# 30 Questions in Neural Machine Translation

# Jia Xu

### Graduate Center & Hunter College, CUNY

MT Tutorial @ JSALT'19

<sup>3</sup>Άνδρα μοι ἔννεπε, Μοῦσα, πολύτροπον... Odyssey, Homer, 700 BC

<sup>\*</sup>Άνδρα μοι ἔννεπε, Μοῦσα, πολύτροπον... Odyssey, Homer, 700 BC



ancient Greek

<sup>3</sup>Άνδρα μοι ἔννεπε, Μοῦσα, πολύτροπον... Odyssey, Homer, 700 BC



ancient Greek

<sup>2</sup>Άνδρα μοι ἔννεπε, Μοῦσα, πολύτροπον... Odyssey, Homer, 700 BC

Virum mihi, Camena, insece versutum...



ancient Greek



Latin



2000 year old translation of <u>Sing in me, Muse, and through me tell the story of the man of twists and turns...</u>



2000 year old translation of Sing in me, Muse, and through me tell the story of the man of twists and turns...

### translating between human languages is an old problem



nowadays machine translation is applied in society, science, arts, commerce and finance, literature, military, ...







# machine translation:

automatically translate from one human language to another

# machine translation evaluations & resources

- competitions with data resources and baseline platforms, e.g.
  - NIST: 2002- [https://www.nist.gov/itl/iad/mig/openmt15-evaluation]
  - WMT: 2006- [http://www.statmt.org]
  - IWSLT: 2004- [https://workshop2019.iwslt.org]
- projects, e.g.
  - GALE, TC-Star, EuroMatrix, BOLT, and more and more
- datasets, e.g.
  - LDC: [https://www.ldc.upenn.edu]

# machine translation development



year

## machine translation development



year

| 1934 | 1954 | 1966 1968 | 1982 | 1993 | 2003 | 2005 | 2016 | 2019 |
|------|------|-----------|------|------|------|------|------|------|



| itary use   |                                   |           | ,    |      |                           |                            | > 500                             | M commerci    | al users |
|-------------|-----------------------------------|-----------|------|------|---------------------------|----------------------------|-----------------------------------|---------------|----------|
| rule        | -based M <sup>-</sup>             | Г         | exam | ple- | MT Ł                      | based of                   | on machir                         | ne learnir    | ng       |
| direct tran | direct transfer-based interlingua |           |      |      | statist<br>word<br>-based | ical M<br>phrase<br>-basec | <b>F (SMT)</b><br>syntax<br>based | neural<br>(NM | MT<br>T) |
| 1934        | 1954                              | 1966 1968 | 1982 | 1993 | 2                         | .003                       | 2005                              | 2016          | 2019     |

Google translates over 100 billion words a day

| litary use   |                                   |           |      |       |                           |                             | > 500                            | M commerci    | al users |
|--------------|-----------------------------------|-----------|------|-------|---------------------------|-----------------------------|----------------------------------|---------------|----------|
| rule-        | based M                           | Г         | exan | nple- | MT Ł                      | based c                     | on machir                        | ne learnir    | ng È     |
| direct trans | direct transfer-based interlingua |           |      |       | statist<br>word<br>-based | ical M7<br>phrase<br>-based | <b>(SMT)</b><br>syntax<br>-based | neural<br>(NM | MT<br>T) |
| 1934         | 1954                              | 1966 1968 | 1982 | 1993  | 2                         | .003                        | 2005                             | 2016          | 2019     |

### problem of each approach:

| lack<br>generality | language<br>dependent | difficult<br>to define | lack<br>generality | lack<br>context | need<br>syntax<br>structure | human<br>defined<br>features | robustness<br>interpretability |
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|

Google translates over 100 billion words a day

features

interpretability

| milita | ary use                |                | 、          |             |                           |                                | > 500 M                  | commercia      | lusers   |
|--------|------------------------|----------------|------------|-------------|---------------------------|--------------------------------|--------------------------|----------------|----------|
|        | rul                    | e-based M      | T          | example-    | MT                        | based on                       | machine                  | learnin        | g        |
|        | direct tra             | insfer-based i | nterlingua | based<br>MT | statist<br>word<br>-based | cical MT (<br>phrase<br>-based | SMT)<br>syntax<br>-based | neural<br>(NMT | MT<br>-) |
|        | 934                    | 1954           | 1966 1968  | 1982 1993   | 3                         | 2003 20                        | 05                       | 2016           | 2019     |
| orol   | olem <sup>•</sup> of e | ach approa     | ch:        |             |                           |                                |                          |                |          |
|        |                        |                |            |             |                           |                                |                          |                |          |
|        | lack                   | language       | difficult  | lack        | lack                      | need<br>syntax                 | human<br>defined         | robus          | tness    |

generality

context

structure

dependent

to define

generality



| milita | ry use                            |                        |                        |                    | ,                         |                                | > 500 M                      | commercial users             |
|--------|-----------------------------------|------------------------|------------------------|--------------------|---------------------------|--------------------------------|------------------------------|------------------------------|
|        | rul                               | e-based M <sup>-</sup> | Г                      | example-           | MT                        | based on                       | machine                      | elearning                    |
|        | direct transfer-based interlingua |                        |                        | based<br>MT        | statist<br>word<br>-based | cical MT (<br>phrase<br>-based | SMT)<br>syntax<br>-based     | neural MT<br>(NMT)           |
|        | 934                               | 1954                   | 1966-1968              | 1982 1993          | 3                         | 2003 20                        | 05                           | 2016 2019                    |
| prot   | olem of ea                        | ach approa             | ch:                    |                    |                           |                                |                              |                              |
|        | lack<br>generality                | language<br>dependent  | difficult<br>to define | lack<br>generality | lack<br>context           | need<br>syntax<br>structure    | human<br>defined<br>features | robustness<br>interpretabili |

| milita                                            | iry use            |                        |                        |                    | , <b></b>                 |                                | > 500 M                      | commercial users              |  |
|---------------------------------------------------|--------------------|------------------------|------------------------|--------------------|---------------------------|--------------------------------|------------------------------|-------------------------------|--|
|                                                   | rul                | e-based M <sup>-</sup> | Г                      | example-           | MT                        | based on                       | machine                      | e learning                    |  |
|                                                   | direct tra         | nsfer-based i          | nterlingua             | based<br>MT        | statist<br>word<br>-based | tical MT (<br>phrase<br>-based | SMT)<br>syntax<br>-based     | neural MT<br>(NMT)            |  |
| 1934 1954 1966 1968 1982 1993 2003 2005 2016 2019 |                    |                        |                        |                    |                           |                                |                              |                               |  |
|                                                   | lack<br>generality | language<br>dependent  | difficult<br>to define | lack<br>generality | lack<br>context           | need<br>syntax<br>structure    | human<br>defined<br>features | robustness<br>interpretabilit |  |

| milita         | ary use                                                                       |                                                         |            |                    | , <u></u>                 |                                | > 500 M                      | commercial users               |  |  |  |
|----------------|-------------------------------------------------------------------------------|---------------------------------------------------------|------------|--------------------|---------------------------|--------------------------------|------------------------------|--------------------------------|--|--|--|
|                | rul                                                                           | e-based M                                               | Г          | example-           | MT                        | based on                       | machine                      | elearning                      |  |  |  |
|                | direct tra                                                                    | nsfer-based i                                           | nterlingua | based<br>MT        | statist<br>word<br>-based | tical MT (<br>phrase<br>-based | SMT)<br>syntax<br>-based     | neural MT<br>(NMT)             |  |  |  |
| -<br>I<br>Drot | 1934 1954 1966 1968 1982 1993 2003 2005 2016 2019<br>roblem of each approach: |                                                         |            |                    |                           |                                |                              |                                |  |  |  |
|                | lack<br>generality                                                            | lack language difficult<br>nerality dependent to define |            | lack<br>generality | lack<br>context           | need<br>syntax<br>structure    | human<br>defined<br>features | robustness<br>interpretability |  |  |  |

| milita | ary use            |                       |                        |                    | , <u></u>                 |                                | > 500 M                      | commercial users             |
|--------|--------------------|-----------------------|------------------------|--------------------|---------------------------|--------------------------------|------------------------------|------------------------------|
|        | rul                | e-based M             | Т                      | example-           | MT                        | based on                       | machine                      | elearning                    |
|        | direct tra         | insfer-based i        | nterlingua             | based<br>MT        | statist<br>word<br>-based | cical MT (<br>phrase<br>-based | SMT)<br>syntax<br>-based     | neural MT<br>(NMT)           |
| orol   | 934<br>olem of ea  | 1954<br>ach approa    | 1966 1968<br>ach:      | 1982 1993          | 3                         | 2003 20                        | 05                           | 2016 2019                    |
|        | lack<br>generality | language<br>dependent | difficult<br>to define | lack<br>generality | lack<br>context           | need<br>syntax<br>structure    | human<br>defined<br>features | robustness<br>interpretabili |

| milita         | iry use            |                       |                        |                    | ,                         |                                | > 500 M                      | commercial users              |  |
|----------------|--------------------|-----------------------|------------------------|--------------------|---------------------------|--------------------------------|------------------------------|-------------------------------|--|
|                | rul                | e-based M             | Т                      | example-           | MT                        | based on                       | machine                      | e learning                    |  |
|                | direct tra         | Insfer-based i        | nterlingua             | based<br>MT        | statist<br>word<br>-based | cical MT (<br>phrase<br>-based | SMT)<br>syntax<br>-based     | neural MT<br>(NMT)            |  |
| -<br>I<br>Droł | 934<br>olem of ea  | 1954<br>ach approa    | 1966 1968<br>.ch:      | 1982 1993          | 3                         | 2003 20                        | 05                           | 2016 2019                     |  |
|                | lack<br>generality | language<br>dependent | difficult<br>to define | lack<br>generality | lack<br>context           | need<br>syntax<br>structure    | human<br>defined<br>features | robustness<br>interpretabilit |  |

| milita     | ary use            |                       |                        |                    | ,                         |                                                                    | > 500 M                      | commercia         | al users           |
|------------|--------------------|-----------------------|------------------------|--------------------|---------------------------|--------------------------------------------------------------------|------------------------------|-------------------|--------------------|
|            | rul                | e-based M             | T                      | example-           | MT                        | based on                                                           | machine                      | learnir           | g                  |
|            | direct tra         | ansfer-based i        | nterlingua             | based<br>MT        | statist<br>word<br>-based | statistical MT (SMT)<br>word phrase syntax<br>-based -based -based |                              |                   | МТ<br>Г)           |
| -<br> <br> | 934                | 1954                  | 1966 1968              | 1982 1993          | 3                         | 2003 20                                                            | 05                           | 2016              | 2019               |
| prot       | Diem of e          | acn approa            |                        |                    |                           |                                                                    |                              |                   |                    |
|            | lack<br>generality | language<br>dependent | difficult<br>to define | lack<br>generality | lack<br>context           | need<br>syntax<br>structure                                        | human<br>defined<br>features | robus<br>interpre | tness<br>etability |

Google translates over 100 billion words a day

| litary use   |                                   |           |      |       |                           |                             | > 500                            | M commerci    | al users |
|--------------|-----------------------------------|-----------|------|-------|---------------------------|-----------------------------|----------------------------------|---------------|----------|
| rule-        | based M                           | Г         | exan | nple- | MT Ł                      | based c                     | on machir                        | ne learnir    | ng È     |
| direct trans | direct transfer-based interlingua |           |      |       | statist<br>word<br>-based | ical M7<br>phrase<br>-based | <b>(SMT)</b><br>syntax<br>-based | neural<br>(NM | MT<br>T) |
| 1934         | 1954                              | 1966 1968 | 1982 | 1993  | 2                         | .003                        | 2005                             | 2016          | 2019     |

### problem of each approach:

| lack<br>generality | language<br>dependent | difficult<br>to define | lack<br>generality | lack<br>context | need<br>syntax<br>structure | human<br>defined<br>features | robustness<br>interpretability |
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|

Google translates over 100 billion words a day

| ilitary use  |                                   |        |       |                                       | > 500              | M commerci | al users |  |
|--------------|-----------------------------------|--------|-------|---------------------------------------|--------------------|------------|----------|--|
| rule-        | based MT                          | exan   | nple- | MT based on machine learning          |                    |            |          |  |
| direct trans | direct transfer-based interlingua |        |       | statistical<br>word phr<br>-based -ba | neural MT<br>(NMT) |            |          |  |
| 1934         | 1954 1966 196                     | 8 1982 | 1993  | 2003                                  | 2005               | 2016       | 2019     |  |

#### problem of each approach:

| lack<br>generality | language<br>dependent | difficult<br>to define | lack<br>generality | lack<br>context | need<br>syntax<br>structure | human<br>defined<br>features | robustness<br>interpretability |
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|

Question #1: how to enhance NMT robustness?

Google translates over 100 billion words a day

| litary use   |                                   |           |      |           |                                                                    |      | > 500 | M commerci         | al users |
|--------------|-----------------------------------|-----------|------|-----------|--------------------------------------------------------------------|------|-------|--------------------|----------|
| rule-        | rule-based MT                     |           |      |           | MT based on machine learning                                       |      |       |                    |          |
| direct trans | direct transfer-based interlingua |           |      | sed<br>IT | statistical MT (SMT)<br>word phrase syntax<br>-based -based -based |      |       | neural MT<br>(NMT) |          |
| 1934         | 1954                              | 1966 1968 | 1982 | 1993      | 2                                                                  | .003 | 2005  | 2016               | 2019     |

### problem of each approach:

| lack<br>generality | language<br>dependent | difficult<br>to define | lack<br>generality | lack<br>context | need<br>syntax<br>structure | human<br>defined<br>features | robustness<br>interpretability |
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|
Google translates over 100 billion words a day

| litary use   |               |            |             |      |                           |                             | > 500                            | M commerci    | al users |         |           |            |      |
|--------------|---------------|------------|-------------|------|---------------------------|-----------------------------|----------------------------------|---------------|----------|---------|-----------|------------|------|
| rule-        | rule-based MT |            |             |      | rule-based MT example-    |                             |                                  |               | MT Ł     | based c | on machir | ne learnir | ng È |
| direct trans | sfer-based in | nterlingua | based<br>MT |      | statist<br>word<br>-based | ical M7<br>phrase<br>-based | <b>(SMT)</b><br>syntax<br>-based | neural<br>(NM | MT<br>T) |         |           |            |      |
| 1934         | 1954          | 1966 1968  | 1982        | 1993 | 2                         | .003                        | 2005                             | 2016          | 2019     |         |           |            |      |

#### problem of each approach:

| lack<br>generality | language<br>dependent | difficult<br>to define | lack<br>generality | lack<br>context | need<br>syntax<br>structure | human<br>defined<br>features | robustness<br>interpretability |
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|

Google translates over 100 billion words a day

| litary use  |                |            |             |      |                           |                             | > 500 N                   | 1 commercia   | al users |        |          |            |   |
|-------------|----------------|------------|-------------|------|---------------------------|-----------------------------|---------------------------|---------------|----------|--------|----------|------------|---|
| rule        | rule-based MT  |            |             |      | rule-based MT example-    |                             |                           |               | MT b     | ased o | n machir | ne learnir | g |
| direct tran | isfer-based in | nterlingua | based<br>MT |      | statist<br>word<br>-based | ical MT<br>phrase<br>-based | (SMT)<br>syntax<br>-based | neural<br>(NM | МТ<br>Г) |        |          |            |   |
| 1934        | 1954           | 1966 1968  | 1982        | 1993 | 2                         | 003                         | 2005                      | 2016          | 2019     |        |          |            |   |

#### problem of each approach:

| lack<br>generality | language<br>dependent | difficult<br>to define | lack<br>generality | lack<br>context | need<br>syntax<br>structure | human<br>defined<br>features | robustness<br>interpretability |
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|

Question #2: how to increase interpretability?

Google translates over 100 billion words a day

| litary use   |               |            |             |      |                           |                             | > 500                            | M commerci    | al users |         |           |            |      |
|--------------|---------------|------------|-------------|------|---------------------------|-----------------------------|----------------------------------|---------------|----------|---------|-----------|------------|------|
| rule-        | rule-based MT |            |             |      | rule-based MT example-    |                             |                                  |               | MT Ł     | based c | on machir | ne learnir | ng È |
| direct trans | sfer-based in | nterlingua | based<br>MT |      | statist<br>word<br>-based | ical M7<br>phrase<br>-based | <b>(SMT)</b><br>syntax<br>-based | neural<br>(NM | MT<br>T) |         |           |            |      |
| 1934         | 1954          | 1966 1968  | 1982        | 1993 | 2                         | .003                        | 2005                             | 2016          | 2019     |         |           |            |      |

#### problem of each approach:

| lack<br>generality | language<br>dependent | difficult<br>to define | lack<br>generality | lack<br>context | need<br>syntax<br>structure | human<br>defined<br>features | robustness<br>interpretability |
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|

Google translates over 100 billion words a day

| litary use   |               |            |             |      |                           |                             | > 500                            | M commerci    | al users |         |           |            |      |
|--------------|---------------|------------|-------------|------|---------------------------|-----------------------------|----------------------------------|---------------|----------|---------|-----------|------------|------|
| rule-        | rule-based MT |            |             |      | rule-based MT example-    |                             |                                  |               | MT Ł     | based c | on machir | ne learnir | ng È |
| direct trans | sfer-based in | nterlingua | based<br>MT |      | statist<br>word<br>-based | ical M7<br>phrase<br>-based | <b>(SMT)</b><br>syntax<br>-based | neural<br>(NM | MT<br>T) |         |           |            |      |
| 1934         | 1954          | 1966 1968  | 1982        | 1993 | 2                         | .003                        | 2005                             | 2016          | 2019     |         |           |            |      |

#### problem of each approach:

| lack<br>generality | language<br>dependent | difficult<br>to define | lack<br>generality | lack<br>context | need<br>syntax<br>structure | human<br>defined<br>features | robustness<br>interpretability |
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|
|--------------------|-----------------------|------------------------|--------------------|-----------------|-----------------------------|------------------------------|--------------------------------|

> 500 M commercial users
MT based on machine learning
statistical MT (SMT) neural MT
word phrase syntax
-based -based -based

 > 500 M commercial users
 MT based on machine learning
 statistical MT (SMT) neural MT word phrase syntax (NMT)
 -based -based -based

noisy channel model

> 500 M commercial users

 MT based on machine learning

 statistical MT (SMT)
 neural MT

 word
 phrase
 syntax

 -based
 -based
 -based

noisy channel model

[Shannon, 1948] Information Theory

 > 500 M commercial users
 MT based on machine learning
 statistical MT (SMT) neural MT (NMT)
 word phrase syntax -based -based

noisy channel model

[Shannon, 1948] Information Theory

- input: source sentence (observation) f
- output: target sentence (decision) e
- Bayes decision rule

 > 500 M commercial users
 MT based on machine learning
 statistical MT (SMT) neural MT (NMT)
 word phrase syntax -based -based

noisy channel model

[Shannon, 1948] Information Theory

- input: source sentence (observation) f
- output: target sentence (decision) e
- Bayes decision rule

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ 

 > 500 M commercial users
 MT based on machine learning
 statistical MT (SMT) neural MT (NMT)
 word phrase syntax -based -based

noisy channel model

[Shannon, 1948] Information Theory

- input: source sentence (observation) f
- output: target sentence (decision) e
- Bayes decision rule

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ 

$$\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$$
$$= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$$















## machine translation











introduced in the previous tutorial







R









word pair semantic distance preserved



word pair semantic distance preserved



Question #3: better text embedding/representation? BERT, ELMO, GloVec, FastText, ...



word pair semantic distance preserved



word pair semantic distance preserved














#### low distortion embedding space



Can we learn only from distance in low distortion embedding space?



Can we learn only from distance in low distortion embedding space?

No, in NLP we need language models



Can we learn only from distance in low distortion embedding space?

No, in NLP we need language models

setting: multi-class classification + metric structure + 2 experts we cannot combine them to a better one by querying them [PYX, 16]

### machine translation components

what are

language models

#### machine translation components

what are language models



#### machine translation components







$$\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$$
$$= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$$



```
\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}
= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}
                                        language
                                          model
```

### evaluating language models: perplexity

let  $e_i$  be a word in the document that contains N words

PPL (perplexity) is measured as

$$\log PPL = -\frac{1}{N} \sum_{i=1}^{N} \log P(e_i | h_i)$$

 $h_i$  is the history of word  $e_i$ 

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ 

- $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$
- let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$  $= Pr(e_i|e_1,\cdots,e_{i-1})$ chain rule  $\dot{i}$ estimated as  $\approx P(e_i|e_1,\cdots,e_{i-n+1})$ relative frequency

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$  $= Pr(e_i|e_1,\cdots,e_{i-1})$ chain rule  $\dot{i}$ estimated as  $\approx P(e_i|e_1,\cdots,e_{i-n+1})$ relative frequency

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$ =  $Pr(e_i|e_1,\cdots,e_{i-1})$  chain rule i estimated as statistical  $\rightarrow \approx P(e_i | e_1, \cdots, e_{i-n+1})$ relative frequency

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$ =  $Pr(e_i|e_1, \cdots, e_{i-1})$  chain rule i estimated as statistical  $\rightarrow \approx P(e_i | e_1, \cdots, e_{i-n+1})$  relative frequency

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$ =  $Pr(e_i|e_1,\cdots,e_{i-1})$  chain rule i estimated as statistical  $\rightarrow \approx P(e_i | e_1, \cdots, e_{i-n+1})$ relative frequency

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$ =  $Pr(e_i|e_1, \cdots, e_{i-1})$  chain rule i estimated as statistical  $\rightarrow \approx P(e_i | e_1, \cdots, e_{i-n+1})$  relative frequency

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$ =  $Pr(e_i|e_1,\cdots,e_{i-1})$  chain rule i estimated as statistical  $\rightarrow \approx P(e_i | e_1, \cdots, e_{i-n+1})$ relative frequency

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$ =  $Pr(e_i|e_1,\cdots,e_{i-1})$  chain rule  $\dot{i}$ estimated as statistical  $\rightarrow \approx P(e_i | \cdot, e_{i-n+1})$  relative frequency

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$ =  $Pr(e_i|e_1,\cdots,e_{i-1})$  chain rule i estimated as statistical  $\rightarrow \approx P(e_i | e_1, \cdots, e_{i-n+1})$ relative frequency

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$ =  $Pr(e_i|e_1,\cdots,e_{i-1})$  chain rule  $\dot{i}$ estimated as statistical  $\rightarrow \approx P(e_i | e_1, \cdots, e_{i-n+1})$ relative frequency

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$ =  $Pr(e_i|e_1,\cdots,e_{i-1})$  chain rule i estimated as statistical  $\rightarrow \approx P(e_i | e_1, \cdots, e_{i-n+1})$ relative frequency

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$ =  $Pr(e_i|e_1,\cdots,e_{i-1})$  chain rule i estimated as statistical  $\rightarrow \approx P(e_i | e_1, \cdots, e_{i-n+1})$ relative frequency

#### previously

 $\hat{e} = \operatorname{argmax}_{e} \{ Pr(e|f) \}$  $= \operatorname{argmax}_{e} \{ Pr(f|e) \cdot Pr(e) \}$ let  $e_1^I$  be a sentence of a sequence of words  $e_1, e_2 \cdots e_I$  $Pr(e_1^I) = Pr(e_1, e_2, \cdots, e_I)$ =  $Pr(e_i|e_1,\cdots,e_{i-1})$  chain rule i estimated as statistical  $\rightarrow \approx P(e_i | e_1, \cdots, e_{i-n+1})$ relative frequency

## long-term memory for language models

### long-term memory for language models

- n-gram LM making prediction on fixed windows
- past n words my not be sufficient to capture the context

### long-term memory for language models

- n-gram LM making prediction on fixed windows
- past n words my not be sufficient to capture the context

RNNs are capable of conditioning the model on all previous words

## neural language model with RNN



- $x_t$  : input word vector at time t
- W: weights matrix to condition t
- $h_{t-1}$ : output of the non-linear function at the previous time step
- $\sigma$  : the non-linearity function
## Gated Recurrent Units (GRU)

- problem of vanishing gradients makes RNNs hard to train for long-term dependency
- use more complex units for activation



#### another type of complex activation unit



#### Question #4: contextual memory in language model



#### another type of complex activation unit



#### another type of complex activation unit



#### Question #5: affective neuron activation function



#### another type of complex activation unit



#### another type of complex activation unit









## NMT I: sequence-to-sequence with RNN

[Sutskever, 93]



[Sutskever, 93]

$$\frac{1}{4} \left[ -P("W") - P("X") - P("Y") - P("Z") \right]$$



[Sutskever, 93]



[Sutskever, 93]



[Sutskever, 93]



[Sutskever, 93]



back propagation operates "end-to-end"

maximize the log probability of a correct translation given the source sentence

Question #6: better training criterion? Maximum Likelihood, squared error, MAP, cross-entropy, minimum risk, ..

[Sutskever, 93]



[Sutskever, 93]



[Sutskever, 93]



back propagation operates "end-to-end"

maximize the log probability of a correct translation given the source sentence

Question #7: better training algorithm? error back propagation, contrastive estimation, ...

[Sutskever, 93]



[Sutskever, 93]



### NMT II: encoder & decoder with attention

[Luong et.al., 15]



# NMT III: multiple models with CNN

[Gehring, 16]



# NMT III: multiple models with CNN

[Gehring, 16]











## greedy search



method: take most probable word in each step problem: no way to undo decisions

• W\_\_\_\_

- WX\_\_\_\_
- WXZ\_\_\_\_ (no way back!)

#### exhaustive search



ideally: find a translation that maximize

$$P(y_1, \cdots, y_{T'} | x_1, \cdots, x_T) = \prod_{t=1}^{T'} P(y_t | x, y_1 \cdots, y_{t-1})$$
  
thod: compute all possible sequences y

problem: expensive

me

each step tracking V (vocabulary) words complexity  $O(V^T)$ 

#### beam search



$$\operatorname{score}(y_1, \cdots, y_t) = \log P_{LM}(y_1, \cdots, y_t | x)$$
$$= \sum_{i=1}^t \log P_{LM}(y_i | y_1 \cdots, y_{i-1}, x)$$

method: on each search step, keep track of the k most probable (higher score) partial translations problem: no guarantee for optimal solution

efficient!
























Question #8: more efficient or controlled search? binary NMT, constraint

### ensemble



random initialization or outputs from different iterations









human evaluation is expensive, develop automatic evaluation criteria hypothesis: ``Montreal is a city .'' reference: ``Montreal , a giant playground .''

- method to measure error rates:
  - edit distance: insertion, deletion, substitution
  - word error rate: normalized edit distance
  - HTER: Human Targeted Translation Error Rate

human evaluation is expensive, develop automatic evaluation criteria

hypothesis: ``Montreal is a city .'' reference: ``Montreal , a giant playground .'' substitution#=1

- method to measure error rates:
  - edit distance: insertion, deletion, substitution
  - word error rate: normalized edit distance
  - HTER: Human Targeted Translation Error Rate

human evaluation is expensive, develop automatic evaluation criteria

hypothesis: ``Montreal is a city .'' reference: ``Montreal , a giant playground .'' substitution#=1+1

- method to measure error rates:
  - edit distance: insertion, deletion, substitution
  - word error rate: normalized edit distance
  - HTER: Human Targeted Translation Error Rate

human evaluation is expensive, develop automatic evaluation criteria

hypothesis: ``Montreal is a city ." reference: ``Montreal , a giant playground ." substitution#=I+I deletion#=I

- method to measure error rates:
  - edit distance: insertion, deletion, substitution
  - word error rate: normalized edit distance
  - HTER: Human Targeted Translation Error Rate

human evaluation is expensive, develop automatic evaluation criteria

hypothesis: ``Montreal is a city ." reference: ``Montreal , a giant <u>playground</u> ." substitution#=1+1 deletion#=1 insertion#=0

- method to measure error rates:
  - edit distance: insertion, deletion, substitution
  - word error rate: normalized edit distance
  - HTER: Human Targeted Translation Error Rate

human evaluation is expensive, develop automatic evaluation criteria

hypothesis: ``Montreal is a city ." reference: ``Montreal , a giant <u>playground</u> ." substitution#=I+I deletion#=I insertion#=0 edit distance#=I+I+I=3

- method to measure error rates:
  - edit distance: insertion, deletion, substitution
  - word error rate: normalized edit distance
  - HTER: Human Targeted Translation Error Rate

human evaluation is expensive, develop automatic evaluation criteria

hypothesis: ``Montreal is a city ." reference: ``Montreal , a giant <u>playground</u> ." substitution#=1+1 deletion#=1 insertion#=0 edit distance#=1+1+1=3

- method to measure error rates:
  - edit distance: insertion, deletion, substitution
  - word error rate: normalized edit distance 3/6=0.5
  - HTER: Human Targeted Translation Error Rate

BLEU (Bilingual Evaluation Understudy) hypothesis: ``Montreal is a city .'' reference: ``Montreal , a giant playground .''

- method to measure accuracy
- most well-cited evaluation criterion so far
  - precision of I-gram through 4-gram
  - brevity penalty
- mainly relies on n-gram coverage

BLEU (Bilingual Evaluation Understudy)

hypothesis: ``Montreal is a city .'' reference: ``Montreal , a giant playground .''

- method to measure accuracy
- most well-cited evaluation criterion so far
  - precision of I-gram through 4-gram
  - brevity penalty
- mainly relies on n-gram coverage

BLEU (Bilingual Evaluation Understudy)

hypothesis: ``Montreal is a city .'' reference: ``Montreal , a giant playground .''

- method to measure accuracy
- most well-cited evaluation criterion so far
  - precision of I-gram through 4-gram
  - brevity penalty
- mainly relies on n-gram coverage

BLEU (Bilingual Evaluation Understudy)

hypothesis: ``Montreal is a city . '' reference: ``Montreal , a giant playground . ''

- method to measure accuracy
- most well-cited evaluation criterion so far
  - precision of I-gram through 4-gram
  - brevity penalty
- mainly relies on n-gram coverage

BLEU (Bilingual Evaluation Understudy)

hypothesis: ``Montreal is a city . " reference: ``Montreal , a giant playground . "

- method to measure accuracy
- most well-cited evaluation criterion so far
  - precision of I-gram through 4-gram
  - brevity penalty
- mainly relies on n-gram coverage

l-gram#=3 2-gram#=0 3-gram#=0 4-gram#=0

BLEU (Bilingual Evaluation Understudy)

hypothesis: ``Montreal is a city . " reference: ``Montreal , a giant playground . "

- method to measure accuracy
- most well-cited evaluation criterion so far
  - precision of I-gram through 4-gram
  - brevity penalty
- mainly relies on n-gram coverage

Question #9: higher correlation with human judgement? rich literature

BLEU (Bilingual Evaluation Understudy)

hypothesis: ``Montreal is a city . " reference: ``Montreal , a giant playground . "

- method to measure accuracy
- most well-cited evaluation criterion so far
  - precision of I-gram through 4-gram
  - brevity penalty



Question #10: better quality estimation?

Question #9: higher correlation with human judgement? rich literature









- tokenization: separate words from punctuation marks, typically based on rules
- text normalization
- word segmentation
- sentence segmentation
- domain classification

- tokenization: separate words from punctuation marks, typically based on rules
- text normalization

Question #11: text normalization

- word segmentation
- sentence segmentation
- domain classification

- tokenization: separate words from punctuation marks, ullettypically based on rules
- text normalization ightarrow
- ullet



word segmentation Question #12: better subword?

- sentence segmentation ullet
- domain classification ullet

- tokenization: separate words from punctuation marks, typically based on rules
- text normalization Question #11: text normalization
   word segmentation Question #12: better subword?
   sentence segmentation Question #13: monolingual and bilingual sentence segmentation
  - domain classification

- tokenization: separate words from punctuation marks, typically based on rules
- text normalization Question #11: text normalization
  word segmentation Question #12: better subword?
  sentence segmentation Question #13: monolingual and bilingual sentence segmentation
  domain classification Question #14: domain adaptation
#### text normalization

formal text: ``are you coming to the class tomorrow?" informal text: ``r u cuming 2 class tomr?"

- bad translation: style, domain change, noise e.g. mis-spelling
- goal: translate different lexical variations
  - add noise to training: [Michell, et.al., 19]
  - word clustering [Khan et. al., 19]



#### 明天来上课吗?

- possible segmentation boundaries:  $2^{k-1}$ 
  - k: number of characters
- n-gram approach:

n-gram approach

$$\hat{f}_1^J(c_1^K) = \operatorname*{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}}^{k_j} | c_{k_{j-2-n+1}}^{k_{j-1-n}}, ..., c_{k_{j-2}+1}^{k_{j-1}})$$

$$= \operatorname{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}+1}^{k_j})$$

#### 明天来上课吗?

- possible segmentation boundaries:  $2^{k-1}$ 
  - k: number of characters
- n-gram approach:

n-gram approach

$$\hat{f}_1^J(c_1^K) = \operatorname*{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}}^{k_j} | c_{k_{j-2-n+1}}^{k_{j-1-n}}, ..., c_{k_{j-2}+1}^{k_{j-1}})$$

$$= \operatorname{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}+1}^{k_j})$$

#### 明天来上课吗?

- possible segmentation boundaries:  $2^{k-1}$ 
  - k: number of characters
- n-gram approach:

n-gram approach

$$\hat{f}_1^J(c_1^K) = \operatorname*{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}}^{k_j} | c_{k_{j-2-n+1}}^{k_{j-1-n}}, ..., c_{k_{j-2}+1}^{k_{j-1}})$$

$$= \operatorname{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}+1}^{k_j})$$

#### 明天来上课吗?

- possible segmentation boundaries:  $2^{k-1}$ 
  - k: number of characters
- n-gram approach:

n-gram approach

$$\hat{f}_1^J(c_1^K) = \operatorname*{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}}^{k_j} | c_{k_{j-2-n+1}}^{k_{j-1-n}}, ..., c_{k_{j-2}+1}^{k_{j-1}})$$

$$= \operatorname{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}+1}^{k_j})$$

## 明天来上课吗?

- possible segmentation boundaries:  $2^{k-1}$ 
  - k: number of characters
- n-gram approach:

n-gram approach

$$\hat{f}_1^J(c_1^K) = \operatorname*{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}}^{k_j} | c_{k_{j-2-n+1}}^{k_{j-1-n}}, ..., c_{k_{j-2}+1}^{k_{j-1}})$$

$$= \operatorname{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}+1}^{k_j})$$

## 明天来上课吗?

- possible segmentation boundaries:  $2^{k-1}$ 
  - k: number of characters
- n-gram approach:

n-gram approach

$$\hat{f}_1^J(c_1^K) = \operatorname*{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}}^{k_j} | c_{k_{j-2-n+1}}^{k_{j-1-n}}, ..., c_{k_{j-2}+1}^{k_{j-1}})$$

$$= \operatorname{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}+1}^{k_j})$$

## 明天来上课吗?

- possible segmentation boundaries:  $2^{k-1}$ 
  - k: number of characters
- n-gram approach:

n-gram approach

$$\hat{f}_1^J(c_1^K) = \operatorname*{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}}^{k_j} | c_{k_{j-2-n+1}}^{k_{j-1-n}}, ..., c_{k_{j-2}+1}^{k_{j-1}})$$

$$= \operatorname{argmax}_{k_1^J,J} \prod_{j=1}^J \Pr(c_{k_{j-1}+1}^{k_j})$$



#### character based statistical MT

#### 明天来上课吗?

• Gibbs sampling: joint model word alignment and word segmentation  $\operatorname{argmax}_{f_1^J} \{ P(f_1^{J\lambda_1} P(e_1^J, b_1 I | f_1^J)^{\lambda_2} P(f_1^J, a_1^J | e_1^I)^{\lambda_3}$ 



#### character based statistical MT

#### 明天来上课吗?

• Gibbs sampling: joint model word alignment and word segmentation  $\operatorname{argmax}_{f_1^J} \{ P(f_1^{J\lambda_1} P(e_1^J, b_1 I | f_1^J)^{\lambda_2} P(f_1^J, a_1^J | e_1^I)^{\lambda_3} \}$ 

#### statistical



#### character based statistical MT

#### 明天来上课吗?

• Gibbs sampling: joint model word alignment and word segmentation  $\operatorname{argmax}_{f_1^J} \{ P(f_1^{J\lambda_1} P(e_1^J, b_1 I | f_1^J)^{\lambda_2} P(f_1^J, a_1^J | e_1^I)^{\lambda_3} \}$ 

#### statistical



Question #15: what can we borrow from statistical MT?

## character based neural MT

- integrate with neural network framework
  - [Ling, et.al., 15], [Cherry, et.al. 18], [Lee, et.al., 18]...



- efficient and affective, NMT independent
- [Gage, 1994], [Sennrich, et.al., 16]
  - aaabdaaabac
  - ZabdZabac (Z=aa)
  - ZYdZYac (Y=ab; Z=aa)
  - XdXac (X=ZY;Y=ab; Z=aa)

- efficient and affective, NMT independent
- [Gage, 1994], [Sennrich, et.al., 16]
  - aaabdaaabac
  - ZabdZabac (Z=aa)
  - ZYdZYac (Y=ab; Z=aa)
  - XdXac (X=ZY;Y=ab; Z=aa)

Question #16: better subword e.g. with morphological knowledge?

- efficient and affective, NMT independent
- [Gage, 1994], [Sennrich, et.al., 16]
  - aaabdaaabac
  - ZabdZabac (Z=aa)
  - ZYdZYac (Y=ab; Z=aa)
  - XdXac (X=ZY;Y=ab; Z=aa)

Question #16: better subword e.g. with morphological knowledge?

Question #17: unseen words?

- efficient and affective, NMT independent
- [Gage, 1994], [Sennrich, et.al., 16]
  - aaabdaaabac
  - ZabdZabac (Z=aa)
  - ZYdZYac (Y=ab; Z=aa)
  - XdXac (X=ZY;Y=ab; Z=aa)

Question #16: better subword e.g. with morphological knowledge?

Question #17: unseen words?

Question #18: named entities?

- efficient and affective, NMT independent
- [Gage, 1994], [Sennrich, et.al., 16]
  - aaabdaaabac
  - ZabdZabac (Z=aa)
  - ZYdZYac (Y=ab; Z=aa)
  - XdXac (X=ZY;Y=ab; Z=aa)

















- German to French translation is good
- French to German translation is bad
- use German to French MT system to translate German monolingual data e.g. [Sennrich, et.al., 16]
- add the synthetic data into French to German MT training
  - usually greatly improves translation quality due to data augmentation

- German to French translation is good
- French to German translation is bad
- use German to French MT system to translate German monolingual data e.g. [Sennrich, et.al., 16]
- add the synthetic data into French to German MT training
  - usually greatly improves translation quality due to data augmentation

Question #20: back translation

- German to French translation is good
- French to German translation is bad
- use German to French MT system to translate German monolingual data e.g. [Sennrich, et.al., 16]
- add the synthetic data into French to German MT training
  - usually greatly improves translation quality due to data augmentation

- German to French translation is good
- French to German translation is bad
- use German to French MT system to translate German monolingual data e.g. [Sennrich, et.al., 16]
- add the synthetic data into French to German MT training
  - usually greatly improves translation quality due to data augmentation

- lack of German French parallel training data
- rich data of German English, and French English
- generate German French parallel data using German English and French - English MT systems
- add the synthetic data into French to German MT training
  - usually greatly improves translation quality

- lack of German French parallel training data
- rich data of German English, and French English
- generate German French parallel data using German English and French - English MT systems
- add the synthetic data into French to German MT training
  - usually greatly improves translation quality

Question #21: pivot translation

- lack of German French parallel training data
- rich data of German English, and French English
- generate German French parallel data using German English and French - English MT systems
- add the synthetic data into French to German MT training
  - usually greatly improves translation quality

- lack of German French parallel training data
- rich data of German English, and French English
- generate German French parallel data using German English and French - English MT systems
- add the synthetic data into French to German MT training
  - usually greatly improves translation quality

## multiple languages

- observation in WMT'19: adding Hindi English parallel data improves Gujarati - English translation
- how about many other languages? [Firat, et.al., 16], [Johnson, et.al., 17]



# multiple languages

- observation in WMT'19: adding Hindi English parallel data improves Gujarati - English translation
- how about many other languages? [Firat, et.al., 16], [Johnson, et.al., 17]



Question #22: multi-lingual and zero resource

## multiple languages

- observation in WMT'19: adding Hindi English parallel data improves Gujarati - English translation
- how about many other languages? [Firat, et.al., 16], [Johnson, et.al., 17]


#### multiple languages

- observation in WMT'19: adding Hindi English parallel data improves Gujarati - English translation
- how about many other languages? [Firat, et.al., 16], [Johnson, et.al., 17]



#### the concept of interlingua





### the concept of interlingua interlingua analysis generation transfer target

direct translation

.....



#### the concept of interlingua





#### the concept of interlingua











metaalgorithm

#### boosting

improves prediction accuracy; non-parallelizable



Natürliche Lebensräume wurden zerstört. Dies ist eine ihrer Hauptaufgaben. Das kann so nicht weitergehen. Die Aussprache ist geschlossen. Natural habitats were destroyed. This is a major task. That cannot continue. That concludes the debate.



| Natürliche Lebensräume wurden zerstört. | Natural habitats were destroyed. |
|-----------------------------------------|----------------------------------|
| Dies ist eine ihrer Hauptaufgaben.      | This is a major task.            |
| Das kann so nicht weitergehen.          | I hat cannot continue.           |
| Die Aussprache ist geschlossen.         | That concludes the debate.       |



| Natürliche Lebensräume wurden zerstört. | Natural habitats were destroyed. |
|-----------------------------------------|----------------------------------|
| Dies ist eine ihrer Hauptaufgaben.      | This is a major task.            |
| Das kann so nicht weitergehen.          | l hat cannot continue.           |
| Die Aussprache ist geschlossen.         | That concludes the debate.       |





| Natürliche Lebensräume wurden zerstört. | Natural habitats were destroyed. |
|-----------------------------------------|----------------------------------|
| Dies ist eine ihrer Hauptaufgaben.      | This is a major task.            |
| Das kann so nicht weitergehen           | Lhat cannot continue             |
| Die Aussprache ist geschlossen.         | That concludes the debate.       |







| Natürliche Lebensräume wurden zerstört. | Natural habitats were destroyed. |
|-----------------------------------------|----------------------------------|
| Dies ist eine ihrer Hauptaufgaben.      | This is a major task.            |
| Das kann so nicht weitergehen           | Lhat cannot continue             |
| Die Aussprache ist geschlossen.         | That concludes the debate.       |





| Natürliche Lebensräume wurden zerstört. | Natural habitats were destroyed. |
|-----------------------------------------|----------------------------------|
| Dies ist eine ihrer Hauptaufgaben.      | This is a major task.            |
| Das kann so nicht weitergehen.          | Lhat cannot continue             |
| Die Aussprache ist geschlossen.         | That concludes the debate.       |





| Natürliche Lebensräume wurden zerstört. | Natural habitats were destroyed. |
|-----------------------------------------|----------------------------------|
| Dies ist eine ihrer Hauptaufgaben.      | This is a major task.            |
| Das kann so nicht weitergehen.          | Lhat cannot continue             |
| Die Aussprache ist geschlossen.         | That concludes the debate.       |







| Natürliche Lebensräume wurden zerstört. | Natural habitats were destroyed. |
|-----------------------------------------|----------------------------------|
| Dies ist eine ihrer Hauptaufgaben.      | This is a major task.            |
| Das kann so nicht weitergehen           | Lhat cannot continue             |
| Die Aussprache ist geschlossen.         | That concludes the debate.       |



each sample is a parallel sentence

| Naturliche Lebensraume wurden zerstort. | Natural habitats were destroyed. |
|-----------------------------------------|----------------------------------|
| Dies ist eine ihrer Hauptaufgaben.      | This is a major task.            |
| Das kann so nicht weitergehen.          | I hat cannot continue.           |
| Die Aussprache ist geschlossen.         | That concludes the debate.       |



now we are at this point of the execution of Design-Bagging
















### bootstrapping with combinatorial design

N=9, m=3, b=6 Question #24: enhance bootstrapping







metaalgorithm



### 30 Questions

Question #1: how to enhance NMT robustness?

Question #2: how to increase interpretability?

Question #3: better text embedding/representation? BERT, ELMO, GloVec, FastText, ...

Question #4: contextual memory in language model

Question #5: affective neuron activation function

Question #6: better training criterion? Maximum Likelihood, squared error, MAP, cross-entropy, minimum risk, ..

Question #7: better training algorithm? error back propagation, contrastive estimation, ...

Question #8: more efficient or controlled search? binary NMT, constraint

Question #9: higher correlation with human judgement? rich literature

Question #10: better quality estimation?

Question #11: text normalization

Question #12: better subword?

Question #13: monolingual and bilingual sentence segmentation

Question #14: domain adaptation

Question #15: what can we borrow from statistical MT?

Question #16: better subword e.g. with morphology?

Question #17: unseen words?

Question #18: named entities?

Question #19: higher quality in unsupervised MT?

Question #20: back translation

Question #21: pivot translation

Question #22: multi-lingual and zero resource

Question #23: interlingua exists? [Lu, et.al., 18]

Question #24: syntax in NMT

Question #25: multi-modal in NMT

Question #26: translation retrieval

Question #27: probing task

Question #28: word alignment

Question #29: MT using quantum information

Question #30: error analysis

### questions?