Advanced ML:
Unsupervised learning with autoregressive
and latent variable models

https://github.com/janchorowski/JSALT2019 tutorials

Jan Chorowski
University of Wroctaw

With slides from TMLSS 2018
(Jan Chorowski, Urlich Paquet)

https://github.com/janchorowski/JSALT2019_tutorials

Outline

Why unsupervised learning

Autoregressive models
— Intuitions

— Dilated convolutions
RNNs (Intermezzo: LSTM training dynamics)
Transformers

— Beyond sequences, summary
Latent variable models

— VAE

— Normalizing flows

Autoregressive + latent variable: why and how?

Outline

Why unsupervised learning

Autoregressive models
— Intuitions

— Dilated convolutions
RNNs (Intermezzo: LSTM training dynamics)
Transformers

— Beyond sequences, summary
Latent variable models

— VAE

— Normalizing flows

Autoregressive + latent variable: why and how?

Deep Model = Hierarchy of Concepts

M. Zieler, “Visualizing and Understanding Convolutional Networks”

Deep Learning history: 1986

Learning representations
by back-propagating errors

David E. Rumelhart®, Geoffrey E. Hinton?
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

T Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight

adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,

and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as
the perceptron-convergence procedure’.

‘hidden’ units which are
not part of the input or
output come to
represent important
features of the task
domain

Deep Learning history: 2006

Pretraining Unrolling Fine-tuning

Hinton, Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks”

2012: Alexnet
SOTA on Imagenet

Fully supervised training

Max
pooling

128

mite

container ship

motor scooter

leopard

[] mite container ship motér scooter ledpard
] black widow lifeboat go-kart jaguar
] cockroach amphibian moped cheetah
] tick fireboat bumper car snow leopard
I starfish drilling platform golfcart Egyptian ca

=]

=

192

Max
poaling

192

pooling

mushroom cherry adagascar cat
__convertible | agaric dalmatiah squirrel monkey
grille oom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey
.'_ A '.IIII
182 128 2048 joag \dense
13 \ 13
. 3] T . R
I) 13 dense | [dense
1000
192 128 Max . .
2048 2048

Deep Learning Recipe

1. Get a massive, labeled dataset D = {(x,y)}:
— Comp. vision: Imagenet, 1M images

— Machine translation: EuroParlamanet data,
CommonCrawl, several million sent. pairs

— Speech recognition: 1000h (LibriSpeech), 12000h
(Google Voice Search)

— Question answering: SQUAD, 150k questions with
human answers

2. Train model to maximize logp(y|x)

Value of Labeled Data

e Labeled data is crucial for deep learning
* But labels carry little information:

— Example:
An ImageNet model has 30M weights, but
ImageNet is about 1M images from 1000 classes
Labels: 1M * 10bit = 10Mbits

Raw data: (128 x 128 images): ca 500 Gbits!

Value of Unlabeled Data

“The brain has about 10%* synapses and we only
live for about 10° seconds. So we have a lot
more parameters than data. This motivates the
idea that we must do a lot of unsupervised
learning since the perceptual input (including
proprioception) is the only place we can get

10° dimensions of constraint per second.”

Geoff Hinton

https://www.reddit.com/r/MachinelLearning/comments/2Imo0Ol/ama_geoffrey_hinton/

Unsupervised learning recipe

1. Get a massive labeled dataset D = {x}
Easy, unlabeled data is nearly free

2. Train model to...???

What is the task?
What is the loss function?

Unsupervised learning goals

e Learn a data representation:
— Extract features for downstream tasks
— Describe the data (clusterings)

» Data generation / density estimation
— What are my data
— Outlier detection
— Super-resolution
— Artifact removal
— Compression

2 minute exercise

Talk to your friend next to you, and tell him or
her everything you can about this data set:

The rows are correlated

HEE EE N BEER e EEm
LD 2

HEE B Bl EEN (PEE On =
#(9) .(10)

Latent representation

R
B
N

Outline

Why unsupervised learning

Autoregressive models
— Intuitions

— Dilated convolutions
RNNs (Intermezzo: LSTM training dynamics)
Transformers

— Beyond sequences, summary
Latent variable models

— VAE

— Normalizing flows

Autoregressive + latent variable: why and how?

Learning high dimensional
distributions is hard

Assume we work with small (32x32) images

Each data point is a il RN T) PE R
real vector of size EH‘
s Dl NES S
Data occupies only Ba.., =
a tiny fraction of m.“\&m
32X32X3 ALY " Y i 0

mpossblete ESEIS BRI
directly fit standard EEEEE
prob. distribution! aﬁlﬂﬁglﬂ.

W N = S

Divide and conquer

What is easier:
1. Write a paragraph at once?
2. Guess the next word?

Mary had a little

Mary had a little dog.

Mary had a little dog. It

Mary had a little dog. It was
Mary had a little dog. It was cute

Chain rule

Decompose probability of n-dimensional data
points into product of n conditional probabilities

p(X) — p(xlleJ ...,Xn)
= p(x)p(xzlxy) . p(xnlxg, X2, 0, X0 1)

— 1_[p(xtlxl' X2y veey xt—l)
t

Learning p(x;|x1, ..., X¢—1)

The good:
It looks like supervised learning!

The bad:
We need to handle variable-sized input.

Large n -> sparse data

Consider an n-gram LM:
HX k.t

XXy e, X 1) =
D(Xe|Xp— g1y ooer Xp—1) H X e

p(a lion is chasing a llama) =p(a) x p(lion|a) x p(is|a lion)
x p(chasing|lion is) x p(alis chasing)

x p(llama|chasing a) = 0

7

~"

=0
As n — oo n-grams become unique:

- Probability of all but one continuation is O
- Can’t model long contexts

Solution:
Use a representation in which “llama = animal”

Learning p(x;|xq, ..., X¢—1) #1

Assume distant past doesn’t matter,
p(xelxy, s xp1) = D(Xel X g1y s Xe—1)

Quite popular:
* n-gram text models (estimate p by counting)
* FIR filters

How to efficiently handle large k?

Neural LM

Compute p(x¢|Xs—j 41, ..., Xs—1) With a Neural Net

Zo Table
ZC__Z\)V;.
‘e Lookup
o |
- D
xl:N"_H_, Table X! ?D o % Softmax
‘. Lookup S o = 2 An arbitrary =D
O)
_6: % § § sub-graph
* = 5
- A E
(I;t \ Table
2! Lookup

Looks somewhat like a convolution.
Still: large “n” => many params, how to fix?

Y. Bengio et al “A Neural Probabilistic Language Model”, NIPS 2011

Dilated Convolutions

Large (but finite) receptive fields
Few parameters

Gipit @ @ @ 0 0000 00OCOGOOOO

Hidden - A OO0 OO0 OO0
L,El'y’lE.'r N St L L L L L L Y o L L L Lt s

HIddEr‘l [-‘\ r‘-: Iz'xl :H'--: Iz'xl :-'w: Iz_\l :---H: Iz'xl :-'\ ("] ™y :-"-: Iz'xl :-'-: t(] tl t-z t3 t"l ts tG tT ts
La‘y’EF W Yt o L o L o Y W -y N Yt o

Hilij;ir: Q000000000000 OO0 ww
nnt @ @ O 0 0 00000000000 ““““

'.“.I‘ I"*'I" " I 8) 8 82 83 834 85 8 87 88 89 810 811 812 813 S14 815 816

WaveNet ByteNet
https://arxiv.org/abs/1609.03499 https://arxiv.org/abs/1610.10099

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1610.10099

Outline

Why unsupervised learning

Autoregressive models
— Intuitions

— Dilated convolutions
RNNs (Intermezzo: LSTM training dynamics)
Transformers

— Beyond sequences, summary
Latent variable models

— VAE

— Normalizing flows

Autoregressive + latent variable: why and how?

Learning p(x;|xq, .., Xp—1) H#2

Introduce a hidden (i.e. not directly observed)
state h;.

h; summarizes xq, ..., X¢_1.
Compute h; using this recurrence:

he = f(he—q, x¢)
p(xt+1|x1; ---)xt) — g(ht)

Recurrences are powerful

Input: a sequence of bits 1,0,1,0,0,1
Output: the parity

Solution:

The hidden state will be just 1 bit — parity so far:
hog =0
hy = XOR(h¢_1, X¢)
yr = hy

Constant operating memory!
Works for arbitrary long sequences!

Recurrent Neural Networks (RNNs)

he = f(he—q, X¢)
p(xt+1|x1) ...,Xt) — g(ht)

f, g are implemented as feedforward neural nets.

RNNs naturally handle sequences

Training: unroll and supervise at every step:

p(had|Mary) p(al..) p(little]|...)

Mary had a

RNNs naturally handle sequences

Illllllllll‘

IIIIIII'II“

-

Illlllllllllll‘

x4 sampled from p(x;)

Generation: sample one element at a time

RNNs are dynamical systems

R

RNN is a very deep network, all “arrows”
compute the same function!

This impacts training!

RNN behavior - intuitions

A linear dynamical system computes
ht - W ht—l — Wtho
When:

1. w > 1itdiverges: L}im h; = sign(hg) - o

Z. w = 1litis constant lim h; = h,

t—o00

. —1 <w<1litdecaystoO: lim h; =0

t—> oo

3
4. w = —1 flips between *+h,
5. w < —1 diverges, changes sign at each step

A multidimensional linear dyn. system

h, € R, W € R™*"

he = Whe_4
Compute the eigendecomposition of IV
v i
W=QA =0 - Q™
Ann-

Then
hy = Wht 1 = W"ho = QA“Q‘lhO =

11
=(Q™ "hg

n
/lnn_

A multidimensional dyn. system cont.
hy = Why_; = W"hy = QA"Q 'hy

If largest eigenvalue has norm:

1. >1, system diverges

2. =1, system is stable or oscillates
3. <1, system decaysto 0

This is similar to the scalar case.

A nonlinear dynamical system
h't —_ tanh(W . ht—l)
Output is bounded (can’t diverge!)

If w > 1 has 3 fixed points: 0, £h¢. Starting the

iteration form h, # 0 it ends at £h; (effectively
remembers the sign).

If w < 1 has one fixed point: O

A nonlinear dynamical system

ht — tanh(W y ht—l) , W > 1

Gradients in RNNs

Recall RNN equations:
he = f(he—q1, x5 6)
Ve = g(ht)
Assume supervision only at the last step:
L=-e(yr)

The gradient is
oL B dL dhy 0h;

00 — Ohy 0h; 99

. Ohg
Trouble with on.

oh
ahT measures how much h; changes when h; changes.
t

n A

oh
Another look at — - -1
h
Let:
h; = tanh(w - h;_;)
Then:
ah’t _ aht aht_l aht_z ah]_
Oho _ 0hy_y 0y, by 5 " Ohy
vy _ tanh’(wh,) w
oh; ‘
t—1 t—1
aht ' !
— = Htanh (Whl) w = wt ntanh (Whl)
oh, |1 . =0
i= L=

Backward phase is linear!

Vanishing gradient

OhT
|f T
from time t when it reaches time T.

= (the network forgets all information

This makes it impossible to discover correlations
between inputs at distant time steps.

This is a modeling problem.

Exploding gradient

dLoss
00

dh :
When —= is large will be large too.

dh¢

. . oL
Making a gradient step 0 « « a(;ss can

drastically change the network, or even destroy
it.

This is not a problem of information flow, but of
training stability!

Exploding gradient intuition

h’t — tanh(th_l + b)

Exploding gradient intuition

ht — O-(Wht_l + b)
L — (h50 - 07)2

'0.35
0.30
0.25 .
(@)
0.20 £
Q
0.15
'0.10
'0.05

R. Pascanu et al. https://arxiv.org/abs/1211.5063

dhr

Summary: trouble with —
Oh;

RNNs are difficult to train because:

oh

™ —Z can be 0 —vanishing gradient
t

dhr

-, can be co — exploding gradient
t

With both phenomena governed by the spectral
norm of the weight matrix (norm of the largest
eigenvalue, magnitude of w in the scalar case).

Exploding gradient solution

Don’t do large steps.

Pick a gradient norm threshold and scale down
all larger gradients.

This prevents the model from doing a large
learning update and destroying itself.

Vanishing gradient solution:
LSTM, the RNN workhorse
dhr

P 0: step T forgots information from ¢
t

The dynamical system
he = why_4
maximally preserves information whenw =1

LSTM introduces a memory cell ¢; that will keep
information forever:

Ct = Ct—1

Memory cell

Memory cell preserves information

Gates

tanh(W,,.x; +)

Gates selectively load information into the
memory cell:
ir = o(Wyixe +)
€t = Ct—q + i - tanh(Wyexy +)

LSTM: the details

Hidden state is a pair of:

-c; information in the cell, hidden from the rest of the network
-h; information extracted form the cell into the network

Update equations:
ip = o(Wyixt + Whihi—1 + b;)
fr = o(Wyrxe + Wiyphe_q + by)
0 = 0(Wyoxt + Whohe—q + by)
c; = iy tanh(W,,.x; + Wy he_q + b,) “—
+ ftCt—1 4

h; = o; tanh ¢,

RNNs summary

LSTM/GRU can remember long histories:

e #params and memory footprint independent
of sequence length

e gates control information flow
* each element is processed in constant time:

— RNN needs to cram all past into a vector
— in practice this limits the receptive field

LSTMs gave us gating!

Gates decouple if from what
WaveNet & Conv models for text use gates too!

i
4+
@,
gl
€
- L

i —
% E\%@—]xl—'we—lxl—%ﬁmﬂ —» Output

Skip-connections

BN
A=

Conv
k Layers
l'i.T ___________ o ploglepieptiopilgl | I |
| e S ; _______________
Causal
Conv

Outline

Why unsupervised learning

Autoregressive models
— Intuitions

— Dilated convolutions
RNNs (Intermezzo: LSTM training dynamics)
Transformers

— Beyond sequences, summary
Latent variable models

— VAE

— Normalizing flows

Autoregressive + latent variable: why and how?

Learning p(x;|xq, ..., X¢—1) #3

Reduce x4, ..., x;_1 to a fixed-size representation
E.g. take weighted average of x; ... x;_4

This works really well with self-attention!

Attention ~ unbounded convolution

Convolution Self-Attention

S S N

Slide by L. Kaiser https://nlp.stanford.edu/seminar/details/lkaiser.pdf

https://nlp.stanford.edu/seminar/details/lkaiser.pdf
https://nlp.stanford.edu/seminar/details/lkaiser.pdf

Attention details

The past encodings form a
ist of key-value pairs:

(k;, V)], k€ RE,V e RP

At step t we start with a query g € R?

1. Match g to all keys: a; = T
Zjeq J

2. Compute an average: R =),; a; V;

Attention In action

* This is part of an encoder in NMT. The
attention can look forward and backward!

[0) ()
I 8 T 4
= w © Z 0 ©
o £ £ g o S » e o E & B o T "
_ © © O = © 0 &2 =2 £ £ _ © © O = » 0 =2 = &
(o)) (o))
T g T 4
— o = = ko)
o £ © @ o S " e, o £E © @ B S o
= S c o+ o .= = = c |+ o
—® © C = »w & = =2 2 = H ©® © O = |®m 9 = = =2

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1

wide

wide

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1

GPT2 Transformer in action

The JSALT summer school is about ...

GPT2 Transformer in action

The JSALT summer school is about developing creative,
innovative ways to solve global challenges, whether the problem
is creating sustainable energy systems, promoting economic
development, improving global health or making the world more
energy independent.

The JSALT summer school is funded by an international grant for
its education. Students enter the JSALT program on the basis of
merit, with the objective of applying their talents to global
development issues. They learn how to: develop, design and
produce sustainable and integrated energy systems, promote
economic development, increase efficiency of energy, develop a
healthy environment for the health and well being of people and
the environment, develop sustainable, clean and abundant

https://talktotransformer.com/

https://talktotransformer.com/

Self Attention Summary

params independent from history length + lots
of parameter reuse:

- effectively processes very long histories

Trades compute time for better performance!
- no need to cram all past into a vector!
- n-th step requires O(n) ops

Outline

Why unsupervised learning

Autoregressive models
— Intuitions

— Dilated convolutions
RNNs (Intermezzo: LSTM training dynamics)
Transformers

— Beyond sequences, summary
Latent variable models

— VAE

— Normalizing flows

Autoregressive + latent variable: why and how?

Beyond sequences

PixelRNN: A “language model for images”

Pixels generated left-to-right,
top-to-bottom.

Cond. probabilities
estimated using recurrent or
convolutional neural
networks.

van den Oord, A., et al. “Pixel Recurrent Neural Networks.” ICML (2016).

Modeling pixels

How to model pixel values:

- A Gaussian with fixed st. dev?

- A Gaussian with tunable st. dev?

- A distribution over discrete levels [0,1,2,...255]?

What are the implications?

Modeling pixel values

0 255 0 - 255

255

I
0 255

Model works best with a flexible distribution: better to use a
SoftMax over pixel values!

PixelCNN samples & completions

occluded completions original

S
'uq»; A b e

Bad. Ra
?lﬂﬁlll‘ll
e o i

AT EEALR TSR

MY ERI3SER

m..:. -y
Iﬂ

Salimans et al, “A PixelCNN Implementation with Discretized Logistic Mixture Likelihood and
Other Modifications”

van den Oord, A., et al. “Pixel Recurrent Neural Networks.” ICML (2016).

Autoregressive Models Summary

The good:

* Easy to exploit correlations in data.

* Reduce data generation to many small
decisions

— Simple define (just pick an ordering)
— Trains like fully supervised

— Model operations are deterministic, randomness
needed during generation

e Often SOTA log-likelihood

Autoregressive Model Summary

The bad:

* Train/test mismatch (teacher forcing):
trained on ground truth sequences
but applied to own predictions

* Generation requires O(n) steps
(Training can be sometimes parallelized)

* No compact intermediate data representation,
not obvious how to use for downstream tasks.

Outline

Why unsupervised learning

Autoregressive models
— Intuitions

— Dilated convolutions
RNNs (Intermezzo: LSTM training dynamics)
Transformers

— Beyond sequences, summary
Latent variable models

— VAE

— Normalizing flows

Autoregressive + latent variable: why and how?

Ad break

| took the following slides from Ulrich Paquet

See https://www.youtube.com/watch?v=xTsnNcctvmU for a
recording of a his explanation!

https://www.youtube.com/watch?v=xTsnNcctvmU
https://www.youtube.com/watch?v=xTsnNcctvmU
https://www.youtube.com/watch?v=xTsnNcctvmU

Latent Variable Models

Intuition: the data have a simple structure

Data structure

We can capture most of the variability in the data through one
number

zMW =1o0r2, 3,4

for each image n, even though each image is 16 dimensional

How?

How?

Take z(™ = 2
Draw bar in column 2 of image

Et voila! You have x(™

2(M) =9
\

Some bar-drawing process

|

(n)

How?

Take z(™ = 2 ~(n) — 9
Draw bar in column 2 of image |

Maybe some neural
network, that takes z as
input, and outputs a 16-
dimensional vector x...?

Et voila! You have x(™

!
(n)

Exercise

Write or draw a function (like a
multi-layer perceptron) that
takes z € R and produces x

Is your input one-dimensional?
Is your output 16-dimensional?

Identify all the “tunable”
parameters ® of your function

2(M) =9

Data manifold

The 16-dimensional images live on a 1-
dimensional manifold, plus some “noise”

IEO RN

and noise

The 16-dimensional images live on a 1-
dimensional manifold, plus some “noise”

z € R~

v

Exercise

Change the neural network to
take z and produce a
distribution over x:

pe(x|z)

Generation and Inference

Generation:
p(z)
pe(x|z)
Inference:
pe(z|lx) =7777
Bayes says:

pe(x|2)p(2)
J dz'pe(x|z")p(2")

pe(z]x) =

But often it’s intractable ®

Inference starts with priors

Area=1

“unobserved random

<

variables”

“observed random variables”

Inference

p(z) = N(2;0,1)

| give you IKeeping @) fixed, what was Z?

Inference

p(z) = N(2;0,1)

| give you IKeeping @) fixed, what was Z?

Exercise

- Z

Assuming the largest value of Pg (:c|z) is 1, draw

pe(z,2) = pa(z|2) p(2)

as a function of 2 on the same axis as above

Joint density (with x observed)

p(z) = N(2;0,1)

- Z

Assuming the largest value of Pg (:c|z) is 1, draw

pe(z,2) = pa(z|2) p(2)

as a function of 2 on the same axis as above

Joint density (with x observed)

Area=1

ZA

Area ="?
1-minute exercise:
what is the area?

Posterior

[

Area=1
po(2|x)
| o

Area=1

Po (Z‘ZC’) — pPeo (.’L"Z) p(Z) Dividing by the marginal
p@ (aj) likelihood (evidence)

scales the area back to 1...

Evidence of all data points

Area for data
point n

H po (™)

log po(X) = Z log p (™)

Evidence for all data points

The product of the areas
underneath the green curves

A

H | N
N NN
H m N
NN EEN

(1)

Maybe the x’s don’t even look
that nice, when sampled with

Maximizing the evidence

The product of the areas
underneath the green curves

po(X) = || po(='™)

7N
P
I

<
<

By changing 9 we can make the
evidence for these data points
bigger...

These &’s don’t generate images like the ones in the
data set...

0

Maximizing the evidence

The product of the areas
underneath the green curves

That’s better...!

<
<

For the sharp-sighted

The product of the areas
underneath the green curves

po(X) = || po(z'™)

roughly.yZO% 40% | 20% 20%\

A

Generation and Learning

Generation:

p(z)
pe(x|z)

Training by max log-likelihood

arg max log pe(x)

But
pe(x) = J dz pe(x|2)p(2)

Approximate likelihood optimization

Our approach:
- Lower bound log pg(x)

- Push the lower-bound up...
... hoping to increase log pg (x)

Exercise

Jensen’s inequality

Draw log(...) as a function, convince yourself that

2 1 2 1
log §Zl -|-3Z2 §logzl §log22

is true for any (nonnegative) setting of z, and z,.

Jensen’s inequality

log (521 + 522) > 2log(z1) + 5 log(22)
/
[/ 2

21 izt 3%

log | dz q(2)f(2) = | dzq(2) log f (2)

ELBO: A likelihood bound

log pe(x) = Ing dz pe(x,z) =
Pe(x,z)

> [dzqe (z]x) log 7o (Z]0)

e (x|2)p(2)

= Pae) | "o G

do(z]x)

qo(z]x)
= E —E
gozl0) [P (X[2)] — Eq 210 0

= Eq, (21 [Pe (12)] — KL(qo(z]%) 1| p(2))

ELBO interpretation

logpe(x) = Eqy 210 [Pe(x12)] — KL(qe(z]x) Il p(2))

Egoz10) [Pe(x]2z)]: auto-encoding term!

[]

|

n

|
HEEEN EETee]
HEEEN EETee]

l
r— 2 —>X

ELBO optimization
log pe(x) = Eq (2 [Pe(x]2)] = KL(qe (z|x) Il p(2))
ELBO is a function of x, ®, and ®
What it means to maximize ELBO over @?
It can’t change log pg (x)...

It tries to make the bound tight!

Exercise

Recall Jensen’s inequality:

log | dz q(2)f(2) = [dzq(2)log f(2)
When is it an equality?

When f(z) = const

When is ELBO tight?

_ pe(x,2)
log pe(x) = log [dz q(cp (le) (210
Pe\X, Z _
> [dzqe (z|x) log ozl ELBO

When 222 _ onstl
Ao (Z]x)

What does it mean?

Po(x,2) _ po(x12)p(2)
qo(Z|x) qo(Z|x)

= const = pg(x|z) = qe(z|x)

ELBO is tight when g4 (z|x) does exact inference!

ELBO optimization

logpe(x) = Eqy(z1x) [Pe(x]2)] — KL(qe(z]|x) Il p(2))
ELBO is a function of x, ®, and ®
What it means to maximize ELBO over ©7?
Can only affect B, (z|x) [Po (x]2)]!

Makes pg(X|z) generate back our x!

This affects log pg (x)...
...making room for improving g!

ELBO optimization

logpe(x) = E; 210 [Pe(x]2)] — KL(qe(z]|x) I p(2))

Change ® to maximize the bound, Similar to E step
making qq (z|x) = pe(z|x)

Change 0 to (if bound sufficiently tight) Similar to M step
improve log pg(x)

But we tune @ and 0O at the same time!

ELBO interpretation

ELBO, or evidence lower bound:

logp(x) = E, ;210 llogpe(x|2)] — KL(qe(z]x) Il p(2))

where:

E, gz 108 e (x]2)] reconstruction quality:
how many nats we need to reconstruct x,
when someone gives us q(z|x)

KL(ge(z|x) Il p(z)) code transmission cost:

how many nats we transmit about x in g4 (z|x) rather
than p(2)

Interpretation: do well at reconstructing x, limiting the amount of
information about x encoded in Zz.

The Variational Autoencoder

p(z) — KL(q(z|x) 1 p(2)) <——
X
E
An input x is put through the g network to obtain a distribution over
latent code z, g(z]|x).

z~q(z]x) [logp(xlz)]

Samples z4, ..., Z; are drawn from q(z|x). They k reconstructions
p(x|z;) are computed using the network p.

VAE is an Information Bottleneck

Each sample is
represented as a
Gaussian

This discards information
(latent representation
has low precision)

How to evaluate a VAE

Compute:
logp(x) = E;~gqz10) 108 Po (x]2)] = KL(qo (z|x) Il p(2))

KL(ge(z|x) |l p(2)) has closed form for simple g4 (z|x)

E, g zx) 108 e (x|2)] can be approximated:
Ez~qo 2l [log pe(x]2)] = Z log pe (x]2;)
i

Where z; drawn from g4 (z|x)

How to train a VAE?

forward
computation

HEEEN EETee]
HEEEN EETee]

derivatives

* Forward computation involves drawing
samples

* Can’t backprop ®

Reparameterization exercise
Assume that q¢(z|x) = N (U, 0,).

Exercise:
you can sample from N (0,1)

Q: how to draw samples from N (u,, o)

A:
Ei"’N(O,l)
Zi = U, + 0,€

Reparametrization to the rescue

Assume that g¢ (z|x) = N (u,, g,).

Then:
E;~qezlx) logpe(x]2)]
— II5:E~]\f(0,1) [log Po (X |,le O-ZE)]

€ is drawn from a fixed distribution.
With € given, the computaiton graph is
deterministic -> we can backprop!

Outline

Why unsupervised learning

Autoregressive models
— Intuitions

— Dilated convolutions
RNNs (Intermezzo: LSTM training dynamics)
Transformers

— Beyond sequences, summary
Latent variable models

— VAE

— Normalizing flows

Autoregressive + latent variable: why and how?

Exercise

1 for x € (0,1)

= unif 0,1 ={
p(x) = uniform(0,1) 0 otherwise

y=2*xx+1
p(y) =7

Transforming distributions

S5
L N

0 1
p(x)
1
[R=>R, f(z)=2x+1
0 X
1

0

E Jang https://blog.evjang.com/2018/01/nfl.html

y also has a
uniform
distribution!

p(y)
= uniform(0,2)

_ {1/2 for y € (1,3)
0 otherwise

https://blog.evjang.com/2018/01/nf1.html
https://blog.evjang.com/2018/01/nf1.html

The Jacobian: stretching space

Lety = f(x) dy dy

—>0 —<O

Take a range (x, x + Ax)

y y+dy

Question:
How long is this range?
Ax
X x+dx x+dx
Question:
How longis (f(x), f(x + Ax))?
0
flx+ Ax) = f(x) +£Ax
0f
ax

https://blog.eviang.com/2018/01/nfl.html

https://blog.evjang.com/2018/01/nf1.html

Change of variables
y = f(x), f is a bijection
0
px(x) — py(f(x)) det];ECx)

A A
f transforms x + 7x toy + 73/

ldea

Start with z~N'(0,1)
Then x = f~1(2) (equivalently z = f(x))

of (x)

X

det

Px(X) — pz(f(x))

Tractable when:

- f is easy to exactly invert
f and f~1 form and exact auto-encoder!

- det afix) is easy to compute

=> We need special !

Normalizing Flows

Exploit the rule for change of variables:
e Begin with an initial distribution
e Apply a sequence of K invertible transforms

Sampling and Entropy

zg = fko.. °f2°f1(zo) /\/\/\
O fx

log gx (zx) = log qo(20) — Zlog det

— 3z
,:::—:::\ k=1 k s
- - = = : £ -
/24‘— LYY N) %% |
N i Y \

7 af ™y AN .27 |

/ q(z') = q(z) |det == N o/ !
. 0z - o 5/,/ :
| \-::-- . - |

1| | “-: I
t=0 t=1 =T

Distribution flows through a sequence of invertible transforms

Rezende and Mohamed, 2015

A special form of f

OB
oo

ST

(a) Forward propagation (b) Inverse propagation

X1, X, = split(x)
Y1 = X1
V2 = x25(x1) + t(xq)
Trivial to invert!

dy . . . :
% is diagonal, determinant is easy!

L. Dinh et al “NICE”, L. Dinh et al “Real NVP”

ra

Normalizing flows in action

MultivariateNormalDiag masked_autoregressive_flow permute masked_autaregressive_flow permute masked_autaregressive_flow permute masked_autoregressive_flow
.) .
- 4 4 4 4 4 4
2 21 2 2 2 21
0 0 0 0 0 04 1
!
-2 -2 -2 -7 -2 -7
.. —4 — o -4 4 ~a —4 4
4 z 0 2 4 0 z 4 : 20 2 4 4 z 0 z 4 4 20 2 4 4 z 0 2 a 4 0 z 4 2 0 2 1
permute masked_autoregressive_flow permute masked_autoregressive_flow permute masked_autoregressive flow permute masked autoregressive flow
4 4 ad 4 a 4
- 8. 2 2 24 , 2 . 2 24
2 2 2 2 2 24
-4 -4 -4 —4 —a 4 -
-4 -2 o 2 -4 —.3 1] F & -4 -2 [+ 2 4 -4 -2 o 2 a -4 -2 4] 2 4 -4 -2 o 2 4 -4 —.3 1] 3 -4 -2 o 2 4

0.4

0.2

0.0

-3

-2

Image credit Eric Jang, https://blog.evjang.com/2018/01/nf2.html

https://blog.evjang.com/2018/01/nf2.html

Normalizing flows in action

A
: A
i affine : T
' | coupling layer | | affine
xX12 | | 4 ! xform
| invertible 1x1 || 4
/| convolution | » WN
 _ q _____ _I L4
squeeze to X, Xy
vectors
4
X upsampled

mel-spectrogram

Kingma et al, “GLOW” Prenger et al, “WAVEGLOW”

Outline

Why unsupervised learning

Autoregressive models
— Intuitions

— Dilated convolutions
RNNs (Intermezzo: LSTM training dynamics)
Transformers

— Beyond sequences, summary
Latent variable models

— VAE

— Normalizing flows

Autoregressive + latent variable: why and how?

VAEs and sequential data

To encode a long sequence, we apply the VAE to
chunks: | N | |

But neighboring chunks are similar!
We are encoding the same information in many zs!
We are wasting capacity!

WaveNet + VAE
M"—“’"""H‘ A WaveNet reconstructs

A‘A‘A the waveform using the

|| information from the past

z oz z z z Latent representations are
A A A A A i
'II : . inervals.

The WaveNet uses information from:

1. The past recording
2. The latent vectors z
3. Other conditioning, e.g. about speaker

The encoder transmits in zs only the information that is missing
from the past recording .

The whole system is a very low bitrate codec

(roughly 0.7kbits/sec, the waveform is 16k Hz* 8bit=128kbit/sec)

van den Oord et al. Neural discrete representation learning

VAE + autoregressive models:
latent collapse danger

Purely Autoregressive models: SOTA log-
likelihoods

Conditioning on latents:
information passed through bottleneck
lower reconstruction x-entropy

In standard VAE model actively tries to

- reduce information in the latents

- maxmally use autoregressive information
=> Collapse: latents are not used!

Solution: stop optimizing KL term
(free bits), make it a hyperparam (VQVAE)

Model description

"w. ' "*"' Moottt \NaveNet decoder conditioned on:

- latents extracted at 24Hz-50Hz
- speaker

”' ‘ I , 3 bottleneck evaluated:

Z Z Z Z
- Dimensionality reduction, max 32 bits/dim
AAAAA G —
” . | - VQVAE with K protos: log, K bits

Input:
Waveforms, Mel Filterbanks, MFCCs

Hope: speaker separated form content.

Phonemes vs Gender tradeoff

Probe point

O
~J

O
o

Bottleneck

O
U

—a— AE
VAE (D=32)
—=— VQ-VAE

Phoneme prediction accuracy

-
-

0.6 0.7 0.8 0.9
Gender prediction accuracy

https://arxiv.org/abs/1901.08810

https://arxiv.org/abs/1901.08810

Summary

Evaluate p(x) | Sample p(x) Extract Control info
latents in latents

Autoregressive Exact & Cheap Exact & Impossible
Expensive

Latent var, VAE Lower Bound Exact & Cheap Easy No

Latent var, Exact & Cheap Exact & Cheap Easy No

Norm. Flow

Autoregressive Lower Bound Exact & Easy Yes

cond on latents Expensive

A G s W=

ende voorspoedige reijse den 16=en Jullj de

Our topic at JSALT wew: ‘V'c-ctouaud S

van tleOdn g'arriveert, sijn E[delen] aldaar

We will these ideas during JSALT’s topic
“Distant supervision for representation learning”:

- Work on speech and handwriting

- Explore ways of integrating metadata and
unlabeled data to control latent representations

- Focus on downstream supervised OCR and ASR
tasks under low data conditions

Thank you!

e Questions?

References — other tutorials

e https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf

Backup

ELBO: A lower bound on log p(x)

Let q(z|x) be any distribution. We can show that

logp(x) = _ _
= KL(q(zx) I p(z]x)) + Eyq oy | log (p(zlx) (x))

| | qzlo "
= IIzzqu(zlx) log (p(Z|X) p(x))

= Eyq(zpn llogp(x|2)] — KL(q(z]x) Il p(2))

The bound is tight for p(z|x) = q(z|x).

ELBO Derivation pt. 1

KL(qy(zlz)||pe(2|z)) = Esngy(zla) B log Polz ;1:]] =
S gs(z|z)
> | Po(z|z)pe(x)
= Eougyalz) |~ _ =
: q¢(z|z)pe(z) |
' po(z|z)pa(z)
= Ezugyzlz) [~ o + E.q.(zz) 10)| =
zrafy(z|x) _ g w(2z) | oy (|:][g pg(x)]
pa(z, E]]
= Ezgy(zfz) | log + log pg(z)
qs(zlz) _ %{3'2:}

pa(z, 3}]

log pg(z) = KL(gs(212)||ps(2]z)) + Enmgy (s [mg
¢ zray(z]Z) %{3'1:}

ELBO derivation pt. 2

pﬂ{mi E]
log pa(z) > Esg,zjz) |log] =
zrally(Z]T) i l'}.,i.{ElTJ}
= log Pﬂ{$|3]139{3]] B
zrly(zlz)] t]¢.{3|:]:]
| - po(2)
— K. lo rlz)| — K.on.i- —lo
zrally | Z]T) EPH(] 2oy 2]) [g q¢{3|$]
— E%I{El:] _IGEIJE(E 3] o HL(E*;'J(EII]”IJH[3D

|

