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Classification Detection

Segmentation
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Introduction
Visual recognition until 2012

Hand-crafting features

Images from: Fei-Fei Li, Andrej Karpathy and Justin Johnson 2016, cs231n. 3



Biological inspiration

CNN architecture

Image: https://www.mathworks.com

Human visual cortex

Image: https://neuwritesd.files.wordpress.com/2015/10/visual_stream_small.png
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Biological inspiration

CNN architecture

Image: https://www.mathworks.com

[Zeiles & Fergus al., ECCV 2014]
Low-level features Mid-level features High-level features
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What's new?

Multi-layer perceptron (MLP) CNN

• Shared parameters
• Local connectivity

Many parameters

Limited depth
Less parameters

Deep architectures possible

Input

Hidden layers

…

Output
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Introduction

784 elements 10 classes10 x 784
values

Image: 28x28 pixels

Fully connected layer
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Introduction
Fully connected layer

Image: 28x28 pixels

784 elements 10 classes10 x 784
values

1 value: Scalar product between 
the input (vectorized) and a row 

of the matrix W
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Introduction
Convolutional layer

Image: 28x28 pixels

28

28

Convolutional filter
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Introduction

Image: 28x28 pixels

28

28

It can be formulated as:

Convolutional layer

10



Introduction

Image: 28x28 pixels

28

28

Result: Scalar product between the 
filter and the image region.

Image: 28x28x1
Filter:   5x5

Convolutional layer
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Introduction

Image: 28x28 pixels

28

Image: 28x28x1
Filter:   5x5

After convolving 
all the image

Feature map

24

2428

Convolutional layer
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Introduction

Image: 28x28 pixels

28

Image: 28x28x1
Filter:   5x5

After convolving 
all the image

Feature map

24

2428

Convolutional layer (We have several filters!!!)
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Introduction

Image: 28x28 pixels

28

Image: 28x28x1
10 Filters:   5x5x1

After convolving 
all the image

 Feature maps
24x24x10

24

2428

Convolutional layer (We have several filters!!!)
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Introduction
Convolutional neural network (simplified)

Image
28x28 pixels

28

28

1

10 Filters
5x5x1

Feature maps
10 x 24 x 24

20 Filters
5x5x1

Feature maps
20 x 20 x 20

30 Filters
5x5x1

Feature maps
16 x 16 x 16
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Introduction
Basics: Padding

No padding 
(unit stride)

Padding 
(unit stride)

Reduced dimension 
along border

Preserved spatial 
dimension
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Introduction
Basics: Stride

Unit stride
(padding)

Stride = 2
(padding)

Larger spatial dimension 
(more computations/memory)

Overlapping receptive fields

Reduced spatial dimension 
(less computations/memory)

Reduced overlapping
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Introduction
Basics: Pooling

Goals

• Reduce the spatial resolution of feature 
maps

• Lower memory and computation 
requirements

• Provide partial invariance to position, 
scale and rotation(stride = 1) (stride = 1)

Pooling is typically done separately for each feature map 
18



Introduction
Convolutional neural network (simplified)

Image
28x28 pixels

28

28

1

10 Filters
5x5x1

Feature maps
10 x 24 x 24

20 Filters
5x5x1

Feature maps
20 x 20 x 20

30 Filters
5x5x1

Feature maps
16 x 16 x 16
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Introduction
Convolutional neural network (simplified)

Image
28x28 pixels

28

28

1

10 Filters
5x5x1

Feature maps
10 x 14 x 14

20 Filters
5x5x1

Feature maps
20 x 7 x 7

Convolution (padding=1) + pooling

20



Introduction
Basics: Activation functions

Reduces the vanishing 
gradient problem

Ensures that neurons are 
always activated
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Introduction
Convolutional neural network (simplified)

Image
28x28 pixels

28

28

1

10 Filters
5x5x1

Feature maps
10 x 14 x 14

20 Filters
5x5x1

Feature maps
20 x 7 x 7

Convolution (padding=1) + activation function + pooling
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Introduction
Basics: Receptive field

● Region in the input space which can the neuron’s output

● A large receptive is necessary to capture spatial context 

● The receptive field of neurons increases when going deeper in the network.
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Introduction
Basics: Receptive field

Question: How to get a large receptive field without having too many network parameters ?
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Introduction
Basics: Dilated convolutions (à trous)

• Inflates the kernel by inserting spaces between the 
kernel elements

• Controlled by dilation parameter d  (d = 1 gives a 
regular convolution)
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More in optimization



CNN Training
'Simply' an optimization problem
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CNN Training
Gradient descent Optimization

Parameters

❏ It is very slow

❏ Intractable for data that do not fit in memory
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CNN Training
Stochastic Gradient descent (SGD) Optimization

Parameters
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CNN Training
Stochastic Gradient descent (SGD) Optimization

ParametersProblems
‘Condition number’
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CNN Training
Stochastic Gradient descent (SGD) Optimization

ParametersProblems
‘Condition number’

a = 1 a = 1000
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CNN Training
Stochastic Gradient descent (SGD) Optimization

ParametersProblems
‘Condition number’

a = 1000

Gradient very 
sensitive along this 

directionGradient not very 
sensitive along this 

direction
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CNN Training
Stochastic Gradient descent (SGD) Optimization

ParametersProblems
‘Condition number’

Evolution towards the minimum becomes slow
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CNN Training
Stochastic Gradient descent (SGD) Optimization

ParametersProblems

Minimum 
local

Saddle point

Gradient = 0
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CNN Training
Stochastic Gradient descent (SGD) Optimization

ParametersProblems

Noisy data
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CNN Training
SGD + Momentum Optimization

Benefits:
• Accelerates learning when gradient direction is stable
• Reduces oscillations during training
• Faster convergence, possibly better solution

Standard gradient With momentum
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CNN Training
SGD + Momentum Optimization

Standard gradient With momentum
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CNN Training
SGD + Momentum Optimization

Standard gradient With momentum

38



CNN Training
Nesterov Momentum Optimization

Source: http://cs231n.github.io/assets/nn3/nesterov.jpeg 39

http://cs231n.github.io/assets/nn3/nesterov.jpeg


CNN Training
Adaptative moment estimation (Adam) Optimization

Decaying average of gradient first moment 
(mean)

Decaying average of gradient second moment 
(~variance)

Correct values to avoid bias to zero in first steps
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CNN Training
Adaptative moment estimation (Adam) Optimization

First moment

Second moment
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CNN Training
Comparison Optimization
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CNN Training
Batch normalization

Key ideas:

• Normalize the output of a layer using batch mean and standard deviation  (mean of 0, standard 
deviation of 1)

• Optimal scale and shift is learned by the network (parameters gamma and beta) 

• Stabilizes the learning process, faster convergence
43



CNN Training
Dropout

Key ideas:

• Regularization technique to avoid overfitting

• Ignore some neurons at each iteration (forward and backward passes)

• Dropped neurons chosen randomly with probability p

• Avoid co-adaptation of neurons: each neuron should work independently of others

Standard network With dropout
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How prediction is done?
Example: classification

CNN output (Logits)
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How prediction is done?
Example: classification

CNN output (Logits)

Softmax
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normalize



How the objective is evaluated?
Example: classification

Cost function: cross-entropy Widely used
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Kullback-Leibler
Divergence



Back-propagating the error
The actual core of learning
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Back-propagating the error
The actual core of learning
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Back-propagating the error
The actual core of learning
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q respect to x and y

f  respect to q and z

Gradients



Back-propagating the error
The actual core of learning
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Back-propagating the error
The actual core of learning
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Back-propagating the error
The actual core of learning

53

*
+

x

y

z

f

x=-2    y=5    z=-4

-2

-4

5 -12

3q

1
-4-4

Chain rule



Back-propagating the error
The actual core of learning
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COMPUTER VISION TASKS

- Object classification
- Semantic segmentation
- Object detection



OBJECT CLASSIFICATION



Image classification

Goal: predict a single label (or a probability distribution over labels) for a given image. 

Cat: 10%

Chair: 0%

Dog: 85% 

Horse: 5%
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Image classification

What humans see What the computer sees

Challenges
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Image classification
Other challenges

Easy for humans (and lesser animals). Hard for computers?

Image: http://cs231n.github.io 59



Image classification

60Image: http://cs231n.stanford.edu/slides/2018



Image classification

61Image: http://cs231n.stanford.edu/slides/2018

AlexNet  [Krizhevsky et al, 2012]



Image classification

62Image: Krizhevsky et al. "Imagenet classification with deep convolutional neural networks,” NIPS 2012.

• First model to perform well on the challenging ImageNet dataset. 

• Combined techniques used in today’s architectures, like ReLU, data augmentation and 
dropout

• Largely responsible for the rise of deep learning in computer vision

AlexNet  [Krizhevsky et al, 2012]



Image classification

63Image: Zeiler and Fergus. "Visualizing and understanding convolutional networks." ECCV, 2014.

ZF Net  [Zeiler and Fergus, 2014]



Image classification

64Image: http://cs231n.stanford.edu/slides/2018

VGG  [Simonyan and Zisserman, 2014]



Image classification

65

• Simpler structure: only 3x3 convolutions, ReLU and 2x2 
max pooling

• Deeper network: 16 and 19 layers (compared to 8 for 
AlexNet)

• Key idea: cascading two 3x3 convolutions gives the 
same receptive field as a 5x5 convolution, with much less 
parameters

VGG  [Simonyan and Zisserman, 2014]

Image: http://cs231n.stanford.edu/slides/2018



Image classification

66Image: http://cs231n.stanford.edu/slides/2018

GoogLeNet (inception v1) [Szegedy et al, 2014]



Image classification
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GoogLeNet (inception v1) [Szegedy et al, 2014]

1) Repeating blocks called 
Inception module

Going deeper…

2) Intermediate classification losses to 
inject gradient in middle layers

3) FC layers are replaced by average 
pooling (fewer parameters)



Image classification
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GoogLeNet (inception v1) [Szegedy et al, 2014]

Let’s take a closer look at Inception modules…

Choice for each layer:

• Convolution or pooling ?

• If convolution, what kernel size ?

1x1
convolution

3x3
convolution

5x5
convolution

3x3
max pooling

Previous layer

?
? ?

?



Image classification
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GoogLeNet (inception v1) [Szegedy et al, 2014]

Let’s take a closer look at Inception modules…

1x1
convolution

3x3
convolution

5x5
convolution

3x3
max pooling

Filter 
concatenation

Previous layer

Key idea:

• Compute all in parallel

• Concatenate results

• Let the learning decide
Problem: this gives too many outputs and parameters



Image classification
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GoogLeNet (inception v1) [Szegedy et al, 2014]

Let’s take a closer look at Inception modules…

1x1
convolution

3x3
convolution

5x5
convolution

1x1
convolution

1x1
convolution

1x1
convolution

3x3
max pooling

Filter 
concatenation

Previous layer

Solution: Reduce dimensionality using bottleneck layers composed of 1x1 convolutions



Image classification
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Efficiency

GoogLeNet

22 layers
~5M parameters

8 layers
~62M parameters

AlexNet

GoogLeNet has 12x fewer 
parameters than AlexNet ! 

GoogLeNet (inception v1) [Szegedy et al, 2014]



Image classification

72Image: http://cs231n.stanford.edu/slides/2018

ResNet [He et al, 2016]



Image classification
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ResNet [He et al, 2016]

Image: He et al. "Deep residual learning for image recognition." CVPR, 2016.

What happens if we make a standard CNN deeper ?

• Both training and test errors are larger

• This is not overfitting, this is an optimization problem (e.g., vanishing gradient)



Image classification

74

ResNet [He et al, 2016]

34-layer ResNet:

Image: He et al. "Deep residual learning for image recognition." CVPR, 2016.

Key idea: 

• Instead of computing the transformation, compute the residual 
required to have the transformation



Image classification
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ResNet [He et al, 2016]

34-layer ResNet:

Key idea: 

• Instead of computing the transformation, compute the residual 
required to have the transformation

Advantages:

• The residual requires less information to model, so possibly 
easier to learn

• Residual connections help gradient flow during 
back-propagation

• Enables very deep networks (over 100 layers)

Image: He et al. "Deep residual learning for image recognition." CVPR, 2016.



Image classification
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DenseNet [Huang et al, 2017]

Image: He et al. "Deep residual learning for image recognition." CVPR, 2016.

Densely connected CNNs (DenseNet)

Key idea of dense blocks: 

• Features computed in a layer are concatenated to the input of all 
subsequent layers in the block

Advantages:

• Efficient reuse of multiscale features

• Gradient can flow directly to each layer during back-propagation



SEMANTIC SEGMENTATION



Semantic segmentation
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Image Segmentation

Background

DogCat

Goal: Assign the correct class label to each pixel of a given image

Can be seen as a dense and structured classification problem 

Possibly millions of pixels at the same time  

Predictions are not independent



Semantic segmentation
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Key ideas: 
• Replace FC layers by 1x1 convolutions

• Treat network as a non-linear filter that can be applied to any image size

Standard classification CNN

Fully-CNN

Image: Long et al. "Fully convolutional networks for semantic segmentation." ICCV, 2015.

Problem: Produces very coarse segmentation maps

Solution: Add upsampling operations at the end of the network

Fully-CNN : from classification to segmentation



Semantic segmentation

80

Upsampling

Convolution as a matrix operation:

Transposed convolution:

Image: http://deeplearning.net/software/theano/tutorial



Semantic segmentation
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Downsampling 
(encoder)

Upsampling 

(decoder)

Encoder-decoder architecture

Image adapted from: 
Badrinarayanan et al. "Segnet: A deep convolutional encoder-decoder architecture for image  segmentation." PAMI, 2017.

Problem: Spatial resolution is lost while downsampling

Solution: Add skip connections to copy high-resolution feature maps of the encoder to the decoder



Semantic segmentation
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One of the most popular networks for medical image segmentation

Image: Ronneberger et al. "U-net: Convolutional networks for biomedical image segmentation." MICCAI, 2015.

UNet [Ronneberger et al, 2015]



Semantic segmentation
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VNet [Milletari et al, 2016]

Extension of U-Net to volumetric (3D) data

Image: Milletari et al. "V-net: Fully convolutional neural networks for volumetric medical image segmentation." International Conference on 3D Vision (3DV), 2016.



Semantic segmentation
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[Dolz et al, 2018]Multi-modal segmentation

Image: Dolz et al. "IVD-Net: Intervertebral disc localization and segmentation in MRI with a multi-modal UNet." MICCAI Workshops, 2018.

Problem: Ignores low or high level dependencies between 
information in different image modalities



Semantic segmentation
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HyperDense-Net [Dolz et al, 2018]

Key ideas: 

• Dense connections across layers of different modalities

• Let training decide how to best combine information across modalities (see image on the right)

Image: Dolz et al. "HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation." TMI, 2018.

Multi-modal segmentation



OBJECT DETECTION



Object detection
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Goal: Find objects (or people, animals) in a given image, and their location. 

Object categories (classes)

2D bounding boxes

Cat

Dog



Object detection
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Problems: 
• Multiple training stages: CNN, SVM, bounding box regressors
• Very slow (~53s per image)

Image: http://cs231n.stanford.edu/slides/2018

1. Extract region proposals (~2K)

• Uses the Selective Search method
• Finds regions likely to contain objects

2. Warp proposals to fixed size

3. Compute CNN features (AlexNet)

4. Classification & localization

5. Non-maxima suppression
    (Removes redundant overlapping regions)

R-CNN [Girshick et al, 2014]



Object detection
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Problem: Still requires extracting proposals in a separate step

How to avoid this ?

Key idea:

• Feed the input image to the CNN (instead of region proposals)

• Enables sharing CNN computations between different proposals 

Fast R-CNN [Girshick et al, 2015]

Image: Girshick, Ross. "Fast R-CNN." ICCV. 2015.



Object detection
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Faster R-CNN [Ren et al, 2015]

Key ideas:

• Do the region proposal within the network

• Use anchor boxes with different scales and aspect 
ratios to generate RoI proposals

• Multitask loss for box regression and objectness

Images: Ren et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." NIPS. 2015.


