
ASR with Kaldi Tutorial

Gilles Boulianne1 Vishwa Gupta1 Jan Trmal2 Jérôme Labonté1 Si-

mon Desrochers1

Presented at École de Technologie Supérieure, Montréal, June 10, 2019

1Centre de recherche Informatique de Montréal

2Johns Hopkins University

Overview

Schedule
09:00 AM to 10h20 AM Fundamentals

10:20 AM to 10h40 AM Break

10:40 AM to 11h30 AM Case-study: Air Traffic Control Challenge

11:30 AM to 12h00 PM Prepare and launch your own ASR

12:00 PM to 01:30 PM Lunch Break

01:30 PM to 03:00 PM ASR System Building Lab

03:00 PM to 03:30 PM Coffee break

03:30 PM to 05:00 PM Debugging and error analysis

1

Part I

Fundamentals

2

Outline

Introducing Kaldi

Automatic Speech Recognition

Weighted Finite-State Transducers

Next steps

2

Introducing Kaldi

Introducing Kaldi

Kaldi is a toolkit for voice-related applications

• Speech recognition

• Speaker recognition

• Speaker diarisation

Important features

• C++ library, command-line tools, scripts.

• BLAS and LAPACK routines, CUDA GPU implementation.

• Licensed under Apache 2.0, not restrictive.

• Recipes for building speech recognition systems with widely

available databases.

• Pre-trained models publicly released.

3

Kaldi today

Kaldi began in a JHU workshop in Baltimore, 2009.

• Community of Researchers Cooperatively Advancing ASR
• Top ASR performance in open benchmark tests

• NIST OpenKWS (’14), IARPA ASpIRE (’15), MGB-3 (’17)

• Widely adopted in academia and industry
• 2900+ citations up to now based on Google scholar data

• Used by several US and non-US companies

• Main “trunk” maintained by Johns Hopkins
• Forks contain specializations by JHU and others

From: Jan Trmal et al., ”Kaldi ASR Tutorial for SLTU 2018”

4

Kaldi’s team

From: Jan Trmal et al., ”Kaldi ASR Tutorial for SLTU 2018”

5

Automatic Speech Recognition

ASR: From Sound to Computation

Sound in, computation, words out.

From: Gales and Young, The Application of Hidden Markov Models”, 2007.

6

ASR: Time-frequency representation

Spectrogram: perceptual experiments, speech synthesis show that

it represents content, speaker identity, emotion, etc.

7

ASR: From sound to feature vectors

Filter banks

MFCCs

CMVN

8

ASR: Feature vectors

From spectrogram and images, feature vector representation.

From: A. Sehr, “Reverberant Modeling for Robust Distant-Talking Speech Recognition,” 2010

Matrix [time x D]:

O = [o1, o2, . . . , oT] = ot for t = 1, . . . ,T

where ot is a feature vector in RD, one every 10 ms.

9

ASR: Maximum Likelihood

Maximum likelihood approach: not only one, but most successful.

Given:

• O : a sequence of ”observations” (feature vectors)

• P(W | O) : the probability distribution of a word sequence

given an observation sequence

O = [o1, o2, . . . , oT]

W = [w1,w2, . . . ,wN]

Find Ŵ = argmaxWP(W | O)

Estimate P(W | O) directly: pattern recognition approach.

Not successful in the past, now revisited as end-to-end modeling.

10

ASR: ASR equation

Baye’s rule:

P(W | O) =
P(O |W)P(W)

P(O)
(1)

Ŵ = argmaxWP(O |W)P(W) (2)

for a given O.

Called a generative model: W → O.

Sub-problems:

• Estimate model

• Find best W that maximizes

acoustics

P(O |W)

language

P(W) .

11

ASR: Language Model

P(W) in ASR equation.

Chain rule allows the decomposition:

P(wi , . . . ,w1) = P(wi | wi−1, . . . ,w1) · P(

state

wi−1, . . . ,w1) (3)

P(si) = P(wi | si−1)P(si−1) (4)

N-grams: limit history to previous N words (Markov property):

P(wi−1, . . . ,w1) ≈ P(wi−1, . . . ,wi−N)

Useful because: compact representation, regular grammar.

12

ASR: Graph representation

P(the,big, cat) = 1.0× 0.25× 1.0 = 0.25 (5)

P(the, small, cat) = 1.0× 0.75× 1.0 = 0.75 (6)

P(a,white, cat) = 1.0× 0.10× 1.0 = 0.10 (7)

P(a, cat) = 1.0× 0.90× 1.0 = 0.90 (8)
13

ASR: Acoustic Model

P(O |W) : chain rule, and independence assumption.

Boils down to:

P(O | Q)P(Q) =
T∏
i=1

P(o i | qi)×
T∏
i=1

P(qi | qi−1)

where Q = [q1, q2, . . . , qT] is a sequence of ”acoustic states” (one

per frame).

How do we compute P(ot | qi) ?

14

ASR: Gaussian Mixture Model

Gaussian distribution pdf:

P(ot) = N (ot ;µ,σ
2)

Simplistic, cannot account for variability in speaker, channel, etc.

Mixture of Gaussian pdf:

P(ot) =
C∑

c=1

φcN (ot ;µc ,σ
2
c)

Parameters for each pdf: φc ,µc ,σc for c = 1, . . . ,C

Final form: P(ot | pdfi)

15

ASR: Hidden Markov Model

Still missing: P(Q |W) which maps from words to acoustic states

(one per frame).

Spoken words have varying length.

pdf12 pdf23 pdf34

pdf12 pdf22 pdf23 pdf34

pdf12 pdf22 pdf22 ... pdf23 pdf34

pdf12 pdf23 pdf33 pdf34

pdf12 pdf23 pdf33 ... pdf34

etc. 16

ASR: Decision Tree

Monophones: context-independent phones.

Triphones: phones with one left-context phone and one

right-context phone.

W AY T -> W+AY W-AY+T AY-T

Decision tree: clusters several triphones sharing one pdf.

From: Gales and Young, The Application of Hidden Markov Models”, 2007.

17

ASR: Wrap up

We now have a way of computing prob. of an observation

sequence given any word sequence.

P(O |W) =
∑
Q

P(O | Q)P(Q |W)P(W)

And the best path:

Ŵ = argmaxwP(O |W)P(W) (9)

is the solution that maximizes the prob (our original problem):

P(W | O) =
P(O |W)P(W)

P(O)
(10)

18

ASR: Finding most probable sequence

Graph representation: probability of a sequence = product of

probabilities on a path.

Most probable sequence is given by most probable path in graph.

Graph search algorithms:

• depth-first: A-star, ...

• breadth-first: Viterbi beam search, token passing, ...

19

ASR: problem solved?

How to get probabilities in language and acoustic models?

Estimate from data: training the models.

For good results, training require lots of data, and lots of

computation.

So far, acoustic model based on words. Need to train each word.

Each new task, each change in vocabulary requires retraining the

model.

Lots of variation for a given word, difficult to capture.

Need to complicate our models a little bit, but we’ll need more

mathematical tools.

20

Weighted Finite-State Transducers

WFST: Weighted Finite State Automata

Finite state automata with labels and weights.

Example: language model.

In Kaldi, most common weight type is minus log probability.

Cost (length) of a path: sum of arc weights.

Union of paths: min of arc weights.

Best probability path = shortest path.

Main operators: intersection, minimization.

21

WFST: Weighted Finite State Transducers

Finite state automata with input labels, output labels and weights.

Maps sequences of input labels to sequences of output labels.

Example: pronunciation lexicon.

Maps phoneme sequences to word sequences, with pronunciation

probability.

22

WFST: Composition ◦

An operation that combines 2 WFSTs.

Fa with input A and output B.

Fb with input B and output C .

Fa ◦ Fb maps input A to output C .

Generalization of intersection (think in sets of sequences).

Weights are combined according to probability rules (in -log

domain).

23

WFST: Composition example

Example: phonemes to word sequences.

24

WFST: Problem decomposition

So far, we have a word-based ASR model w → o

Phoneme-based model? Only 30 to 60 units instead of thousands.

Phonemes are easier to model and more flexible:

w → p → o

Coarticulation modeled with phonemes-in-context:

w → p → pic → o

We will model phonemes-in-context with GMM pdf’s:

w → p → pic → pdf → o

25

WFST: Standard decomposition

• G (grammar): maps words to word sequence with LM probs.

• L (lexicon): maps phonemes sequences to words, with

pronunciation probs.

• C (context): maps phonemes-in-context to phoneme

sequences.

• H (HMM): maps phonemes-in-context to pdf id sequences.

• O (observations): provides P(ot | pdfi)

Ŵ = bestpath(O ◦ H ◦ C ◦ L ◦ G)

26

WFST: Comments on the approach

Why WFSTs instead of just coding each model.

• Take advantage of FST theory and powerful mathematical

tools

• Most concepts in ASR can be understood in terms of WFST

• Existing libraries of tools for composition, determinization,

minimization, best path (e.g. openFST)

• Semi-ring concept which allows symbols and weights to be

generalized

• A complete ASR decoder could be written in a few lines of

code (but no in practice)

27

Next steps

Break!

After break, overview of what it involves building an ASR system

from scratch:

• Real use-case (Air Traffic Control Challenge)

• Including recent Deep Neural Networks architectures

Then you get a new dataset and create our own ASR system.

28

Part II

Building an ASR System:

Case-Study

Part III

ASR System Building Lab

28

Preparation

Launching the recipe

Login to the master node then to a compute node:

ssh user@ec2-52-205-171-112.compute-1.amazonaws.com

qlogin -q all.q@g01

Create your directory and copy the recipe there:

cd /export/fs01

mkdir -p username/google_bengali

cd username/google_bengali

cp -R /export/fs01//jtrmal/google_bengali/s5 .

cd s5

Launch the recipe:

./run.sh --stage 1 |& tee run.log
29

Kaldi organization

s5

cmd.sh, path.sh, run.sh

conf: configuration files

local: scripts

steps: scripts

utils: scripts

corpus

data

dev

train

lang

local

lang

30

run.sh

31

prepare data.sh: text

utt_id WORD1 WORD2 WORD3 WORD4 ...

head -5 data/dev/text

32

prepare data.sh:wav.scp

head -5 data/dev/wav.scp

33

prepare data.sh:utt2spk

head -5 data/dev/utt2spk

34

Training, dev, eval split

wc -l data/dev/*

2790 data/dev/text

2790 data/dev/utt2spk

51 data/dev/spk2utt

2790 data/dev/wav.scp

wc -l data/train/*

12000 data/train/text

12000 data/train/utt2spk

457 data/train/spk2utt

12000 data/train/wav.scp

35

prepare dict.sh

Corpus-specific language.

lexicon.txt

nonsilence_phones.txt

optional_silence.txt

silence_phones.txt

oov.txt

36

prepare dict.sh: lexicon.txt

head -5 ./data/local/dict/lexicon.txt

37

data/lang

Script generated files.

L.fst

L_disambig.fst

oov.int

oov.txt

phones.txt

topo

words.txt

38

Language model training

prepare lm.sh

format lm.sh

data/lang_test:

G.fst

L.fst

L_disambig.fst

data/lang_test_fg:

G.carpa

G.fst
39

path.sh, cmd.sh

path.sh sets up environment variables to point to Kaldi and tools

installation directories.

export KALDI_ROOT=/export/fs01/jtrmal/kaldi

cmd.sh defines how parallelization is implemented.

• run.pl runs tasks on the local machine.

• queue.pl allocates jobs on a cluster using Sun Grid Engine.

• slurm.pl allocates jobs on a cluster using SLURM.

queue.pl and slurm.pl need to be configured with your cluster

queue names.

40

HMM-GMM training

Feature Extraction

41

Training steps

• Extract features: make mfcc.sh

• Train monophones: train mono.sh

• Align monophones: align si.sh

• Train small triphones: train deltas.sh

• Align small triphones: align si.sh

• Train large triphones: train deltas.sh

• Align large triphones: align si.sh

• Train LDA+MLLT triphones: train sat.sh

42

Decoding

In several places, evaluate word error rate with small LM

(decode.sh) or large LM (lmrescore.sh).

43

Debugging

Debugging

• Monitoring progress on cluster: qstat

• Restarting --stage n

• Scripts logs, cluster logs

• Cutting and pasting script lines

44

Looking at contents

Ark and scp files.

copy-feats scp:data/train/feats.scp ark,t:- | head -2

45

Examples

tree-info exp/tri3b/tree

gmm-info exp/tri3b/final.mdl

46

Examples

steps/get_train_ctm.sh data/train data/lang exp/tri2b_ali

head exp/tri2b_ali/ctm

grep 18a52_015f1ea678 data/train/text

47

Error rate

find exp -name "best_wer" | xargs cat | sort -k2,2g

48

DNN Training

DNN Training

• i-vectors

• egs

• network configuration

49

	Fundamentals
	Introducing Kaldi
	Automatic Speech Recognition
	From Sound to Computation
	Maximum likelihood
	Language model
	Acoustic model
	Decision Tree
	Wrap up

	Weighted Finite-State Transducers
	Weighted Acceptors
	Weighted Transducers
	ASR standard decomposition

	Next steps

	Building an ASR System: Case-Study
	ASR System Building Lab
	Preparation
	Launching the recipe
	Kaldi organization
	prepare_data.sh: text
	prepare_data.sh:wav.scp
	prepare_data.sh:utt2spk
	Training, dev, eval split
	prepare_dict.sh
	prepare_dict.sh: lexicon.txt
	prepare_lang.sh
	Language Model Training
	path.sh, cmd.sh

	HMM-GMM training
	Feature Extraction
	Training steps
	Decoding

	Debugging
	Looking at contents
	Error rate

	DNN Training

