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nowadays machine translation 
is applied in society, science, 
arts, commerce and finance,  

literature, military, …

human language translation: nowadays



machine translation:

automatically translate from 
one human language to another



• competitions with data resources and baseline platforms, e.g.

• NIST: 2002- [https://www.nist.gov/itl/iad/mig/openmt15-evaluation]

• WMT: 2006- [http://www.statmt.org]

• IWSLT: 2004- [https://workshop2019.iwslt.org]

• projects, e.g.

• GALE, TC-Star, EuroMatrix, BOLT, and more and more

• datasets, e.g.

• LDC: [https://www.ldc.upenn.edu]

machine translation evaluations & resources

https://www.nist.gov/itl/iad/mig/openmt15-evaluation
http://www.statmt.org
https://workshop2019.iwslt.org
https://www.ldc.upenn.edu
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Question #2: how to increase interpretability?
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ê = argmaxe{Pr(e|f)}
= argmaxe{Pr(f |e) · Pr(e)}

• input: source sentence (observation)

• output: target sentence (decision)

• Bayes decision rule 

e

f

machine translation using machine learning
> 500 M commercial users

statistical MT (SMT) neural MT
(NMT)word

-based
phrase
-based

syntax
-based

MT based on machine learning
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embedding

machine translationneural

introduced in the previous tutorial
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Question #3: better text embedding/representation?
BERT, ELMO, GloVec, FastText, …
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R
What is the artist doing ?

We

is

doing

?

artist
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Was macht

der
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Künstler

Source:
Target:

No, in NLP we need

setting: multi-class classification + metric structure + 2 experts
we cannot combine them to a better one by querying them [PYX, 16]

language models

low distortion embedding spaceCan we learn only from distance in ?
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let be a word in the document that contains N wordsei

evaluating language models: perplexity

log PPL = � 1

N

NX

i=1

logP (ei|hi)

PPL (perplexity) is measured as 

is the history of word hi ei
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long-term memory for language models

• n-gram LM making prediction on fixed windows 

• past n words my not be sufficient to capture the context

RNNs are capable of conditioning the model on all previous words



•      : input word vector at time t

• W: weights matrix to condition t

•         : output of the non-linear function at the previous time step

•     : the non-linearity function

neural language model with RNN

xt

�

ht�1



Gated Recurrent Units (GRU)

• problem of vanishing gradients makes RNNs hard to train for 
long-term dependency

• use more complex units for activation
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Long-Short-Term-Memories

another type of complex activation unitQuestion #5: affective neuron activation function
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NMT I: sequence-to-sequence with RNN

A

W

given word

hidden state

predicted word

B

X

C

Y

EOS

Z

X Y ZW

EOS

ht = sigm(Whxxt +Whhht�1)

yt = W yhht

h

y

x

P (y1, · · · , yT 0 |x1, · · · , xT ) =
T 0Y

t=1

P (yt|x, y1 · · · , yt�1)

t = 1 t = 2

[Sutskever, 93]

words are in embedded representation
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maximize the log probability of a correct translation given the source sentence 

Question #6: better training criterion? 
Maximum Likelihood, squared error, MAP, cross-entropy, minimum risk, .. 
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�P (“W”)�P (“X”)�P (“Y”)�P (“Z”)1
4 [ ]

back propagation operates “end-to-end”

maximize the log probability of a correct translation given the source sentence 

Question #7: better training algorithm? 
error back propagation, contrastive estimation, …  
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NMT II: encoder & decoder with attention

Xpredicted word Y EOSy

given word

hidden state

A B EOS

h

x
t = 1 t = 2

hidden state h

attention

context

[Luong et.al., 15]

BOS

BOS

encoder

decoder



A B C D E F G

NMT III: multiple models with CNN

W X Y

[Gehring, 16]

h h
x x



A B C D E F G

NMT III: multiple models with CNN

W X Y

CNNs

LSTM

attention

[Gehring, 16]

h h
x x
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machine translation components

search



greedy search

method: take most probable word in each step
problem: no way to undo decisions

• W ___

• W X ___

• W X Z ___  (no way back!)



exhaustive search

ideally: find a translation that maximize

method: compute all possible sequences y 

complexity O   

problem: expensive

each step tracking  V (vocabulary) words
O(V T )

P (y1, · · · , yT 0 |x1, · · · , xT ) =
T 0Y

t=1

P (yt|x, y1 · · · , yt�1)



beam search

method: on each search step, keep track of the k most 
              probable (higher score) partial translations 
problem: no guarantee for optimal solution

efficient!

score(y1, · · · , yt) = logPLM (y1, · · · , yt|x)

=
tX

i=1

logPLM (yi|y1 · · · , yi�1, x)
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ensemble

random initialization or
outputs from different iterations
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• method to measure error rates:

• edit distance: insertion, deletion, substitution

• word error rate: normalized edit distance

• HTER: Human Targeted Translation Error Rate

machine translation evaluation

hypothesis: ``Montreal is a city .” 

reference: ``Montreal , a giant playground .” 
insertion#=0deletion#=1substitution#=1substitution#=1+1

edit distance#=1+1+1=3

human evaluation is expensive, develop automatic evaluation criteria 

3/6=0.5



• method to measure accuracy

• most well-cited evaluation criterion so far

• precision of 1-gram through 4-gram

• brevity penalty

• mainly relies on n-gram coverage

machine translation evaluation: BLEU
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BLEU (Bilingual Evaluation Understudy)
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• method to measure accuracy

• most well-cited evaluation criterion so far

• precision of 1-gram through 4-gram

• brevity penalty

• mainly relies on n-gram coverage

machine translation evaluation: BLEU

hypothesis: ``Montreal is a city . ” 

reference: ``Montreal , a giant playground . ” 

1-gram#=3
2-gram#=0
3-gram#=0
4-gram#=0

BLEU (Bilingual Evaluation Understudy)

Question #9: higher correlation with human judgement? rich literature

Question #10: better quality estimation?
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• tokenization: separate words from punctuation marks, 
typically based on rules

• text normalization

• word segmentation

• sentence segmentation

• domain classification

pre-processing

Question #11: text normalization

Question #12: better subword?

Question #13: monolingual and 
bilingual sentence segmentation

Question #14: domain adaptation



• bad translation: style, domain change, noise e.g. mis-spelling

• goal: translate different lexical variations

• add noise to training: [Michell, et.al., 19]

• word clustering [Khan et. al., 19]

text normalization

formal text: ``are you coming to the class tomorrow?” 

informal text: ``r u cuming 2 class tomr?” 
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• possible segmentation boundaries: 

• k: number of characters

• n-gram approach: 
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Question #1: how to enhance NMT robustness?

Question #2: how to increase interpretability?

Question #4: contextual memory in language model

Question #5: affective neuron activation function

Question #3: better text embedding/representation?
BERT, ELMO, GloVec, FastText, …

Question #6: better training criterion? 
Maximum Likelihood, squared error, MAP, cross-entropy, minimum risk, .. 

Question #7: better training algorithm? 
error back propagation, contrastive estimation, …  

Question #8: more efficient or controlled search? binary NMT, constraint

Question #9: higher correlation with human judgement? rich literature

Question #10: better quality estimation?

30 Questions



Question #11: text normalization

Question #12: better subword?

Question #13: monolingual and bilingual sentence segmentation

Question #14: domain adaptation

Question #15: what can we borrow from statistical MT?

Question #16: better subword e.g. with morphology?

Question #17: unseen words?

Question #18: named entities?

Question #19: higher quality in unsupervised MT?

Question #20: back translation 



Question #21: pivot translation

Question #22: multi-lingual and zero resource

Question #23: interlingua exists? [Lu, et.al., 18]

Question #24: syntax in NMT

Question #25: multi-modal in NMT

Question #26: translation retrieval

Question #27: probing task
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