
Advanced ML:
Unsupervised learning with autoregressive

and latent variable models

https://github.com/janchorowski/JSALT2019_tutorials

Jan Chorowski
University of Wrocław

With slides from TMLSS 2018

(Jan Chorowski, Urlich Paquet)

https://github.com/janchorowski/JSALT2019_tutorials

Outline

• Why unsupervised learning
• Autoregressive models

– Intuitions
– Dilated convolutions

RNNs (Intermezzo: LSTM training dynamics)
Transformers

– Beyond sequences, summary

• Latent variable models
– VAE
– Normalizing flows

• Autoregressive + latent variable: why and how?

Outline

• Why unsupervised learning
• Autoregressive models

– Intuitions
– Dilated convolutions

RNNs (Intermezzo: LSTM training dynamics)
Transformers

– Beyond sequences, summary

• Latent variable models
– VAE
– Normalizing flows

• Autoregressive + latent variable: why and how?

Deep Model = Hierarchy of Concepts

Cat
Dog
…
Moon
Banana

M. Zieler, “Visualizing and Understanding Convolutional Networks”

Deep Learning history: 1986

‘hidden’ units which are
not part of the input or
output come to
represent important
features of the task
domain

Deep Learning history: 2006

Stacked RBMs

Hinton, Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks”

Deep Learning history: 2012

2012: Alexnet
SOTA on Imagenet

Fully supervised training

Deep Learning Recipe

1. Get a massive, labeled dataset 𝐷 = {(𝑥, 𝑦)}:
– Comp. vision: Imagenet, 1M images

– Machine translation: EuroParlamanet data,
CommonCrawl, several million sent. pairs

– Speech recognition: 1000h (LibriSpeech), 12000h
(Google Voice Search)

– Question answering: SQuAD, 150k questions with
human answers

– …

2. Train model to maximize log 𝑝(𝑦|𝑥)

Value of Labeled Data

• Labeled data is crucial for deep learning

• But labels carry little information:

– Example:
An ImageNet model has 30M weights, but
ImageNet is about 1M images from 1000 classes
Labels: 1M * 10bit = 10Mbits

Raw data: (128 x 128 images): ca 500 Gbits!

Value of Unlabeled Data

“The brain has about 1014 synapses and we only
live for about 109 seconds. So we have a lot
more parameters than data. This motivates the
idea that we must do a lot of unsupervised
learning since the perceptual input (including
proprioception) is the only place we can get
105 dimensions of constraint per second.”

Geoff Hinton

https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/

Unsupervised learning recipe

1. Get a massive labeled dataset 𝐷 = 𝑥
Easy, unlabeled data is nearly free

2. Train model to…???

What is the task?
What is the loss function?

Unsupervised learning goals

• Learn a data representation:
– Extract features for downstream tasks

– Describe the data (clusterings)

• Data generation / density estimation
– What are my data

– Outlier detection

– Super-resolution

– Artifact removal

– Compression

2 minute exercise

Talk to your friend next to you, and tell him or
her everything you can about this data set:

The rows are correlated

Latent representation

Outline

• Why unsupervised learning
• Autoregressive models

– Intuitions
– Dilated convolutions

RNNs (Intermezzo: LSTM training dynamics)
Transformers

– Beyond sequences, summary

• Latent variable models
– VAE
– Normalizing flows

• Autoregressive + latent variable: why and how?

Learning high dimensional
distributions is hard

• Assume we work with small (32x32) images

• Each data point is a
real vector of size
32 × 32 × 3

• Data occupies only
a tiny fraction of
ℝ32×32×3

• Impossible to
directly fit standard
prob. distribution!

Divide and conquer

What is easier:
1. Write a paragraph at once?
2. Guess the next word?

Mary had a little
Mary had a little dog.
Mary had a little dog. It
Mary had a little dog. It was
Mary had a little dog. It was cute

Chain rule

Decompose probability of 𝑛-dimensional data
points into product of 𝑛 conditional probabilities

𝑝 𝑥 = 𝑝 𝑥1, 𝑥2, … , 𝑥𝑛
= 𝑝 𝑥1 𝑝 𝑥2 𝑥1 …𝑝 𝑥𝑛 𝑥1, 𝑥2, … , 𝑥𝑛−1

= 𝑝(𝑥𝑡|𝑥1, 𝑥2, … , 𝑥𝑡−1)

𝑡

Learning 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1

The good:

It looks like supervised learning!

The bad:

We need to handle variable-sized input.

Large n -> sparse data

Consider an n-gram LM:

𝑝 𝑥𝑡 𝑥𝑡−𝑘+1, … , 𝑥𝑡−1 =
#𝑥𝑡−𝑘:𝑡
#𝑥𝑡−𝑘:𝑡−1

As 𝑛 → ∞ n-grams become unique:
- Probability of all but one continuation is 0
- Can’t model long contexts

Solution:
Use a representation in which “llama ≈ animal”

Learning 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1 #1

Assume distant past doesn’t matter,
𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1 ≈ 𝑝 𝑥𝑡 𝑥𝑡−𝑘+1, … , 𝑥𝑡−1

Quite popular:

• n-gram text models (estimate 𝑝 by counting)

• FIR filters

How to efficiently handle large 𝑘?

Neural LM
Compute 𝑝 𝑥𝑡 𝑥𝑡−𝑘+1, … , 𝑥𝑡−1 with a Neural Net

Looks somewhat like a convolution.

Still: large “n” => many params, how to fix?

Table
Lookup

Table
Lookup

Table
Lookup

Sen
ten

ce
R

ep
resen

tatio
n

 Extracto

r*

An arbitrary
sub-graph

C
o

n
caten

atio
n

Softmax

Y. Bengio et al “A Neural Probabilistic Language Model”, NIPS 2011

Dilated Convolutions

https://arxiv.org/abs/1609.03499 https://arxiv.org/abs/1610.10099

Large (but finite) receptive fields

Few parameters

WaveNet ByteNet

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1610.10099

Outline

• Why unsupervised learning
• Autoregressive models

– Intuitions
– Dilated convolutions

RNNs (Intermezzo: LSTM training dynamics)
Transformers

– Beyond sequences, summary

• Latent variable models
– VAE
– Normalizing flows

• Autoregressive + latent variable: why and how?

Learning 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1 #2

Introduce a hidden (i.e. not directly observed)
state ℎ𝑡.

ℎ𝑡 summarizes 𝑥1, … , 𝑥𝑡−1.

Compute ℎ𝑡 using this recurrence:

ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝑥𝑡
𝑝 𝑥𝑡+1 𝑥1, … , 𝑥𝑡 = 𝑔(ℎ𝑡)

Recurrences are powerful
Input: a sequence of bits 1,0,1,0,0,1
Output: the parity

Solution:
The hidden state will be just 1 bit – parity so far:

ℎ0 = 0
ℎ𝑡 = 𝑋𝑂𝑅 ℎ𝑡−1, 𝑥𝑡
𝑦𝑇 = ℎ𝑇

Constant operating memory!
Works for arbitrary long sequences!

Recurrent Neural Networks (RNNs)

 𝑓 𝑔

ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝑥𝑡
𝑝 𝑥𝑡+1 𝑥1, … , 𝑥𝑡 = 𝑔(ℎ𝑡)

𝑓, 𝑔 are implemented as feedforward neural nets.

RNNs naturally handle sequences

Training: unroll and supervise at every step:

…

Mary had a …..

𝑝(ℎ𝑎𝑑|𝑀𝑎𝑟𝑦) 𝑝(𝑎|…) 𝑝(𝑙𝑖𝑡𝑡𝑙𝑒| …)

RNNs naturally handle sequences

Generation: sample one element at a time

<S
O

S>

…

𝑥1 sampled from 𝑝 𝑥1

Mary had a

RNNs are dynamical systems

RNN is a very deep network, all “arrows”
compute the same function!

This impacts training!

…

𝑓 𝑔

RNN behavior - intuitions

A linear dynamical system computes
ℎ𝑡 = 𝑤 ⋅ ℎ𝑡−1 = 𝑤

𝑡ℎ0

When:

1. 𝑤 > 1 it diverges: lim
𝑡→∞
ℎ𝑡 = sign h0 ⋅ ∞

2. 𝑤 = 1 it is constant lim
𝑡→∞
ℎ𝑡 = h0

3. −1 < 𝑤 < 1 it decays to 0: lim
𝑡→∞
ℎ𝑡 = 0

4. 𝑤 = −1 flips between ±ℎ0

5. 𝑤 < −1 diverges, changes sign at each step

A multidimensional linear dyn. system

ℎ𝑡 ∈ ℝ
𝑛,𝑊 ∈ ℝ𝑛×𝑛
ℎ𝑡 = 𝑊ℎ𝑡−1

Compute the eigendecomposition of 𝑊:

𝑊 = 𝑄Λ𝑄−1 = 𝑄
𝜆11
 ⋱
 𝜆𝑛𝑛

𝑄−1

Then
ℎ𝑡 = 𝑊ℎ𝑡−1 = 𝑊

𝑛ℎ0 = 𝑄Λ
n𝑄−1ℎ0 =

= 𝑄
𝜆11
𝑛
 ⋱
 𝜆𝑛𝑛

𝑛
𝑄−1ℎ0

A multidimensional dyn. system cont.

ℎ𝑡 = 𝑊ℎ𝑡−1 = 𝑊
𝑛ℎ0 = 𝑄Λ

n𝑄−1ℎ0

If largest eigenvalue has norm:
1. >1, system diverges
2. =1, system is stable or oscillates
3. <1, system decays to 0

This is similar to the scalar case.

A nonlinear dynamical system

ℎ𝑡 = tanh(𝑤 ⋅ ℎ𝑡−1)

Output is bounded (can’t diverge!)

If 𝑤 > 1 has 3 fixed points: 0,±ℎ𝑓. Starting the
iteration form ℎ0 ≠ 0 it ends at ±ℎ𝑓 (effectively
remembers the sign).

If 𝑤 ≤ 1 has one fixed point: 0

A nonlinear dynamical system

ℎ𝑡 = tanh(𝑤 ⋅ ℎ𝑡−1) , 𝑤 > 1

𝑡

ℎ

Gradients in RNNs

Recall RNN equations:
ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝑥𝑡; 𝜃
𝑦𝑡 = 𝑔 ℎ𝑡

Assume supervision only at the last step:
L = 𝑒(𝑦𝑇)

The gradient is
𝜕𝐿

𝜕𝜃
=
𝜕𝐿

𝜕ℎ𝑇

𝝏𝒉𝑻
𝝏𝒉𝒕

𝜕ℎ𝑡
𝜕𝜃

𝑡

Trouble with
𝜕ℎ𝑇

𝜕ℎ𝑡

𝜕ℎ𝑇

𝜕ℎ𝑡
 measures how much ℎ𝑇 changes when ℎ𝑡 changes.

𝑡

ℎ

Another look at
𝜕ℎ𝑇

𝜕ℎ𝑡

Let:
ℎ𝑡 = tanh(𝑤 ⋅ ℎ𝑡−1)

Then:
𝜕ℎ𝑡
𝜕ℎ0
=
𝜕ℎ𝑡
𝜕ℎ𝑡−1

𝜕ℎ𝑡−1
𝜕ℎ𝑡−2

𝜕ℎ𝑡−2
𝜕ℎ𝑡−3
…
𝜕ℎ1
𝜕ℎ0

𝜕ℎ𝑖+1
𝜕ℎ𝑖
= tanh ′(𝑤ℎ𝑡)𝑤

𝜕ℎ𝑡
𝜕ℎ0
= tanh ′(𝑤ℎ𝑖)𝑤

𝑡−1

𝑖=0

= 𝑤𝑡 tanh ′(𝑤ℎ𝑖)

𝑡−1

𝑖=0

Backward phase is linear!

Vanishing gradient

If
𝜕ℎ𝑇

𝜕ℎ𝑡
= 0 the network forgets all information

from time 𝑡 when it reaches time 𝑇.

This makes it impossible to discover correlations
between inputs at distant time steps.

This is a modeling problem.

Exploding gradient

When
𝜕ℎ𝑇

𝜕ℎ𝑡
 is large

𝜕Loss

𝜕𝜃
 will be large too.

Making a gradient step 𝜃 ← 𝛼
𝜕Loss

𝜕𝜃
 can

drastically change the network, or even destroy
it.

This is not a problem of information flow, but of
training stability!

Exploding gradient intuition #1

ℎ𝑡 = tanh(2ℎ𝑡−1 + 𝑏)

𝑡

ℎ

Exploding gradient intuition #2

ℎ0 = 𝜎(0.5)
ℎ𝑡 = 𝜎 𝑤ℎ𝑡−1 + 𝑏
𝐿 = ℎ50 − 0.7

2

R. Pascanu et al. https://arxiv.org/abs/1211.5063

Summary: trouble with
𝜕ℎ𝑇

𝜕ℎ𝑡

RNNs are difficult to train because:

𝜕ℎ𝑇

𝜕ℎ𝑡
 can be 0 – vanishing gradient

𝜕ℎ𝑇

𝜕ℎ𝑡
 can be ∞ – exploding gradient

With both phenomena governed by the spectral
norm of the weight matrix (norm of the largest
eigenvalue, magnitude of 𝑤 in the scalar case).

Exploding gradient solution

Don’t do large steps.

Pick a gradient norm threshold and scale down
all larger gradients.

This prevents the model from doing a large
learning update and destroying itself.

Vanishing gradient solution:
LSTM, the RNN workhorse

𝜕ℎ𝑇

𝜕ℎ𝑡
≈ 0: step 𝑇 forgots information from 𝑡

The dynamical system

ℎ𝑡 = 𝑤ℎ𝑡−1
maximally preserves information when 𝑤 = 1

LSTM introduces a memory cell 𝑐𝑡 that will keep
information forever:

𝑐𝑡 = 𝑐𝑡−1

Memory cell

Memory cell preserves information
𝑐𝑡 = 𝑐𝑡−1
𝜕𝑐𝑇
𝜕𝑐𝑡
= 1

𝑐𝑡

Gates

Gates selectively load information into the
memory cell:

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +⋯)
𝑐𝑡 = 𝑐𝑡−1 + 𝑖𝑡 ⋅ tanh(𝑊𝑥𝑐𝑥𝑡 +⋯)

𝑐𝑡 + ⋅

𝜎(𝑊𝑥𝑖𝑥𝑡 +⋯)

tanh(𝑊𝑥𝑐𝑥𝑡 +⋯)

LSTM: the details

Update equations:
𝑖𝑡 = 𝜎 𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖
𝑓𝑡 = 𝜎 𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓

𝑜𝑡 = 𝜎 𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜
𝑐𝑡 = 𝑖𝑡 tanh(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)
+ 𝑓𝑡𝑐𝑡−1

ℎ𝑡 = 𝑜𝑡 tanh 𝑐𝑡

Hidden state is a pair of:
-𝑐𝑡 information in the cell, hidden from the rest of the network
-ℎ𝑡 information extracted form the cell into the network

RNNs summary

LSTM/GRU can remember long histories:

• #params and memory footprint independent
of sequence length

• gates control information flow

• each element is processed in constant time:

– RNN needs to cram all past into a vector

– in practice this limits the receptive field

LSTMs gave us gating!

Gates decouple if from what

WaveNet & Conv models for text use gates too!

Outline

• Why unsupervised learning
• Autoregressive models

– Intuitions
– Dilated convolutions

RNNs (Intermezzo: LSTM training dynamics)
Transformers

– Beyond sequences, summary

• Latent variable models
– VAE
– Normalizing flows

• Autoregressive + latent variable: why and how?

Learning 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1 #3

Reduce 𝑥1, … , 𝑥𝑡−1 to a fixed-size representation

E.g. take weighted average of 𝑥1…𝑥𝑡−1

This works really well with self-attention!

Attention ~ unbounded convolution

Slide by L. Kaiser https://nlp.stanford.edu/seminar/details/lkaiser.pdf

https://nlp.stanford.edu/seminar/details/lkaiser.pdf
https://nlp.stanford.edu/seminar/details/lkaiser.pdf

Attention details

The past encodings form a
list of key-value pairs:

[(𝑘𝑖 , 𝑉𝑖)], 𝑘 ∈ ℝ
𝑑 , 𝑉 ∈ ℝ𝐷

At step 𝑡 we start with a query 𝑞 ∈ ℝ𝑑

1. Match 𝑞 to all keys: 𝛼𝑖 =
𝑒𝑞
𝑇𝑘𝑖

 𝑒
𝑞𝑇𝑘𝑗
𝑗

2. Compute an average: 𝑅 = 𝛼𝑖𝑖 𝑉𝑖

Attention in action

• This is part of an encoder in NMT. The
attention can look forward and backward!

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1

GPT2 Transformer in action
The JSALT summer school is about …

GPT2 Transformer in action
The JSALT summer school is about developing creative,
innovative ways to solve global challenges, whether the problem
is creating sustainable energy systems, promoting economic
development, improving global health or making the world more
energy independent.

The JSALT summer school is funded by an international grant for
its education. Students enter the JSALT program on the basis of
merit, with the objective of applying their talents to global
development issues. They learn how to: develop, design and
produce sustainable and integrated energy systems, promote
economic development, increase efficiency of energy, develop a
healthy environment for the health and well being of people and
the environment, develop sustainable, clean and abundant

https://talktotransformer.com/

https://talktotransformer.com/

Self Attention Summary

params independent from history length + lots
of parameter reuse:

- effectively processes very long histories

Trades compute time for better performance!

- no need to cram all past into a vector!

- 𝑛-th step requires 𝑂(𝑛) ops

Outline

• Why unsupervised learning
• Autoregressive models

– Intuitions
– Dilated convolutions

RNNs (Intermezzo: LSTM training dynamics)
Transformers

– Beyond sequences, summary

• Latent variable models
– VAE
– Normalizing flows

• Autoregressive + latent variable: why and how?

Beyond sequences

Pixels generated left-to-right,
top-to-bottom.

Cond. probabilities
estimated using recurrent or
convolutional neural
networks.

van den Oord, A., et al. “Pixel Recurrent Neural Networks.” ICML (2016).

PixelRNN: A “language model for images”

Modeling pixels

How to model pixel values:

- A Gaussian with fixed st. dev?

- A Gaussian with tunable st. dev?

- A distribution over discrete levels [0,1,2,…255]?

What are the implications?

Modeling pixel values

Model works best with a flexible distribution: better to use a
SoftMax over pixel values!

PixelCNN samples & completions

Salimans et al, “A PixelCNN Implementation with Discretized Logistic Mixture Likelihood and
Other Modifications”
van den Oord, A., et al. “Pixel Recurrent Neural Networks.” ICML (2016).

Autoregressive Models Summary

The good:

• Easy to exploit correlations in data.

• Reduce data generation to many small
decisions
– Simple define (just pick an ordering)

– Trains like fully supervised

– Model operations are deterministic, randomness
needed during generation

• Often SOTA log-likelihood

Autoregressive Model Summary

The bad:

• Train/test mismatch (teacher forcing):
trained on ground truth sequences
but applied to own predictions

• Generation requires 𝑂 𝑛 steps
(Training can be sometimes parallelized)

• No compact intermediate data representation,
not obvious how to use for downstream tasks.

Outline

• Why unsupervised learning
• Autoregressive models

– Intuitions
– Dilated convolutions

RNNs (Intermezzo: LSTM training dynamics)
Transformers

– Beyond sequences, summary

• Latent variable models
– VAE
– Normalizing flows

• Autoregressive + latent variable: why and how?

Ad break

I took the following slides from Ulrich Paquet

See https://www.youtube.com/watch?v=xTsnNcctvmU for a
recording of a his explanation!

https://www.youtube.com/watch?v=xTsnNcctvmU
https://www.youtube.com/watch?v=xTsnNcctvmU
https://www.youtube.com/watch?v=xTsnNcctvmU

Latent Variable Models

Intuition: the data have a simple structure

2 3 4 2 1

4 2 2 1 3

Data structure

We can capture most of the variability in the data through one
number

𝑧(𝑛) = 1 or 2, 3, 4

for each image n, even though each image is 16 dimensional

How?

How?

Take 𝑧(𝑛) = 2

Draw bar in column 2 of image

Et voila! You have 𝑥(𝑛)
Some bar-drawing process

How?

Take 𝑧(𝑛) = 2

Draw bar in column 2 of image

Et voila! You have 𝑥(𝑛) Maybe some neural
network, that takes z as
input, and outputs a 16-
dimensional vector x…?

Exercise

Write or draw a function (like a
multi-layer perceptron) that
takes 𝑧 ∈ ℝ and produces 𝑥

Is your input one-dimensional?

Is your output 16-dimensional?

Identify all the “tunable”
parameters Θ of your function

Θ

Data manifold

The 16-dimensional images live on a 1-
dimensional manifold, plus some “noise”

“2” “3” “4” “1”

and noise

The 16-dimensional images live on a 1-
dimensional manifold, plus some “noise”

“2” “3” “4” “1”

Exercise

Change the neural network to
take 𝑧 and produce a
distribution over 𝑥:

𝑝Θ(𝑥|𝑧)

Generation and Inference

Generation:
𝑝(𝑧)
𝑝Θ 𝑥 𝑧

Inference:

𝑝Θ 𝑧 𝑥 = ? ? ? ?

Bayes says:

𝑝Θ 𝑧 𝑥 =
𝑝Θ 𝑥 𝑧 𝑝(𝑧)

∫ 𝑑𝑧′𝑝Θ 𝑥 𝑧′ 𝑝(𝑧′)

But often it’s intractable 

Inference starts with priors

Area = 1

“observed random variables”

“unobserved random
variables”

Inference

I give you . Keeping fixed, what was ?

Inference

I give you . Keeping fixed, what was ?

Exercise

Assuming the largest value of is 1, draw

as a function of on the same axis as above

Joint density (with 𝑥 observed)

Assuming the largest value of is 1, draw

as a function of on the same axis as above

Joint density (with 𝑥 observed)

Area = 1

Area = ?
1-minute exercise:
what is the area?

Posterior

Area = 1

Area = 1

Dividing by the marginal
likelihood (evidence)
scales the area back to 1...

Evidence of all data points

Area for data
point n

Evidence for all data points

The product of the areas
underneath the green curves

Maybe the x’s don’t even look
that nice, when sampled with

Maximizing the evidence

The product of the areas
underneath the green curves

These ’s don’t generate images like the ones in the
data set…

(With this , the prior doesn’t capture the data
manifold well)

By changing we can make the
evidence for these data points
bigger...

Maximizing the evidence

The product of the areas
underneath the green curves

That’s better…!

For the sharp-sighted

The product of the areas
underneath the green curves

20% 40% 20% 20% roughly...

Generation and Learning

Generation:
𝑝(𝑧)
𝑝Θ(𝑥|𝑧)

Training by max log-likelihood
argmax
Θ
log 𝑝Θ(𝑥)

But

𝑝Θ 𝑥 = ∫ 𝑑𝑧 𝑝Θ 𝑥 𝑧 𝑝(𝑧)

Approximate likelihood optimization

Our approach:

- Lower bound log 𝑝Θ(𝑥)

- Push the lower-bound up…
… hoping to increase log 𝑝Θ(𝑥)

Exercise

Jensen’s inequality

Draw log(...) as a function, convince yourself that

log
2

3
𝑧1 +
1

3
𝑧2 ≥
2

3
log 𝑧1 +

1

3
log 𝑧2

is true for any (nonnegative) setting of z1 and z2.

Jensen’s inequality

log ∫ 𝑑𝑧 𝑞 𝑧 𝑓 𝑧 ≥ ∫ 𝑑𝑧𝑞 𝑧 log 𝑓(𝑧)

ELBO: A likelihood bound
log 𝑝Θ 𝑥 = log ∫ 𝑑𝑧 𝑝Θ 𝑥, 𝑧 =

= log ∫ 𝑑𝑧 𝑞Φ 𝑧 𝑥
𝑝Θ(𝑥, 𝑧)

𝑞Φ(𝑧|𝑥)

≥ ∫ 𝑑𝑧𝑞Φ 𝑧 𝑥 log
𝑝Θ 𝑥, 𝑧

𝑞Φ 𝑧 𝑥

= 𝔼𝑞Φ 𝑧 𝑥
𝑝Θ 𝑥 𝑧 𝑝(𝑧)

𝑞Φ 𝑧 𝑥

= 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 − 𝔼𝑞Φ 𝑧 𝑥
𝑞Φ 𝑧 𝑥

𝑝 𝑧

= 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 − 𝐾𝐿(𝑞Φ(𝑧|𝑥) ∥ 𝑝(𝑧))

ELBO interpretation

log 𝑝Θ(𝑥) ≥ 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 − 𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧

𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 : auto-encoding term!

sample

ELBO optimization

log 𝑝Θ(𝑥) ≥ 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 − 𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧

ELBO is a function of 𝑥, Θ, and Φ

What it means to maximize ELBO over Φ?

It can’t change log 𝑝Θ(𝑥)…

It tries to make the bound tight!

Exercise

Recall Jensen’s inequality:

log ∫ 𝑑𝑧 𝑞 𝑧 𝑓 𝑧 ≥ ∫ 𝑑𝑧𝑞 𝑧 log 𝑓(𝑧)

When is it an equality?

When 𝑓 𝑧 = const

When is ELBO tight?

log 𝑝Θ 𝑥 = log ∫ 𝑑𝑧 𝑞Φ 𝑧 𝑥
𝑝Θ(𝑥, 𝑧)

𝑞Φ(𝑧|𝑥)

≥ ∫ 𝑑𝑧𝑞Φ 𝑧 𝑥 log
𝑝Θ 𝑥, 𝑧

𝑞Φ 𝑧 𝑥
= 𝐸𝐿𝐵𝑂

When
𝑝Θ(𝑥,𝑧)

𝑞Φ(𝑧|𝑥)
= const!

What does it mean?

𝑝Θ(𝑥, 𝑧)

𝑞Φ(𝑧|𝑥)
=
𝑝Θ 𝑥 𝑧 𝑝(𝑧)

𝑞Φ(𝑧|𝑥)
= const ⇒ 𝑝Θ 𝑥 𝑧 = 𝑞Φ(𝑧|𝑥)

ELBO is tight when 𝑞Φ(𝑧|𝑥) does exact inference!

ELBO optimization

log 𝑝Θ(𝑥) ≥ 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 − 𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧

ELBO is a function of 𝑥, Θ, and Φ

What it means to maximize ELBO over Θ?

Can only affect 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 !

Makes 𝑝Θ x z generate back our 𝑥!
This affects log 𝑝Θ(𝑥)…
…making room for improving 𝑞!

ELBO optimization

log 𝑝Θ(𝑥) ≥ 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 − 𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧

Change Φ to maximize the bound,
making 𝑞Φ 𝑧 𝑥 ≈ 𝑝Θ(𝑧|𝑥)

Change Θ to (if bound sufficiently tight)
improve log 𝑝Θ(𝑥)

But we tune Φ and Θ at the same time!

Similar to E step

Similar to M step

ELBO interpretation
ELBO, or evidence lower bound:

log 𝑝 𝑥 ≥ 𝔼𝑧~𝑞Φ 𝑧 𝑥 log 𝑝Θ 𝑥 𝑧 − 𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧

where:

𝔼𝑧~𝑞Φ 𝑧 𝑥 log 𝑝Θ 𝑥 𝑧 reconstruction quality:
 how many nats we need to reconstruct 𝑥,
 when someone gives us 𝑞 𝑧 𝑥

𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧 code transmission cost:
 how many nats we transmit about 𝑥 in 𝑞Φ(𝑧|𝑥) rather
than 𝑝 𝑧

Interpretation: do well at reconstructing 𝑥, limiting the amount of
information about 𝑥 encoded in 𝑧.

The Variational Autoencoder

𝑥

𝑞(𝑧|𝑥) q p

𝑝(𝑥|𝑧)

An input 𝑥 is put through the 𝑞 network to obtain a distribution over
latent code 𝑧, 𝑞(𝑧|𝑥).

Samples 𝑧1, … , 𝑧𝑘 are drawn from 𝑞(𝑧|𝑥). They 𝑘 reconstructions
𝑝(𝑥|𝑧𝑘) are computed using the network 𝑝.

𝔼𝑧~𝑞 𝑧 𝑥 log 𝑝 𝑥 𝑧

𝑝(𝑧) 𝐾𝐿 𝑞 𝑧 𝑥 ∥ 𝑝 𝑧

VAE is an Information Bottleneck

Each sample is
represented as a
Gaussian

This discards information
(latent representation
has low precision)

How to evaluate a VAE

Compute:
log 𝑝 𝑥 ≥ 𝔼𝑧~𝑞Φ 𝑧 𝑥 log 𝑝Θ 𝑥 𝑧 − 𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧

𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧 has closed form for simple 𝑞Φ(𝑧|𝑥)

𝔼𝑧~𝑞Φ 𝑧 𝑥 log 𝑝Θ 𝑥 𝑧 can be approximated:

𝔼𝑧~𝑞Φ 𝑧 𝑥 log 𝑝Θ 𝑥 𝑧 ≈ log 𝑝Θ 𝑥 𝑧𝑖
𝑖

Where 𝑧𝑖 drawn from 𝑞Φ 𝑧 𝑥

How to train a VAE?

• Forward computation involves drawing
samples

• Can’t backprop 

forward
computation

derivatives

Reparameterization exercise

Assume that 𝑞Φ 𝑧 𝑥 = 𝒩(μ𝑧, 𝜎𝑧).

Exercise:

you can sample from 𝒩(0,1)

Q: how to draw samples from 𝒩 μ𝑧, 𝜎𝑧

A:
𝜖𝑖~𝒩 0,1
𝑧𝑖 = 𝜇𝑧 + 𝜎𝑧𝜖

Reparametrization to the rescue

Assume that 𝑞Φ 𝑧 𝑥 = 𝒩(μ𝑧, 𝜎𝑧).

Then:
𝔼𝑧~𝑞Φ 𝑧 𝑥 log 𝑝Θ 𝑥 𝑧
= 𝔼𝜖~𝒩(0,1) log 𝑝Θ 𝑥 𝜇𝑧 + 𝜎𝑧𝜖

𝜖 is drawn from a fixed distribution.
With 𝜖 given, the computaiton graph is
deterministic -> we can backprop!

Outline

• Why unsupervised learning
• Autoregressive models

– Intuitions
– Dilated convolutions

RNNs (Intermezzo: LSTM training dynamics)
Transformers

– Beyond sequences, summary

• Latent variable models
– VAE
– Normalizing flows

• Autoregressive + latent variable: why and how?

Exercise

𝑝 𝑥 = uniform 0,1 =
1 for 𝑥 ∈ 0,1
0 otherwise

𝑦 = 2 ∗ 𝑥 + 1
𝑝 𝑦 = ?

Transforming distributions

𝑦 also has a
uniform
distribution!

𝑝 𝑦
= uniform 0,2

=
1/2 for 𝑦 ∈ 1,3
0 otherwise

E Jang https://blog.evjang.com/2018/01/nf1.html

https://blog.evjang.com/2018/01/nf1.html
https://blog.evjang.com/2018/01/nf1.html

The Jacobian: stretching space

Let 𝑦 = 𝑓 𝑥

Take a range (𝑥, 𝑥 + Δ𝑥)

Question:
How long is this range?

Δ𝑥

Question:
How long is (𝑓 𝑥 , 𝑓 𝑥 + Δ𝑥)?

𝑓 𝑥 + Δ𝑥 ≈ 𝑓 𝑥 +
𝜕𝑓

𝜕𝑥
Δ𝑥

𝜕𝑓

𝜕𝑥
Δ𝑥

https://blog.evjang.com/2018/01/nf1.html

https://blog.evjang.com/2018/01/nf1.html

Change of variables
𝑦 = 𝑓(𝑥), 𝑓 is a bijection

𝑝𝑥 𝑥 = 𝑝𝑦 𝑓 𝑥 det
𝜕𝑓(𝑥)

𝜕𝑥

𝑓 transforms 𝑥 ±
Δ𝑥

2
 to y ±

Δ𝑦

2

The space is stretched by
𝜕𝑓(𝑥)

𝜕𝑥
≈
Δ𝑦

Δ𝑥

Idea
Start with 𝑧~𝒩(0,1)

Then 𝑥 = 𝑓−1 𝑧 (equivalently z = 𝑓(𝑥))

𝑝𝑥 𝑥 = 𝑝𝑧 𝑓 𝑥 det
𝜕𝑓(𝑥)

𝑥

Tractable when:

- 𝑓 is easy to exactly invert
𝑓 and 𝑓−1 form and exact auto-encoder!

- det
𝜕𝑓(𝑥)

𝑥
 is easy to compute

=> We need special 𝑓!

A special form of 𝑓

𝑥1, 𝑥2 = split(𝑥)
𝑦1 = 𝑥1

𝑦2 = 𝑥2𝑠 𝑥1 + 𝑡(𝑥1)

Trivial to invert!
𝜕𝑦

𝜕𝑥
 is diagonal, determinant is easy!

L. Dinh et al “NICE”, L. Dinh et al “Real NVP”

Normalizing flows in action

Image credit Eric Jang, https://blog.evjang.com/2018/01/nf2.html

https://blog.evjang.com/2018/01/nf2.html

Normalizing flows in action

Prenger et al, “WAVEGLOW” Kingma et al, “GLOW”

Outline

• Why unsupervised learning
• Autoregressive models

– Intuitions
– Dilated convolutions

RNNs (Intermezzo: LSTM training dynamics)
Transformers

– Beyond sequences, summary

• Latent variable models
– VAE
– Normalizing flows

• Autoregressive + latent variable: why and how?

VAEs and sequential data
To encode a long sequence, we apply the VAE to
chunks:

But neighboring chunks are similar!

We are encoding the same information in many 𝑧s!

We are wasting capacity!

𝑧 𝑧 𝑧 𝑧 𝑧

WaveNet + VAE

The WaveNet uses information from:

1. The past recording

2. The latent vectors 𝑧

3. Other conditioning, e.g. about speaker

The encoder transmits in 𝑧s only the information that is missing
from the past recording .
The whole system is a very low bitrate codec
(roughly 0.7kbits/sec, the waveform is 16k Hz* 8bit=128kbit/sec)

A WaveNet reconstructs
the waveform using the
information from the past

𝑧 𝑧 𝑧 𝑧 𝑧 Latent representations are
extracted at regular
inervals.

van den Oord et al. Neural discrete representation learning

VAE + autoregressive models:
latent collapse danger

• Purely Autoregressive models: SOTA log-
likelihoods

• Conditioning on latents:
information passed through bottleneck
lower reconstruction x-entropy

• In standard VAE model actively tries to
- reduce information in the latents
- maxmally use autoregressive information
=> Collapse: latents are not used!

• Solution: stop optimizing KL term
(free bits), make it a hyperparam (VQVAE)

Model description

WaveNet decoder conditioned on:

- latents extracted at 24Hz-50Hz

- speaker

3 bottleneck evaluated:
- Dimensionality reduction, max 32 bits/dim

- VAE, 𝐾𝐿 𝑞 𝑧 𝑥 ∥ 𝒩 0,1 nats (bits)

- VQVAE with 𝐾 protos: log2𝐾 bits

Input:

Waveforms, Mel Filterbanks, MFCCs

Hope: speaker separated form content.

𝑧 𝑧 𝑧 𝑧 𝑧

spkr spkr spkr spkr spkr

Phonemes vs Gender tradeoff

https://arxiv.org/abs/1901.08810

https://arxiv.org/abs/1901.08810

Summary

Model Evaluate 𝒑(𝒙) Sample 𝒑(𝒙) Extract
latents

Control info
in latents

Autoregressive Exact & Cheap Exact &
Expensive

Impossible N/A

Latent var, VAE Lower Bound Exact & Cheap Easy No

Latent var,
Norm. Flow

Exact & Cheap Exact & Cheap Easy No

Autoregressive
cond on latents

Lower Bound Exact &
Expensive

Easy Yes

Our topic at JSALT

We will these ideas during JSALT’s topic
“Distant supervision for representation learning”:

- Work on speech and handwriting

- Explore ways of integrating metadata and
unlabeled data to control latent representations

- Focus on downstream supervised OCR and ASR
tasks under low data conditions

Thank you!

• Questions?

References – other tutorials

• https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

Backup

ELBO: A lower bound on log 𝑝(𝑥)

Let 𝑞(𝑧|𝑥) be any distribution. We can show that

log 𝑝 𝑥 =

= 𝐾𝐿 𝑞 𝑧 𝑥 ∥ 𝑝 𝑧 𝑥 + 𝔼𝑧~𝑞 𝑧 𝑥 log
𝑝 𝑧|𝑥

𝑞 𝑧 𝑥
𝑝 𝑥

≥ 𝔼𝑧~𝑞 𝑧 𝑥 log
𝑝 𝑧|𝑥

𝑞 𝑧 𝑥
𝑝 𝑥

= 𝔼𝑧~𝑞 𝑧 𝑥 log 𝑝 𝑥 𝑧 − 𝐾𝐿 𝑞 𝑧 𝑥 ∥ 𝑝 𝑧

The bound is tight for 𝑝 𝑧 𝑥 = 𝑞 𝑧 𝑥 .

ELBO Derivation pt. 1

ELBO derivation pt. 2

