ASR with Kaldi Tutorial

Gilles Boulianne¹ Vishwa Gupta¹ Jan Trmal² Jérôme Labonté¹ Simon Desrochers¹ Presented at École de Technologie Supérieure, Montréal, June 10, 2019

¹Centre de recherche Informatique de Montréal

²Johns Hopkins University

Schedule

 09:00 AM to 10h20 AM
 Fu

 10:20 AM to 10h40 AM
 Br

 10:40 AM to 11h30 AM
 Ca

 11:30 AM to 12h00 PM
 Pro

 12:00 PM to 01:30 PM
 Lu

 01:30 PM to 03:00 PM
 AS

 03:00 PM to 03:30 PM
 Co

 03:30 PM to 05:00 PM
 De

Fundamentals Break Case-study: Air Traffic Control Challenge Prepare and launch your own ASR Lunch Break ASR System Building Lab Coffee break Debugging and error analysis

Part I

Fundamentals

Introducing Kaldi

Automatic Speech Recognition

Weighted Finite-State Transducers

Next steps

Introducing Kaldi

Introducing Kaldi

Kaldi is a toolkit for voice-related applications

- Speech recognition
- Speaker recognition
- Speaker diarisation

Important features

- C++ library, command-line tools, scripts.
- BLAS and LAPACK routines, CUDA GPU implementation.
- Licensed under Apache 2.0, not restrictive.
- Recipes for building speech recognition systems with widely available databases.
- Pre-trained models publicly released.

Kaldi today

Kaldi began in a JHU workshop in Baltimore, 2009.

- Community of Researchers Cooperatively Advancing ASR
- Top ASR performance in open benchmark tests
 - NIST OpenKWS ('14), IARPA ASpIRE ('15), MGB-3 ('17)
- Widely adopted in academia and industry
 - 2900+ citations up to now based on Google scholar data
 - Used by several US and non-US companies
- Main "trunk" maintained by Johns Hopkins
 - Forks contain specializations by JHU and others



From: Jan Trmal et al., "Kaldi ASR Tutorial for SLTU 2018"

Kaldi's team

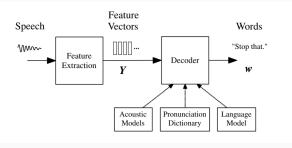
Co-Pl's, PhD Students and Sponsors

- Sanjeev Khudanpur
- Daniel Povey
- Jan Trmal
- L. Paola Garcia
- Mahsa Yarmohammadi
- Pegah Ghahremani
- Vimal Manohar
- David Snyder
- Yiming Wang
- Hainan Xu
- Xiaohui Zhang
- and several others

From: Jan Trmal et al., "Kaldi ASR Tutorial for SLTU 2018"

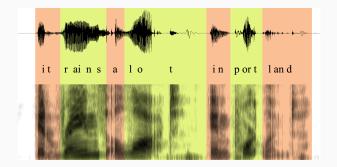
Automatic Speech Recognition

Sound in, computation, words out.



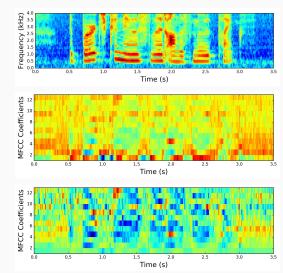
From: Gales and Young, The Application of Hidden Markov Models", 2007.

Spectrogram: perceptual experiments, speech synthesis show that it represents content, speaker identity, emotion, etc.



ASR: From sound to feature vectors

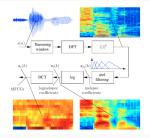
Filter banks



MFCCs

ASR: Feature vectors

From spectrogram and images, feature vector representation.



From: A. Sehr, "Reverberant Modeling for Robust Distant-Talking Speech Recognition," 2010

Matrix [time x D]: $\boldsymbol{O} = [\boldsymbol{o}_1, \boldsymbol{o}_2, \dots, \boldsymbol{o}_T] = \boldsymbol{o}_t$ for $t = 1, \dots, T$ where \boldsymbol{o}_t is a feature vector in $\mathcal{R}^{\mathcal{D}}$, one every 10 ms.

ASR: Maximum Likelihood

Maximum likelihood approach: not only one, but most successful. Given:

- **O** : a sequence of "observations" (feature vectors)
- $P(W \mid O)$: the probability distribution of a word sequence given an observation sequence

$$O = [o_1, o_2, \dots, o_T]$$
$$W = [w_1, w_2, \dots, w_N]$$
Find $\hat{W} = \operatorname{argmax}_W P(W \mid O)$

Estimate $P(W \mid \mathbf{O})$ directly: pattern recognition approach.

Not successful in the past, now revisited as end-to-end modeling.

ASR: ASR equation

Baye's rule:

$$P(W \mid \boldsymbol{O}) = \frac{P(\boldsymbol{O} \mid W)P(W)}{P(\boldsymbol{O})}$$
(1)

$$\hat{W} = \operatorname{argmax}_{W} P(\boldsymbol{O} \mid W) P(W)$$
(2)

for a given **O**.

Called a generative model: $W \rightarrow \boldsymbol{O}$.

Sub-problems:

• Estimate model

ASR: Language Model

P(W) in ASR equation.

Chain rule allows the decomposition:

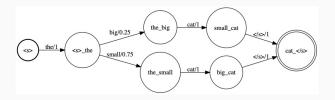
$$P(w_{i},...,w_{1}) = P(w_{i} \mid w_{i-1},...,w_{1}) \cdot P(w_{i-1},...,w_{1})$$
(3)
$$P(s_{i}) = P(w_{i} \mid s_{i-1})P(s_{i-1})$$
(4)

N-grams: limit history to previous N words (Markov property):

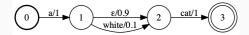
$$P(w_{i-1},\ldots,w_1) \approx P(w_{i-1},\ldots,w_{i-N})$$

Useful because: compact representation, regular grammar.

ASR: Graph representation



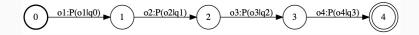
$$P(\text{the, big, cat}) = 1.0 \times 0.25 \times 1.0 = 0.25$$
(5)
$$P(\text{the, small, cat}) = 1.0 \times 0.75 \times 1.0 = 0.75$$
(6)



 $P(a, white, cat) = 1.0 \times 0.10 \times 1.0 = 0.10$ (7) $P(a, cat) = 1.0 \times 0.90 \times 1.0 = 0.90$ (8) $P(\mathbf{O} \mid W)$: chain rule, and independence assumption. Boils down to:

$$P(\boldsymbol{O} \mid Q)P(Q) = \prod_{i=1}^{T} P(\boldsymbol{o}_i \mid q_i) imes \prod_{i=1}^{T} P(q_i \mid q_{i-1})$$

where $Q = [q_1, q_2, ..., q_T]$ is a sequence of "acoustic states" (one per frame).



How do we compute $P(\boldsymbol{o}_t \mid q_i)$?

Gaussian distribution pdf:

$$P(\boldsymbol{o}_t) = \mathcal{N}(\boldsymbol{o}_t; \boldsymbol{\mu}, \boldsymbol{\sigma}^2)$$

Simplistic, cannot account for variability in speaker, channel, etc. Mixture of Gaussian pdf:

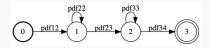
$$P(\boldsymbol{o}_t) = \sum_{c=1}^{C} \phi_c \mathcal{N}(\boldsymbol{o}_t; \boldsymbol{\mu}_c, \boldsymbol{\sigma}_c^2)$$

Parameters for each pdf: ϕ_c, μ_c, σ_c for c = 1, ..., CFinal form: $P(\boldsymbol{o}_t \mid pdf_i)$

ASR: Hidden Markov Model

Still missing: $P(Q \mid W)$ which maps from words to acoustic states (one per frame).

Spoken words have varying length.



pdf12 pdf23 pdf34 pdf12 pdf22 pdf23 pdf34 pdf12 pdf22 pdf22 ... pdf23 pdf34 pdf12 pdf23 pdf33 pdf34 pdf12 pdf23 pdf33 ... pdf34

etc.

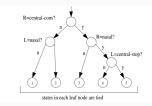
ASR: Decision Tree

Monophones: context-independent phones.

Triphones: phones with one left-context phone and one right-context phone.

```
W AY T -> W+AY W-AY+T AY-T
```

Decision tree: clusters several triphones sharing one pdf.



From: Gales and Young, The Application of Hidden Markov Models", 2007.

We now have a way of computing prob. of an observation sequence given any word sequence.

$$P(\boldsymbol{O} \mid W) = \sum_{Q} P(\boldsymbol{O} \mid Q) P(Q \mid W) P(W)$$

And the best path:

$$\hat{W} = \operatorname{argmax}_{W} P(\boldsymbol{O} \mid W) P(W) \tag{9}$$

is the solution that maximizes the prob (our original problem):

$$P(W \mid \boldsymbol{O}) = \frac{P(\boldsymbol{O} \mid W)P(W)}{P(\boldsymbol{O})}$$
(10)

Graph representation: probability of a sequence = product of probabilities on a path.

Most probable sequence is given by most probable path in graph.

Graph search algorithms:

- depth-first: A-star, ...
- breadth-first: Viterbi beam search, token passing, ...

How to get probabilities in language and acoustic models? Estimate from data: training the models.

For good results, training require lots of data, and lots of computation.

So far, acoustic model based on words. Need to train each word.

Each new task, each change in vocabulary requires retraining the model.

Lots of variation for a given word, difficult to capture.

Need to complicate our models a little bit, but we'll need more mathematical tools.

Weighted Finite-State Transducers

WFST: Weighted Finite State Automata

$$0 \xrightarrow{a} 1 \xrightarrow{\text{white}/2.302} 2 \xrightarrow{\text{cat}} 3$$

Finite state automata with labels and weights.

Example: language model.

In Kaldi, most common weight type is minus log probability.

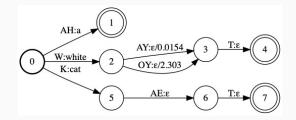
Cost (length) of a path: sum of arc weights.

Union of paths: min of arc weights.

Best probability path = shortest path.

Main operators: intersection, minimization.

WFST: Weighted Finite State Transducers



Finite state automata with input labels, output labels and weights.

Maps sequences of input labels to sequences of output labels.

Example: pronunciation lexicon.

Maps phoneme sequences to word sequences, with pronunciation probability.

An operation that combines 2 WFSTs.

- F_a with input A and output B.
- F_b with input B and output C.

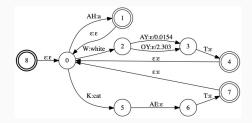
 $F_a \circ F_b$ maps input A to output C.

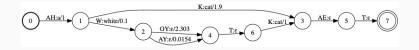
Generalization of intersection (think in sets of sequences).

Weights are combined according to probability rules (in -log domain).

WFST: Composition example

Example: phonemes to word sequences.





So far, we have a word-based ASR model $w o oldsymbol{o}$

Phoneme-based model? Only 30 to 60 units instead of thousands.

Phonemes are easier to model and more flexible:

 $w \rightarrow p \rightarrow o$

Coarticulation modeled with phonemes-in-context:

$$w
ightarrow p
ightarrow pic
ightarrow o$$

We will model phonemes-in-context with GMM pdf's:

$$w \rightarrow p \rightarrow pic \rightarrow pdf \rightarrow o$$

WFST: Standard decomposition

- G (grammar): maps words to word sequence with LM probs.
- *L* (lexicon): maps phonemes sequences to words, with pronunciation probs.
- *C* (context): maps phonemes-in-context to phoneme sequences.
- *H* (HMM): maps phonemes-in-context to pdf id sequences.
- O (observations): provides $P(o_t | pdf_i)$

$$\hat{W} = \text{bestpath}(O \circ H \circ C \circ L \circ G)$$

Why WFSTs instead of just coding each model.

- Take advantage of FST theory and powerful mathematical tools
- Most concepts in ASR can be understood in terms of WFST
- Existing libraries of tools for composition, determinization, minimization, best path (e.g. openFST)
- Semi-ring concept which allows symbols and weights to be generalized
- A complete ASR decoder could be written in a few lines of code (but no in practice)

Next steps

Break!

After break, overview of what it involves building an ASR system from scratch:

- Real use-case (Air Traffic Control Challenge)
- Including recent Deep Neural Networks architectures

Then you get a new dataset and create our own ASR system.

Part II

Building an ASR System: Case-Study

Part III

ASR System Building Lab

Preparation

Login to the master node then to a compute node:

```
ssh user@ec2-52-205-171-112.compute-1.amazonaws.com
qlogin -q all.q@g01
```

Create your directory and copy the recipe there:

```
cd /export/fs01
mkdir -p username/google_bengali
cd username/google_bengali
cp -R /export/fs01//jtrmal/google_bengali/s5 .
cd s5
```

Launch the recipe:

./run.sh --stage 1 |& tee run.log

Kaldi organization

```
s5
_____cmd.sh, path.sh, run.sh
_____ conf: configuration files
__local: scripts
____steps: scripts
 __utils: scripts
  _ corpus
 <u>data</u>
     _dev
     train
      lang
     local
       _lang
```

run.sh

```
# Begin configuration section.
stage=0
corpus=./corpus
nj=4
dev_nj=6
```

- # End configuration section
- . ./utils/parse_options.sh

```
# initialization PATH
```

- . ./path.sh || die "File path.sh expected";
- . ./cmd.sh || die "File cmd.sh expected to exist"

```
if [ $stage -le 0 ]; then
   ./local/download_data.sh --datadir $corpus
fi
```

```
iff [ $stage -le 1 ]; then
    echo "Preparing data and training language models"
    local/prepare_data.sh $corpus/
    local/prepare_dict.sh $corpus/
    utils/prepare_lang.sh data/local/dict "<UNK>" data/local/lang data/lang
    local/prepare_lm.sh $corpus/
fi
```

utt_id WORD1 WORD2 WORD3 WORD4 ...

head -5 data/dev/text

01e91_00b1a91838	তত্তুবুই বরা হয়েছ
01e91_00b25bf18a	
01e91_013a376e49	সিকট আইলা কি
01e91_018b940c57	অক্সিল্ম বস
01e91_018d3ce0a0	ক্সে গড়ি

head -5 data/dev/wav.scp

01e91_00b1a91838	SOX	./corpus/asr_bengali/data/00/00b1a91838.f	flac	-t	wav	-r	16000	-
01e91_00b25bf18a	SOX	./corpus/asr_bengali/data/00/00b25bf18a.f	flac	-t	wav	-r	16000	-
01e91_013a376e49	SOX	./corpus/asr_bengali/data/01/013a376e49.f	flac	-t	wav	-r	16000	-
01e91_018b940c57	SOX	./corpus/asr_bengali/data/01/018b940c57.f	flac	-t	wav	-r	16000	-
01e91_018d3ce0a0	SOX	./corpus/asr_bengali/data/01/018d3ce0a0.f	flac	-t	wav	-r	16000	-

head -5 data/dev/utt2spk

01e91_00b1a91838	01e91	0.0.0	 _	
01e91_00b25bf18a	01e91			
01e91_013a376e49	01e91			
01e91_018b940c57	01e91			
01e91_018d3ce0a0	01e91			

wc -l data/dev/*
2790 data/dev/text
2790 data/dev/utt2spk
51 data/dev/spk2utt
2790 data/dev/wav.scp

wc -l data/train/*
12000 data/train/text
12000 data/train/utt2spk
457 data/train/spk2utt
12000 data/train/wav.scp

Corpus-specific language.

lexicon.txt
nonsilence_phones.txt
optional_silence.txt
silence_phones.txt
oov.txt

head -5 ./data/local/dict/lexicon.txt

	-		_			-						0	0	_	0	_					_		-
"অমাদর	a	m	a	d	ē	r	а																
"আর ā	r	а																					
"অন্দৰ্মা	N	Ś	С	а	r	у	у	ē	r	а													
"ক্রিদিন	k	i	c	h	u	d	i	n	а														
"(क	ē	' u	1																				

Script generated files.

L.fst

L_disambig.fst

oov.int

oov.txt

phones.txt

topo

words.txt

Language model training

prepare_lm.sh

Computing perplexity																
data/srilm//6gram*: No such	iata/srilm//6gram*: No such file or directory															
data/srilm//6gram*																
data/srilm//5gram.me.gz	file	data/srilm//dev.txt:	27 9 0	sentences,	8917	words,		00Vs		zeroprobs,	logprob=	-31870.21	ppl=	527.6197	ppl1=	3750.557
data/srilm//4gram.me.gz		<pre>data/srilm//dev.txt:</pre>														
data/srilm//3gram.me.gz	file	<pre>data/srilm//dev.txt:</pre>	2790	sentences,	8917	words,		00Vs		zeroprobs,	logprob=	-32150.61	ppl=	557.5357	ppl1=	4032.195
data/srilm//3gram.kn111.gz																
<pre>data/srilm//3gram.kn011.gz</pre>	file	<pre>data/srilm//dev.txt:</pre>	27 9 0	sentences,	8917	words,		00Vs		zeroprobs,	logprob=	-32288.07	ppl=	572.8139	ppl1=	4177.881
data/srilm//4gram.kn0111.gz	file	<pre>data/srilm//dev.txt:</pre>	2790	sentences,	8917	words,		00Vs		zeroprobs,	logprob=	-32511	ppl=	598.4898	ppl1=	4425.451
data/srilm//2gram.kn11.gz	file	<pre>data/srilm//dev.txt:</pre>	27 9 0	sentences,	8917	words,		00Vs		zeroprobs,	logprob=	-32574.12	ppl=	685.9663	ppl1=	4498.174

format_lm.sh

```
data/lang_test:
    G.fst
    L.fst
    L_disambig.fst
data/lang_test_fg:
    G.carpa
    G.fst
```

path.sh sets up environment variables to point to Kaldi and tools installation directories.

export KALDI_ROOT=/export/fs01/jtrmal/kaldi

cmd.sh defines how parallelization is implemented.

- run.pl runs tasks on the local machine.
- queue.pl allocates jobs on a cluster using Sun Grid Engine.
- slurm.pl allocates jobs on a cluster using SLURM.

queue.pl and slurm.pl need to be configured with your cluster queue names.

HMM-GMM training

```
# Feature extraction
for x in train dev; do
    steps/make_mfcc.sh --nj $nj --cmd "$train_cmd" data/$x exp/make_mfcc/$x mfcc
    steps/compute_cmvn_stats.sh data/$x exp/make_mfcc/$x mfcc
    done
fi
```

- Extract features: make_mfcc.sh
- Train monophones: train_mono.sh
- Align monophones: align_si.sh
- Train small triphones: train_deltas.sh
- Align small triphones: align_si.sh
- Train large triphones: train_deltas.sh
- Align large triphones: align_si.sh
- Train LDA+MLLT triphones: train_sat.sh

In several places, evaluate word error rate with small LM (decode.sh) or large LM (Imrescore.sh).

steps/lmrescore_const_arpa.sh --cmd "\$decode_cmd" \
 data/lang_test/ data/lang_test_fg/ data/dev \
 exp/tri3b/decode_dev exp/tri3b/decode_dev.rescored
echo "SAT+FMLLR decoding done."

) &

Debugging

Debugging

- Monitoring progress on cluster: qstat
- Restarting --stage n
- Scripts logs, cluster logs
- Cutting and pasting script lines

```
exp/make_unk/log
exp/mono_ali/log
exp/tri1_ali/log
exp/tri1/log
exp/tri2a_ali/log
exp/tri2a/log
exp/tri2b_ali/log
exp/tri2b/log
exp/tri3b_ali_train_sp/log
```

Ark and scp files.

18a52_015f1ea678

copy-feats scp:data/train/feats.scp ark,t:- | head -2

59.17816 -21.7955 2.345665 -2.779956 -8.278467 -12.64311 2.780146 3.892065 -7.968018 -3.988128 0.4810228 0.7078037 -8.235347 60.1958 -21.35863 0.1444345 -5.106386 -3.468817 -9.695787 -9.42878 -7.550163 -9.84296 4.220574 -2.637221 -0.2019124 2.014662 60.82346 -21.35863 -2.007355 -3.245242 -7.304714 -10.18701 -9.576305 -9.970974 -17.82411 -3.909159 -7.350846 -3.140995 -4.38373 58.66934 -23.76137 -5.887454 -10.0153 -15.58162 -16.57288 -10.4843 -14.25034 -8.124263 -12.63581 -16.48274 -6.429967 -8.455823 tree-info exp/tri3b/tree

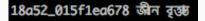
tree-info exp/tri3b/tree
num-pdfs 3298
context-width 3
central-position 1

gmm-info exp/tri3b/final.mdl

gmm-info exp/tri3b/final.mdl number of phones 273 number of pdfs 3298 number of transition-ids 26178 number of transition-states 13069 feature dimension 40 number of gaussians 40065 steps/get_train_ctm.sh data/train data/lang exp/tri2b_ali
head exp/tri2b_ali/ctm

18a52_015f1ea678	1 0.950	0.480	জ্ঞীন
18a52_015f1ea678	1 1.430	0.870	রুন্ডেষ্ঠ
18a52_02f042f342	1 0.940	0.540	বেতন
18a52_02f042f342	1 1.480	0.570	কম্দিন
18a52_02f042f342	1 2.050	0.410	গঠন
18a52_02f042f342	1 2,460	0.280	করা
18a52_02f042f342	1 2.740	0.360	হয়

grep 18a52_015f1ea678 data/train/text



find exp -name "best_wer" | xargs cat | sort -k2,2g

%WER	13.19	[1185	/	8986,	103	ins,	176	del,	906	sub]	(exp/chain/tdnn_1c/decode_dev.rescored/wer_11_0.0
%WER	26.02	[2338		8986,	155	ins,	345	del,	1838	sub]	exp/chain/tdnn_1c/decode_dev/wer_10_0.0
%WER	28.91	[2598		8986,	203	ins,	479	del,	1916	sub]	exp/tri3b/decode_dev.rescored/wer_17_0.5
%WER	32.49	[2920		8986,	239	ins,	542	del,	2139	sub]	exp/tri2b/decode_dev.rescored/wer_15_0.0
%WER	32.94	[2960		8986,	214	ins,	583	del,	2163	sub]	exp/tri2a/decode_dev.rescored/wer_16_0.0
%WER	33.26	[2989		8986,	244	ins,	604	del,	2141	sub]	exp/tri1/decode_dev.rescored/wer_14_0.5
%WER	39.32	[3533		8986,	221	ins,	673	del,	2639	sub]	exp/tri3b/decode_dev/wer_17_1.0
%WER	45.19	[4061		8986,	229	ins,	7 9 7	del,	3035	sub]	exp/tri2b/decode_dev/wer_16_0.5
%WER	46.54	[4182		8986,	249	ins,	778	del,	3155	sub]	exp/tri2a/decode_dev/wer_16_0.0
%WER	46.76	[4202		8986,	274	ins,	784	del,	3144	sub]	exp/tri1/decode_dev/wer_16_0.0
%WER	47.51	[4269	/	8986,	338	ins,	709	del,	3222	sub]	exp/tri3b/decode_dev.si/wer_14_0.0

DNN Training

- i-vectors
- egs
- network configuration