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Syntax 
How words can be arranged together to form a 
grammatical sentence. 

• This is a valid sentence. 

• *A sentence this valid is. 

An asterisk is used to indicate ungrammaticality. 

One view of syntax: 

Generate all and exactly those sentences of a language which 
are grammatical 
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The First Grammarian 
Panini (Pāṇini) from the 4th century B.C. developed a 
grammar for Sanskrit. 

 

 

 

 

 

 

 
Source: https://archive.org/details/ashtadhyayitrans06paniuoft 
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What We Don’t Mean by Grammar 
Rules or guides for how to write properly 

e.g.,  

 

 

 

 

 

 

 

These style guides are prescriptive. We are concerned 
with descriptive grammars of naturally occurring 
language. 
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Basic Definitions Terms 
• grammaticality 

• prescriptivism vs descriptivism 

• constituency 

• grammatical relations 

• subcategorization 
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Constituency 
A group of words that behave as a unit 

Noun phrases: 

• computational linguistics, it, Justin Trudeau, three people 
on the bus, “Jean-Claude Van Damme, the Muscles from 
Brussels” 

Adjective phrases: 

• blue, purple, very good, ridiculously annoying and tame 
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Tests for Constituency 
1. They can appear in similar syntactic environments. 

I saw …  

 it 

 Jean-Claude Van Damme, the Muscles from Brussels 

 three people on the bus 

 *Van 

 *on the 
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Tests for Constituency 
2. They can be placed in different positions or replaced 
in a sentence as a unit. 

[Jean-Claude Van Damme, the Muscles from Brussels], beat 
me up. 

It was [Jean-Claude Van Damme, the Muscles from Brussels], 
who beat me up. 

I was beaten up by [Jean-Claude Van Damme, the Muscles 
from Brussels]. 

He beat me up. (i.e., J-C V D, the M from B) 
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Tests for Constituency 
3. It can be used to answer a question. 

Who beat you up? 

[Jean-Claude Van Damme, the Muscles from Brussels] 

*[the Muscles from] 
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Grammatical Relations 
Relationships between different constituents 

Subject 

• Jean-Claude Van Damme relaxed. 

• The wallet was stolen by a thief. 

(Direct) object 

• The boy kicked the ball. 

Indirect object 

• She gave him a good beating. 

 

There are many other grammatical relations. 
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Subcategorization 
Notice that different verbs seem to require a different 
number of arguments: 

relax 1 subj 

steal* 2 subj, dobj 

kick 2 subj, dobj 

give 3 subj, iobj, dobj 

*the passive changes the subcategorization of the verb 
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More Subcategorization 
Some other possibilities: 

want 2 subj, inf. clause 

• I want to learn about computational linguistics. 

apprise 3 subj, obj, pobj with of 

• The minister apprised him of the new developments. 

different 2 subj, pobj with from/than/to 

• This course is different [from/than/to] what I expected. 
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Short Exercise 
Identify the prepositional phrase in the following 
sentence. Give arguments for why it is a constituent. 

 

The next assignment is due on Tuesday, October 16th. 
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Formal Grammars 
Since we are computational linguists, we will use a 
formal computational model of grammar to account for 
these and other syntactic concerns. 

Formal grammar 

Rules that generate a set of strings that make up a language. 

(In this context, language simply refers to a set of strings.) 

 

Why? 

• Formal understanding lets us develop appropriate 
algorithms for dealing with syntax. 

• Implications for cognitive science/language learning 
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FSAs and Regular Grammars 
FSAs can be used to describe aspects of English 
morphology 

• An FSA generates a regular language 

• FSAs correspond to a class of formal grammars called 
regular grammars 

To describe the syntax of natural languages (with 
multiple constituents, subcategorization, etc.), we need 
a more powerful class of formal grammars – context 
free grammars (CFGs). 
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Context Free Grammars (CFG)s 
Rules that describe what possible sentences are: 

S  NP VP 

NP  this 

VP  V  

V  is | kicks| jumps | rocks 
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Constituent Tree 
Trees (and sentences) generated by the previous rules: 

S  NP VP   NP  this 

VP  V    V  is | rules| jumps | rocks 
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Formal Definition of a CFG 
A 4-tuple: 

𝑁 set of non-terminal symbols 

Σ set of terminal symbols 

𝑅 set of rules or productions in the form 𝐴 → Σ ∪ 𝑁 ∗, 
 and 𝐴 ∈ 𝑁 

𝑆 a designated start symbol, 𝑆 ∈ 𝑁 
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Extended Example 
Let’s develop a CFG that can account for verbs with 
different subcategorization frames: 

intransitive verbs relax  1 subj 

transitive verbs steal, kick 2 subj, dobj 

ditransitive verbs give  3 subj, iobj, dobj 
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Undergeneration and Overgeneration 
Problems with above grammar: 

Undergeneration: misses valid English sentences 

• The boy kicked the ball softly. 

• The thief stole the wallet with ease. 

Overgeneration: generates ungrammatical sentences 

• *The boy kick the ball. 

• *The thieves steals the wallets. 
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Extension 1 
Let’s add adverbs and prepositional phrases to our 
grammar 
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Recursion 
Consider the following sentences: 

• The dog barked. 

• I know that the dog barked. 

• You know that I know that the dog barked. 

• He knows that you know that I know that the dog barked. 

• … 

In general: 

S -> NP VP   VP -> Vthat Sthat 

VP -> Vintr   Vthat-> know 

Vintr -> barked  Sthat -> that S 
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Recursion 
This recursion in the syntax of English means that 
sentences can be infinitely long (theoretically). 

• For a given sentence S, you can always make it longer by 
adding [I/you/he know(s) that S]. 

 

In practice, the length is limited because we have 
limited attention span/memory/processing power. 
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Exercise 
Let’s try to fix the subject-verb agreement issue: 

Present tense: 

Singular third-person subject -> verb has affix of –s or –es 

Otherwise -> base form of verb 

(to be is an exception, along with other irregular verbs) 
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Are Natural Languages CFGs? 
Recall that a formal language is defined to be a set of 
strings constructed over a specified vocabulary 

Are natural languages CFGs? i.e., can we define each 
natural language (e.g., English, French, German, etc.) as 
a CFG? 

Other possibilities: Chomsky hierarchy 
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Cross-serial Dependencies 
Swiss German (Shieber, 1985) and Bambara (Culy, 
1985) have structures that generate strings which 
cannot be captured by CFGs (cross-serial 
dependencies): 

𝑎𝑚𝑏𝑛𝑐𝑚𝑑𝑛 

Relies on following assumption: 

• m and n can be arbitrarily large values 

• strings are either in a language or not (grammatical or 
ungrammatical) 

 

May not be the most useful question to ask after all 
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Parsing 
Input sentence, grammar   output parse tree 

Parsing into a CFG: constituent parsing 

Parsing into a dependency representation: dependency 
parsing 

 

Difficulty: need an efficient way to search through 
plausible parse trees for the input sentence 
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Parsing into a CFG 
Given: 

1. CFG 

2. A sentence made up of words that are in the terminal 
vocabulary of the CFG 

 

Task: Recover all possible parses of the sentence. 

 

Why all possible parses? 
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Syntactic Ambiguity 
I shot the elephant in my pyjamas. 
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Types of Parsing Algorithms 
Top-down 

Start at the top of the tree, and expand downwards by using 
rewrite rules of the CFG to match the tokens in the input 
string 

e.g., Earley parser 

Bottom-up 

Start from the input words, and build ever-bigger subtrees, 
until a tree that spans the whole sentence is found 

e.g., CYK algorithm, shift-reduce parser 

Key to efficiency is to have an efficient search strategy 
that avoids redundant computation 
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CYK Algorithm 
Cocke-Younger-Kasami algorithm 

• A dynamic programming algorithm – partial solutions are 
stored and efficiently reused to find all possible parses for 
the entire sentence. 

• Also known as the CKY algorithm 

Steps: 

1. Convert CFG to an appropriate form 

2. Set up a table of possible constituents 

3. Fill in table 

4. Read table to recover all possible parses 
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Dealing with Syntactic Ambiguity 
In practice, one of these is more likely than the other: 

 

 

 

 

 

 

 

 

How to distinguish them? 
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Probabilistic CFGs 
Associate each rule with a probability: 

e.g., 

NP  NP PP 0.2 

NP  Det N 0.4 

NP  I  0.1 

… 

V  shot  0.005 

 

Probability of a parse tree for a sentence is the product 
of the probabilities of the rules in the tree. 
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Formally Speaking 
For each nonterminal 𝐴 ∈ 𝑁, 

 Pr 𝛼 → 𝛽 = 1

𝛼→𝛽∈𝑅 𝑠.𝑡.𝛼=𝐴

 

• i.e., rules for each LHS form a probability distribution 

 

If a tree 𝑡 contains rules 𝛼1 → 𝛽1, 𝛼2 → 𝛽2, …, 

Pr 𝑡 = Pr (𝛼𝑖 → 𝛽𝑖)

𝑖

 

• Tree probability is product of rule probabilities 
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Probabilistic Parsing 
Goal: recover the best parse for a sentence, along with 
its probability 

For a sentence, sent, 

let 𝜏(sent) be the set of possible parses for it, 

we want to find 
argmax
𝑡∈𝜏(sent)

Pr (𝑡) 

Can extend CYK to keep track of probabilities in table 
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How to Train a PCFG? 
Derive from a treebank, such as WSJ. 

Simplest version: 

• each LHS corresponds to a categorical distribution 

• outcomes of the distributions are the RHS 

• MLE estimates: 

Pr 𝛼 → 𝛽 =
#(𝛼 → 𝛽)

#𝛼 
 

• Can smooth these estimates in various ways 
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