relative locations of nodes to one another is important:
— The visualization clusters nodes that are highly connected together

- Colors and shapes of nodes used to highlight interesting phenomena

JSALT19, CLSP, JHU 06/18/2019



Females with blind TV System No LDA/WCCN
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Females with blind TV Systém No LDA/WCCN
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DNN posterior i-vector system ( AND SPEECH PROCESSING

DNNs became popular

Not an easy task for end-to-end system
— DNN need fixed classes and lots of data per class
— In speaker recognition task doesn’t match theses condition
* Test speakers are different from training speakers
* Test speakers have few data (in the order of seconds).
An alternative way was to use what we knew from ASR
— Indirect method that can improve the system

New idea

— DNN as employed in ASR can be used to refine the Gaussian
responsibilities in the GMM-UBM.

— Supervised partitioning of the feature space vs. unsupervised

JSALT19, CLSP, JHU 06/18/2019
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- In practice, any recording distribution is close to the UBM

- So, when adapting UBM to an utterance the Gaussians
needs to move just a bit.

- To simplify the i-vector estimation, we let UBM decide the
alignments of frames to GMM components.

.l M1 my] [t
' M2 my to1 2 -
. - Hifo My i b2 Wi
. M2 my B t2 W2
. M1 m; gt |
. ‘ M2 my B 2

° o
° °
4
°
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- i-vector can be analytically calculated from the sufficient
statistics

LMl [ My [t b
N=12 F= M2 my foq 1o ) )
N=8 F= Uy | | my . tyy too W,
N=7 F= \ = W
Suff ‘. M2 mp to1 2
ufficient - -
statistics M1 m; tyq 142
M2 ms fq 1o

Usually we use soft alignments

JSALT19, CLSP, JHU 06/18/2019
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GMM Supervised by DNN ( AND SPEECH PROCESSING

- How good are the clusters defined by GMM-UBM components?
- Would not be clusters corresponding to phonemes more
reasonable?

- DNN trained for phoneme recognition decides the alignment of
frames to clusters (GMM components). The rest is as before.

N=6 F= — [

N=6 F= '

Z — Phone labels by

Sufficient Phor
statistics @~ | @

JSALT19, CLSP, JHU 06/18/2019
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DNN posterior i-vectors system ( AND SPEECH PROCESSIG

- Compute senone posteriors from MFCC

- Use those posterior as Gaussian responsibilities to compute
sufficient statistics

Phoneme
- or Senones

I posteriors
a9
ol 9 -0
1 | o.3
ol
L =

T, S
N6 F=— [
N=6 F= :

. Z ~
Sufficient T,
statistics ;

JSALT19, CLSP, JHU 06/18/2019
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Bottleneck Features (

Use DNN to compute a phoneme discriminant feature

o
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* ltis a small (bottleneck) intermediate layer of a DNN trained to
recognize phonetic units (senones)

Pﬂsteriorsl
Bottleneck

S .
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o 2 3.6
-0 0 2.1

-0 0.0
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- Once the DNN bottleneck features (BNF) are computed, the rest is
as before.
— BNF allows unsupervised GMM to get a better partitioning of the feature
space.
— More efficient than DNN-posteriors i-vectors because it can use less Gaussian
components than the number of senones.
- Different flavors are possible
— BNF only
— Concatenate BNF + MFCC

— BNF only to compute responsibilities, MFCC to accumulate first order
sufficient statistics.

|-vector
system

|
c O OON W W

JSALT19, CLSP, JHU 06/18/2019
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— X-vectors
- Applications
— Speaker verification
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Motivation:

— BNF and DNN i-vectors are still a linear generative model
*  DNN only used indirectly to improve frame alignments

— Can we improve performance by using non-linear models?

— DNN trained to discriminate between speakers to produce better

embeddings.
M
ObjeCtlve: [ = — Z lOg P(yz = 1,1X,)
— The objective function is cross-entropy i—1

— At the input we have feature sequences of variable length (MFCCs, Mel
filter-banks, Bottleneck features)

— The output of the DNN is the posterior probability for the speaker labels

— Requires more training data than i-vectors:
*  Otherwise it over-fits to the training speakers
*  Augmenting training data by adding noise and reverberation improves

JSALT19, CLSP, JHU 06/18/2019
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This DNN has three parts:
-~ Encoder: extracts frame level

P(spkri | x;,%z,...,%)

representations -
PrEsERIato s[[OO0000 0O
- Pooling: pooling layer that =
computes mean and standard —| 1
deviation. S LOOOQ"O j EmbB
- Classification: predicts posterior el a2
probabilities for the target é%; nOOOO O J EmbA
speakers
I POOLING .
Once trained: , Rk
— The softmax layer is removed. LQOOO"O | ‘:“ o
— Embeddings are extracted from ) ) i -g
the layers after the pooling layer. OO0 [ |w
— Typically x-vectors are extracted JSEEEE e =
from the first layer after pooling X1,%, % )

before applying the non-linear
activation function

JSALT19, CLSP, JHU 06/18/2019



TDNN x-Vector

« X-vector inside
— TDNN encoder

* TDNN is 1-d dilated convolutional neural network

* Has the ability to capture features in a wider window

as it gets deeper

* Dilation makes the temporal context to grow faster
as the information travels through the layers of the
network t

t+6

t-24 coe t+24
t-24 ¢ee t+24
- +1 A | X | X A \#+1
25 * o0 t+25

JSALT19, CLSP, JHU
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 P(s/X,)

softmax

Dense

Dense —> Emb

| Mean + Stddev J

Dense

l

Dense

TDNN

l

TDNN

l

) = = = ==

TDNN

T

X1y XN;
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F-TDNN x-Vector

— Factorized TDNN with skip connections

- Factorizes the weight matrix of each
TDNN layer into the product of two low-

rank matrices.

— Reduces network parameters
- First factor constrained to be semi-

orthogonal

— Matrix rows orthogonal between

them
— Assures that neurons in the

bottleneck don’t learn redundant

information.
« Skip-connections

— Between bottleneck representations
— Representations are concatenated

instead of added

— Allows to make network deeper by
alleviating vanishing gradients

JSALT19, CLSP, JHU
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softmax

T

Dense

T

i Mean + Stddev ]
Hu

Dense

_|
O
Z
pd
N ——/

Dense ]—> Emb
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— TDNN encoders are replaced by residual networks
(ResNet)

— The MFCCs are replaced by log-Mel filter banks
— ResNet are two-dimensional convolutions (2D-CNN)

— The residual block composed of two 2D
convolutions separated by a RelL.U

— The input to the block is added to the output

X

F(x) X

Identity

relu

JSALT19, CLSP, JHU 06/18/2019
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x-Vector Temporal Pooling ). WDSPEECHPROCESSI
« Pooling methods
* Mean+Standard Deviation:

- Standard method computes mean and stddev of frame level representations
over time

* Learnable dictionary encoder (LDE)
- Frame level representations are modeled as a GMM (Similar to i-vectors)
- The probability that frame t belongs to Gaussian component c is
_exp(=se||xe — pe||” + be)
Wt,e = =@ 2
Dozt €xXP(—Se [[x: — pre|” + be)

- Compute one embedding per component by averaging the frames of that
component

- Concatenate component embeddings to form a super-vector
T_ Wt,c\Xt — e
S > srman L e=(e,....e.)
* Multi-head Attention
- Similar to LDE but weights are normalized to sum up to one over time.
- Attends to the most important frames in the sequence for cluster ¢
exp(—se ||x: — pre|])

> o1 exp(—se [[xe — pel))
JSALT19, CLSP, JHU 06/18/2019
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Backend:

— LDA,

— Centering, whitening
— length normalization

— PLDA scoring

Same back-end as the one used for i-vectors.

JSALT19, CLSP, JHU 06/18/2019
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- Low dimensional representation simplifies life
— Mixture of Gaussians
— Supervector of Gaussian mean components
— Low-dimensional i-vector

- i-Vector transforms a sequence of features into a unique
vector

- Easy way to compare between sequences of features with
different duration

- Classical pattern recognition approaches like LDA, PLDA or
SVM can be used to compare i-vectors

- Adding DNNSs in the i-vector pipeline produces a better
clustering of the feature space of the GMM-UBM and
improves performance.

« X-vectors are now the state-of-the-art.

JSALT19, CLSP, JHU 06/18/2019
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- Applications
— Speaker verification
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Speaker Verification Problem ( AND SPEECH PROCESSING

Imposter

JSALT19, CLSP, JHU 06/18/2019
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Speaker Verification ( AND SPEECH PROCESSING

Speaker Verification: Accepts or rejects a user based on his
speech signal.

> Input:

> Speech signal X el
» Claimed identity 1 Paola

y accept  ¢(X,i)>T;
reject otherwise

¢(X,i) is a confidence measure

» Output:

JSALT19, CLSP, JHU 06/18/2019
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Score Distribution ( AND SPEECH PROCESSING

<> Binary classifier with the
following confidence Imposter Target

speaker speaker
measures (scores).

<~ The rightmost Gaussian f reahold
belongs to the target
speaker.

<> The leftmost Gaussian
belongs to the imposter

score

P(X.i)

speaker.
<> Key point: a decision
threshold.

JSALT19, CLSP, JHU 06/18/2019
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Speaker Verification: What is needed?(; AND SPEECH PROCESSIG

» Each accredited speaker has its own model, known as target
model, A, , prototype of his/her speech.

S—

» And an imposter model Z is the impostor’s prototype. When all
the imposters share the same model (they are “tied”), called:

UBM Universal Background Model.

JSALT19, CLSP, JHU 06/18/2019
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Log-Likelihood Ratio ( AND SPEECH PROCESSING

» The likelihood ratio provides a tool to perform a statistical
decision (score function in log domain) :

> T accept A\

0(X,i) =log(p(X|\;)) — log (p (X|;\7')) < T reject \;

Imposter Target
speaker speaker

.

score

JSALT19, CLSP, JHU 06/18/2019
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o

Hypotheses Testing is a suitable framework for detection
problems:

> HO, the null hypothesis, accepts the identity of the speaker
as legitimate.

2 b

> H1, the alternative hypothesis, rejects the user (imposter).

2 0

What if something goes wrong in the system?

JSALT19, CLSP, JHU 06/18/2019
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o

For a classifier, there are two sources of statistical errors:

» |If HO is rejected when HO is actually from the speaker (reject a
legitimate user), false negative, miss or false rejected.

in L

» If it fails to reject H1, when H1 is false (accepts an impostor),
false positive (FP), false alarm or false accepted.

2

JSALT19, CLSP, JHU 06/18/2019
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Imposter Target

speaker speaker
P EER P

FR

score
The main goal for speaker verification must be to minimize

those errors.

The tradeoff between the errors depend on the application.

JSALT19, CLSP, JHU 06/18/2019
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Target speaker

l >

TP = yes ?
IFIHHM' . Speaker verification |——. scores e —.,
system < no ?
- Detcurve

Speaker Detection Performance

. . 40 .l ........... R R g [
» False acceptance and rejection Rates G [T e
€ EER
Number of False Acceptance g oy '
Ry, = . =
Number of 1mpostors accesses .
R Number of False Rejection ; ;
" Number of target accesses
3 P 5
- EER - MinDCF = 1 @ v
False Alarm probability (in %)
RFA — RFR DCF = CFR '})target 'RFR + CFA 'Bmposteur 'RFA

JSALT19, CLSP, JHU 06/18/2019
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Imposter Target .
speaker speaker @ True positive

@ True Negative

O Miss, false rejected

O False Accepted

1
1 —
DET curve
TP ROC curve FR
—
0 0
EA 1 A 1

JSALT19, CLSP, JHU 06/18/2019
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Imposter EER Target
speaker speaker
1 1
EER EER

= ¢
;
minDCF .
.
.
, .
0' ,"
0‘ ,‘

FR

- 0 1=~ 0
FA 1 FA 1 FA 1

ROC curve DET curve DET curve

JSALT19, CLSP, JHU 06/18/2019



i-vector System

[+]

TV
. MFCC EM .
Training i\mw,uﬁ; —| Extraction »(UBM training) » Analysis
il training
UBM TV
parameters
Baum Welch .
MFCC Y I-vector
Enrollmenfww — | Extraction — es)ftar‘ggf['lgi " extraction
Baum Welch .
Test ﬂwwww — | MFCC | | TSiatistics | -vector
Extraction SR extraction

JSALT19, CLSP, JHU
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GMM i-vector vs DNN i-vector ). WDSPEECHPROCESSI
NIST SRE10, five conditions, females
- 2048 component UBM, 600 dimensional i-vector
DNN trained on 250 hours of Fisher
Condition 1 (int-int same mic.) Condition 2 (int-int diff. mic.)
minDCF10 | minDCF08 | EER (%) | minDCF10 | minDCF08 | EER (%)
GMM-UBM 0.183 0.051 1.30 0.311 0.088 1.94
DNN-UBM 0.142 0.032 0.77 0.205 0.053 1.32
Condition 3 (int-tel) Condition 4 (int-mic)
minDCF10 | minDCF08 | EER (%) | minDCF10 | minDCF08 | EER (%)
GMM-UBM 0.316 0.091 2.07 0.223 0.050 1.00
DNN-UBM 0.204 0.049 1.18 0.130 0.024 0.53
Condition 5 (tel-tel)
minDCF10 | minDCFO08 | EER (%)
GMM-UBM 0.390 0.110 2.21
DNN-UBM 0.209 0.056 1.21
06/18/2019
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NIST SRE10, condition 5, females

2048 component UBM, 600 dimensional i-vector
Multilingual BNF is used with 80 dim. bottleneck

Alignment Suff. stats Fea.dim | minDCF1 | minDCFO8 | EER (%)
0

MFCC 60 0.423 0.108 2.13

BN 80 0.225 0.067 1.68

BN — full cov. | BN — full cov. 60 0.201 0.057 1.24

BN+MFCC 140 0.159 0.048 1.06

SBN architecture with 80 dim. bottleneck trained on 250h of Fisher

DNN poster. | MFCC 60 0.209 0.056 1.21
BN+MFCC 140 0.140 0.041 0.94

BN+MFCC outperform the DNN alignment approach.

JSALT19, CLSP, JHU 06/18/2019
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- Some results...

Systems SRE18 DEV CMN?2 SRE18 EVAL CMN?2
EER MinCp ActCp EER MinCp ActCp

GMM-i-vector 10.37  0.664 0.685 11.85 0.723 0.725
BNF-i-vector 10.51  0.639 0.657 11.69 0.71 0.712
TDNN(8.5M)-srel6 7.2 0.505 0.51 7.93 0.515 0.518
TDNN(8.5M) 5.76 0.384 0.392  6.68 0.446 0.447
E-TDNN(10M) 5.88 0.392 0.398  5.97 0.409 0.41
F-TDNN(11M) 4.96 0.326 0.33 53 0.37 0.371
F-TDNN(17M) 5.1 0.355 0.372  4.95 0.346 0.349

ResNet(8M)-MHA(tt-SPLDA  5.46 0.326 0.34 5.64 0.392 0.395
ResNet(8M)-MHALtt-DPLDA  5.64 0.319 0.337 6.81 0.499 0.524

JSALT19, CLSP, JHU 06/18/2019
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°
System SITW EVAL CORE SITW EVAL CORE-MULTI SRE18 DEV VAST SRE18 EVAL VAST
EER MinCp ActCp EER MinCp Act Cp EER MinCp ActCp EER MinCp ActCp
16 kHz systems
BNF-i-vector 577 0257 0.262  6.02 0.26 0.26 11.52  0.185 0.222 17.46  0.508 0.571
TDNN(8.5M) 3.4 0.185 0.188 3.86 0.191 0.191 3.7 0.337 0424 12.06 0.468 0.578
E-TDNN(10M) 274  0.162 0.165 3.2 0.171 0.172 3.7 0.305 0.305 13.02 0.442 0.527
F-TDNN(9M) 239  0.144 0.15 279 0.153 0.153 4.53 0.309 0383 11.75 0.412 0.508
F-TDNN(10M) 237  0.135 0.138 2.86  0.145 0.146 3.7 0.337 042 1079 0.403 0.503
F-TDNN(11M) 205 0.137 0.14 257  0.145 0.147 3.7 0.305 0387 11.11  0.409 0.487
F-TDNN(17M) 1.89  0.124 0.126 233 0.135 0.137 7 0.37 0.498 12.06  0.388 0.474
ResNet(8M) 3.01  0.187 0.191 347  0.198 0.198 3.7 0.412 0.498 1143 0.464 0.554
8 kHz systems
GMM-i-vector 8.22  0.384 0393 8.67 0.386 0.387 18.52  0.486 0.568 2032  0.543 0.75
BNF-i-vector 7.8 0.353 0365 842 0.352 0.354 14.81 0412 0.568 17.9  0.533 0.638
TDNN(8.5M)-srel6  5.21  0.278 0284 5.6 0.287 0.287 11.11 0.3 0.691 1333 0475 0.636
TDNN(8.5M) 3.58  0.197 0202 393  0.206 0.207 7.41 0.296 0.535 1293 0431 0.596
E-TDNN(10M) 29 0.172 0.175 329  0.183 0.183 7.41 0.337 0.461 12.6 0.41 0.561
F-TDNN(11M) 2.84  0.158 0.163 3.18  0.165 0.166 7.41 0.222 0.461 12.06  0.385 0.52
F-TDNN(17M) 246  0.148 0.151 2.83 0.155 0.156 453  0.259 0383 11.75 0.377 0.514

JSALT19, CLSP, JHU 06/18/2019
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Audio Diarization ( AND SPEECH PROCESSING

The task of marking and categorizing the different audio
sources within an unmarked audio sequence

commercial speaker segmernts crowd noise
{ - _‘-_—:-:—_/‘ ,”,l’ \ \Dp,_:_'—'.: e N )
= - e L b ———— o h
‘ f'--ﬂr'“f/ (8 '\-\, &:“-.?-?“—.. \t

JSALT19, CLSP, JHU 06/18/2019



Speaker Diarization

+ “Who is speaking when?”

- Segmentation

"%, CENTER FOR LANGUAGE
)5 MNDSPEECHPROCESSIG

— Determine when a speaker change has occurred in the speech signal

 Clustering

— Group together speech segments from the same speaker

Where are speaker
changes?

JSALT19, CLSP, JHU

Which segments are from
the same speaker?

(Wl | J“Ljﬂ“‘”\”U‘H‘NIHIUIuﬂlf.“-‘

TSmO
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Applications

"%, CENTER FOR LANGUAGE
)5 MDSPEECH PROCESSING

- As a pre-processing step for other downstream applications

— Annotate transcripts with speaker changes and labels

— Provide an overview of speaker activity

— Adapt a speech recognition system

— Do speaker detection on multi-speaker speech

_________________________________________

1sp

”| detector

i Speaker
i Diarization

2sp

" detector

Xp=

_________________________________________

JSALT19, CLSP, JHU
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Diarization Error Measures

- Diarization Error Rate (DER)

— Miss (speaker in reference but not in hypothesis)

"%, CENTER FOR LANGUAGE
)5 MDSPEECH PROCESSING

— False Alarm (speaker in hypothesis but not in reference)
— Speaker Confusion (confusing one speaker’s speech as from another)

* Indirect Measures
— Effect on the results of a speaker detection system / speech recognizer

miss

JSALT19, CLSP, JHU
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I
WMMM [ ™

Lo l

=TO0*F00O <
=TO0*F00O <
=To0“*00OC<'!
=TO0*F00O <
=TO0*F00O <

I

First-Pass Clustering

v

Re-segmentation

v

Second Pass Refinements
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- Advantages

— We have seen how well factor analysis-based methods perform in
speaker recognition.

- Difficulties

— Decisions made on very short (~1 second) speech segments
— Poor speaker change detection can corrupt speaker models

JSALT19, CLSP, JHU 06/18/2019
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Out-of-
domain
data

Speech VAD Xvector PLDA scoring output
data Segmentation extractor ttm

output
rttm

X-vector
training

Resegmentation
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I-vector Visualization

JSALT19, CLSP, JHU
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I-vector Visualization
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Lingering Issues ( AND SPEECH PROCESSING
- Diarization of speech containing more than two speakers

— How can we estimate the number of speakers?

- Overlapped speech segments
— Though not scored, we still have to deal with them during diarization
— Not much previous work on this (Boakye, 2008)

JSALT19, CLSP, JHU 06/18/2019
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Estimating Speaker Number ), MOSPEECH PROCESSNG

Proposed solution: Variational Bayes (VB)
— Fabio Valente (2005), Patrick Kenny (2010)

Advantages of being Bayesian

— In theory, Bayesian methods are not subject to the over-fitting that plagues maximum
likelihood methods

Variational Approximation
— Hypothesize K speakers
— Two hidden variables:
* i-vector: w; i-vector for speaker j
* Speaker labels:
e 0; one-hot K dimensional vector for frame i
« 0;; = 1if frame i belongs to speaker |

— Joint posterior of w and 8 is intractable:
* Factorize the posterior as the product of two variational distributions
« P(0,w|X) =~ q(8)q(w)
- Solve q(0) and q (w) iteratively
- As we iterate some speakers don’t get frames assigned and they can be removed

JSALT19, CLSP, JHU 06/18/2019



: : . ", CENTER FOR LANGUAGE
A Quick Visualization ( ANDSPEECH PROCESSING

JSALT19, CLSP, JHU 06/18/2019



[+]

CENTER FOR LANGUAGE
AND SPEECH PROCESSING

<
95p0°

Another Visualization

JSALT19, CLSP, JHU 06/18/2019



"%, CENTER FOR LANGUAGE
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- Callhome:
— CTS collection between familiar speakers
— Conversations recorded in a single channel

— Between 2 and 7 speakers

— Languages: Arabic, English, German, Japanese, Mandarin and
Spanish

_ Unsupervised Calibration Oracle Calibration

AHC clustering +VB resegm AHC clustering +VB resegm
GMM i-vectors 13.5 11.5 136! 11.0
DNN i-vectors 12.9 10.3 12.6 10.2

D. Garcia-Romero, D. Snyder, G. Sell, D. Povey, and A. Mccree, “Speaker Diarization
Using Deep Neural Network Embeddings,” in Proceedings of ICASSP 2017, pp. 4930-4934.

JSALT19, CLSP, JHU 06/18/2019
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- Who speaks when?
— Children’s speech and speech in the wild (YouTube) is now the main

problem.
60%
50% l
DIHARD o 40%
L 30%
challenge 0O ’ B Manual SAD
20% .
B Automatic SAD
10% —+—
0% -
F R QO F O e A& s
QO VSO o PP
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— Several problems: annotations, noisy data
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- While speaking ﬂﬂ\
//

_.'E ._m_ ! jl [ kid1 | I jl | Amale | l I A mal ﬁl | Amale | ! ! k babbling | A |@|]Amale I@I:QI |Ikld1|

S |_[kababing]y, ) © ® ¢ Kid1 babbiin -y ( _[waz) | I @

©

5

O

(D mn) @ Iﬁl & @ P & S m //5@m

<

>

©

&)

@)

=>

JSALT19, CLSP, JHU 06/18/2019



95p0°

: : "o, CENTER FOR LANGUAGE
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Track 1 DER Track 2 DER
Diarization Method
Dev Set Eval Set Dev Set Eval Set

Declare there’s only 1 speaker! 36.0% 39.0% 48.7% 55.9%
“Out of the Box” (cALLHOME) 26.7% 31.6% 40.9% 50.8%
i-vectors, 16 kHz data, no VB 21.7% 28.1% 33.7% 40.4%
x-vectors, 16 kHz data, no VB 20.0% 25.9% 31.8% 39.4%
i-vectors, 16 kHz data, with VB* 19.7% 25.1% 31.3% 37.4%
x-vectors, 16 kHz data, with VB* 18.2% 23.7% 29.8% 37.3%
(i+x)-vector fusion, 16 kHz, VB* 18.2% 24.0% 30.3% 37.2%

JSALT19, CLSP, JHU 06/18/2019
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- Factor analysis-based approach to speaker diarization
— Inspired by Total Variability and i-vectors
— Attained state of the art results in Callhome dataset.
— X-vector becoming the state-of-the-art in diarization.

- Unsolved Issues
— Detecting and removing overlapped speech segments

— Better estimation of the number of speakers

* Variational Bayes overestimates number of speakers in many
cases

JSALT19, CLSP, JHU 06/18/2019
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Final Words ( AND SPEECH PROCESSING

- You have learned

— Subspace Representation of Speech Signals
* i-vectors
* BNF i-vector
* DNN i-vector
* X-vectors
* PLDA

— Application of subspace representations to
* Speaker recognition
* diarization systems

— Take a look at Kaldi recipes to learn more:
* Sre08, sre10, sre16, sitw
* Callhome
* Dihard

JSALT19, CLSP, JHU 06/18/2019
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