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Deep Model = Hierarchy of Concepts 

Cat 
Dog 
… 
Moon 
Banana 

M. Zieler, “Visualizing and Understanding Convolutional Networks” 



Deep Learning history: 1986 

‘hidden’ units which are 
not part of the input or 
output come to 
represent important 
features of the task 
domain 



Deep Learning history: 2006 

Stacked RBMs 

Hinton, Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks” 



Deep Learning history: 2012 

2012: Alexnet 
SOTA on Imagenet 

Fully supervised training 



Deep Learning Recipe 

1. Get a massive, labeled dataset 𝐷 = {(𝑥, 𝑦)}: 
– Comp. vision: Imagenet, 1M images 

– Machine translation: EuroParlamanet data, 
CommonCrawl, several million sent. pairs 

– Speech recognition: 1000h (LibriSpeech), 12000h 
(Google Voice Search) 

– Question answering: SQuAD, 150k questions with 
human answers 

– … 

2. Train model to maximize log 𝑝(𝑦|𝑥) 



Value of Labeled Data 

• Labeled data is crucial for deep learning 

• But labels carry little information: 

– Example:  
An ImageNet model has 30M weights, but 
ImageNet is about 1M images from 1000 classes 
Labels: 1M * 10bit = 10Mbits 
 
Raw data: (128 x 128 images): ca 500 Gbits! 



Value of Unlabeled Data 

“The brain has about 1014 synapses and we only 
live for about 109 seconds. So we have a lot 
more parameters than data. This motivates the 
idea that we must do a lot of unsupervised 
learning since the perceptual input (including 
proprioception) is the only place we can get 
105 dimensions of constraint per second.” 

 

Geoff Hinton 

https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/ 



Unsupervised learning recipe 

1. Get a massive labeled dataset 𝐷 = 𝑥  
Easy, unlabeled data is nearly free 

 

2. Train model to…??? 
 

What is the task? 
What is the loss function? 



Unsupervised learning goals 

• Learn a data representation: 
– Extract features for downstream tasks 

– Describe the data (clusterings) 

• Data generation / density estimation 
– What are my data 

– Outlier detection 

– Super-resolution 

– Artifact removal 

– Compression 



2 minute exercise 

Talk to your friend next to you, and tell him or 
her everything you can about this data set: 



The rows are correlated 



Latent representation 
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Learning high dimensional 
distributions is hard 

• Assume we work with small (32x32) images 

• Each data point is a 
real vector of size 
32 × 32 × 3  

• Data occupies only 
a tiny fraction of 
ℝ32×32×3   

• Impossible to  
directly fit standard 
prob. distribution! 

 



Divide and conquer 

What is easier: 
1. Write a paragraph at once? 
2. Guess the next word? 
 
Mary had a little 
Mary had a little dog. 
Mary had a little dog. It  
Mary had a little dog. It was 
Mary had a little dog. It was cute 
 



Chain rule 

Decompose probability of 𝑛-dimensional data 
points into product of 𝑛 conditional probabilities 

 
𝑝 𝑥 = 𝑝 𝑥1, 𝑥2, … , 𝑥𝑛  
= 𝑝 𝑥1 𝑝 𝑥2 𝑥1 …𝑝 𝑥𝑛 𝑥1, 𝑥2, … , 𝑥𝑛−1  

= 𝑝(𝑥𝑡|𝑥1, 𝑥2, … , 𝑥𝑡−1)

𝑡

 



Learning 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1  

The good: 

It looks like supervised learning! 

 

The bad: 

We need to handle variable-sized input.  



Large n -> sparse data 

Consider an n-gram LM: 

𝑝 𝑥𝑡 𝑥𝑡−𝑘+1, … , 𝑥𝑡−1 =
#𝑥𝑡−𝑘:𝑡
#𝑥𝑡−𝑘:𝑡−1

 

 
 
 
 
As 𝑛 → ∞ n-grams become unique: 
- Probability of all but one continuation is 0 
- Can’t model long contexts 

 
Solution: 
Use a representation in which “llama ≈ animal” 
 
 
 



Learning 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1  #1 

Assume distant past doesn’t matter,  
𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1 ≈ 𝑝 𝑥𝑡 𝑥𝑡−𝑘+1, … , 𝑥𝑡−1  

 
Quite popular: 

• n-gram text models (estimate 𝑝 by counting) 

• FIR filters 

 

How to efficiently handle large 𝑘? 



Neural LM 
Compute 𝑝 𝑥𝑡 𝑥𝑡−𝑘+1, … , 𝑥𝑡−1  with a Neural Net 

 

 

 

 

 

 

 

Looks somewhat like a convolution. 

Still: large “n” => many params, how to fix? 

Table 
Lookup 

Table 
Lookup 

Table 
Lookup 
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Softmax 

Y. Bengio et al “A Neural Probabilistic Language Model”, NIPS 2011 



Dilated Convolutions 

https://arxiv.org/abs/1609.03499 https://arxiv.org/abs/1610.10099 

Large (but finite) receptive fields 

Few parameters 

WaveNet ByteNet 

https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1610.10099
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Learning 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1  #2 

Introduce a hidden (i.e. not directly observed) 
state ℎ𝑡.  
 
ℎ𝑡 summarizes 𝑥1, … , 𝑥𝑡−1. 
 
Compute ℎ𝑡 using this recurrence: 

ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝑥𝑡  
𝑝 𝑥𝑡+1 𝑥1, … , 𝑥𝑡 = 𝑔(ℎ𝑡) 



Recurrences are powerful  
Input: a sequence of bits 1,0,1,0,0,1 
Output: the parity 
 
Solution: 
The hidden state will be just 1 bit – parity so far: 

ℎ0 = 0 
ℎ𝑡 = 𝑋𝑂𝑅 ℎ𝑡−1, 𝑥𝑡  
𝑦𝑇 = ℎ𝑇 

 
Constant operating memory! 
Works for arbitrary long sequences! 



Recurrent Neural Networks (RNNs) 

 

 

 𝑓 𝑔 

ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝑥𝑡  
𝑝 𝑥𝑡+1 𝑥1, … , 𝑥𝑡 = 𝑔(ℎ𝑡) 

 

𝑓, 𝑔 are implemented as feedforward neural nets. 

 



RNNs naturally handle sequences 

Training: unroll and supervise at every step: 

 

 

 
 

 
 

 

 
 

 

 
 

 

… 

Mary             had              a          ….. 

𝑝(ℎ𝑎𝑑|𝑀𝑎𝑟𝑦)  𝑝(𝑎|… )   𝑝(𝑙𝑖𝑡𝑡𝑙𝑒| … ) 



RNNs naturally handle sequences 

Generation: sample one element at a time 

<S
O

S>
 

 

 
 

 
 

 

 
 

 

 
 

 

… 

𝑥1 sampled from 𝑝 𝑥1  

Mary had a 



RNNs are dynamical systems 

RNN is a very deep network, all “arrows” 
compute the same function! 

This impacts training! 
 

 

 
 

 
 

 

 
 

 

 
 

 

…    

𝑓 𝑔 



RNN behavior - intuitions 

A linear dynamical system computes 
ℎ𝑡 = 𝑤 ⋅ ℎ𝑡−1 = 𝑤

𝑡ℎ0 

When: 

1. 𝑤 > 1 it diverges: lim
𝑡→∞
ℎ𝑡 = sign h0 ⋅ ∞ 

2. 𝑤 = 1 it is constant lim
𝑡→∞
ℎ𝑡 = h0 

3. −1 < 𝑤 < 1 it decays to 0: lim
𝑡→∞
ℎ𝑡 = 0 

4. 𝑤 = −1 flips between ±ℎ0 

5. 𝑤 < −1 diverges, changes sign at each step 



A multidimensional linear dyn. system 

ℎ𝑡 ∈ ℝ
𝑛,𝑊 ∈ ℝ𝑛×𝑛 
ℎ𝑡 = 𝑊ℎ𝑡−1 

Compute the eigendecomposition of 𝑊: 

𝑊 = 𝑄Λ𝑄−1 = 𝑄
𝜆11   
 ⋱  
  𝜆𝑛𝑛

𝑄−1 

Then 
ℎ𝑡 = 𝑊ℎ𝑡−1 = 𝑊

𝑛ℎ0 = 𝑄Λ
n𝑄−1ℎ0 = 

= 𝑄
𝜆11
𝑛   
 ⋱  
  𝜆𝑛𝑛

𝑛
𝑄−1ℎ0 



A multidimensional dyn. system cont. 

ℎ𝑡 = 𝑊ℎ𝑡−1 = 𝑊
𝑛ℎ0 = 𝑄Λ

n𝑄−1ℎ0 
 
If largest eigenvalue has norm: 
1. >1, system diverges 
2. =1, system is stable or oscillates 
3. <1, system decays to 0 

 
 

This is similar to the scalar case. 
 



A nonlinear dynamical system 

ℎ𝑡 = tanh(𝑤 ⋅ ℎ𝑡−1) 

 

Output is bounded (can’t diverge!) 

 

If 𝑤 > 1 has 3 fixed points: 0,±ℎ𝑓. Starting the 
iteration form ℎ0 ≠ 0 it ends at ±ℎ𝑓 (effectively 
remembers the sign). 

 

If 𝑤 ≤ 1 has one fixed point: 0 

 

 



A nonlinear dynamical system 

ℎ𝑡 = tanh(𝑤 ⋅ ℎ𝑡−1) , 𝑤 > 1 

𝑡 

ℎ 



Gradients in RNNs 

Recall RNN equations: 
ℎ𝑡 = 𝑓 ℎ𝑡−1, 𝑥𝑡; 𝜃  
𝑦𝑡 = 𝑔 ℎ𝑡  

Assume supervision only at the last step: 
L = 𝑒(𝑦𝑇) 

The gradient is 
𝜕𝐿

𝜕𝜃
= 
𝜕𝐿

𝜕ℎ𝑇

𝝏𝒉𝑻
𝝏𝒉𝒕

𝜕ℎ𝑡
𝜕𝜃

𝑡

 



Trouble with 
𝜕ℎ𝑇

𝜕ℎ𝑡
 

𝜕ℎ𝑇

𝜕ℎ𝑡
 measures how much ℎ𝑇 changes when ℎ𝑡 changes. 

 

𝑡 

ℎ 



Another look at 
𝜕ℎ𝑇

𝜕ℎ𝑡
 

Let: 
ℎ𝑡 = tanh(𝑤 ⋅ ℎ𝑡−1) 

Then: 
𝜕ℎ𝑡
𝜕ℎ0
=
𝜕ℎ𝑡
𝜕ℎ𝑡−1

𝜕ℎ𝑡−1
𝜕ℎ𝑡−2

𝜕ℎ𝑡−2
𝜕ℎ𝑡−3
…
𝜕ℎ1
𝜕ℎ0

 

𝜕ℎ𝑖+1
𝜕ℎ𝑖
= tanh ′(𝑤ℎ𝑡)𝑤 

𝜕ℎ𝑡
𝜕ℎ0
= tanh ′(𝑤ℎ𝑖)𝑤

𝑡−1

𝑖=0

= 𝑤𝑡 tanh ′(𝑤ℎ𝑖)

𝑡−1

𝑖=0

 

Backward phase is linear! 



Vanishing gradient 

If 
𝜕ℎ𝑇

𝜕ℎ𝑡
= 0 the network forgets all information 

from time 𝑡 when it reaches time 𝑇. 

 

This makes it impossible to discover correlations 
between inputs at distant time steps. 

 

This is a modeling problem. 



Exploding gradient 

When 
𝜕ℎ𝑇

𝜕ℎ𝑡
 is large 

𝜕Loss

𝜕𝜃
 will be large too. 

 

Making a gradient step 𝜃 ← 𝛼
𝜕Loss

𝜕𝜃
 can 

drastically change the network, or even destroy 
it. 

 

This is not a problem of information flow, but of 
training stability! 

 

 



Exploding gradient intuition #1 

ℎ𝑡 = tanh(2ℎ𝑡−1 + 𝑏) 

𝑡 

ℎ 



Exploding gradient intuition #2 

ℎ0 = 𝜎(0.5) 
ℎ𝑡 = 𝜎 𝑤ℎ𝑡−1 + 𝑏  
𝐿 = ℎ50 − 0.7

2 

 

R. Pascanu et al. https://arxiv.org/abs/1211.5063 



Summary: trouble with 
𝜕ℎ𝑇

𝜕ℎ𝑡
 

RNNs are difficult to train because: 

 
𝜕ℎ𝑇

𝜕ℎ𝑡
 can be 0 – vanishing gradient 

𝜕ℎ𝑇

𝜕ℎ𝑡
 can be ∞ – exploding gradient 

 

With both phenomena governed by the spectral 
norm of the weight matrix (norm of the largest 
eigenvalue, magnitude of 𝑤 in the scalar case). 

 



Exploding gradient solution 

Don’t do large steps. 

 

Pick a gradient norm threshold and scale down 
all larger gradients. 

 

This prevents the model from doing a large 
learning update and destroying itself. 



Vanishing gradient solution:  
LSTM, the RNN workhorse 

𝜕ℎ𝑇

𝜕ℎ𝑡
≈ 0: step 𝑇 forgots information from 𝑡 

 
The dynamical system 

ℎ𝑡 = 𝑤ℎ𝑡−1 
maximally preserves information when 𝑤 = 1 
 
LSTM introduces a memory cell 𝑐𝑡 that will keep 
information forever: 

𝑐𝑡 = 𝑐𝑡−1 



Memory cell 

Memory cell preserves information 
𝑐𝑡 = 𝑐𝑡−1 
𝜕𝑐𝑇
𝜕𝑐𝑡
= 1 

𝑐𝑡 



Gates 

Gates selectively load information into the 
memory cell: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +⋯) 
𝑐𝑡 = 𝑐𝑡−1 + 𝑖𝑡 ⋅ tanh(𝑊𝑥𝑐𝑥𝑡 +⋯) 

𝑐𝑡 + ⋅ 

𝜎(𝑊𝑥𝑖𝑥𝑡 +⋯) 

tanh(𝑊𝑥𝑐𝑥𝑡 +⋯) 



LSTM: the details 

Update equations: 
𝑖𝑡 = 𝜎 𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖  
𝑓𝑡 = 𝜎 𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓  

𝑜𝑡 = 𝜎 𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜  
𝑐𝑡 = 𝑖𝑡 tanh(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)
+ 𝑓𝑡𝑐𝑡−1 

ℎ𝑡 = 𝑜𝑡 tanh 𝑐𝑡 

 

Hidden state is a pair of: 
-𝑐𝑡 information in the cell, hidden from the rest of the network 
-ℎ𝑡 information extracted form the cell into the network 



RNNs summary 

LSTM/GRU can remember long histories: 

• #params and memory footprint independent 
of sequence length 

• gates control information flow 

• each element is processed in constant time: 

– RNN needs to cram all past into a vector 

– in practice this limits the receptive field 



LSTMs gave us gating! 

Gates decouple if from what 

WaveNet & Conv models for text use gates too! 
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Learning 𝑝 𝑥𝑡 𝑥1, … , 𝑥𝑡−1  #3 

Reduce 𝑥1, … , 𝑥𝑡−1 to a fixed-size representation 
 
E.g. take weighted average of 𝑥1…𝑥𝑡−1 
 
This works really well with self-attention! 

 



Attention ~ unbounded convolution 

Slide by L. Kaiser https://nlp.stanford.edu/seminar/details/lkaiser.pdf  

https://nlp.stanford.edu/seminar/details/lkaiser.pdf
https://nlp.stanford.edu/seminar/details/lkaiser.pdf


Attention details 

The past encodings form a  
list of key-value pairs: 

[(𝑘𝑖 , 𝑉𝑖)], 𝑘 ∈ ℝ
𝑑 , 𝑉 ∈ ℝ𝐷 

 

At step 𝑡 we start with a query 𝑞 ∈ ℝ𝑑 

1. Match 𝑞 to all keys: 𝛼𝑖 =
𝑒𝑞
𝑇𝑘𝑖

 𝑒
𝑞𝑇𝑘𝑗
𝑗

 

2. Compute an average: 𝑅 =  𝛼𝑖𝑖 𝑉𝑖 



Attention in action 

• This is part of an encoder in NMT. The 
attention can look forward and backward! 

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1 

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html?m=1


GPT2 Transformer in action 
The JSALT summer school is about … 



GPT2 Transformer in action 
The JSALT summer school is about developing creative, 
innovative ways to solve global challenges, whether the problem 
is creating sustainable energy systems, promoting economic 
development, improving global health or making the world more 
energy independent. 
 
The JSALT summer school is funded by an international grant for 
its education. Students enter the JSALT program on the basis of 
merit, with the objective of applying their talents to global 
development issues. They learn how to: develop, design and 
produce sustainable and integrated energy systems, promote 
economic development, increase efficiency of energy, develop a 
healthy environment for the health and well being of people and 
the environment, develop sustainable, clean and abundant 

https://talktotransformer.com/ 

https://talktotransformer.com/


Self Attention Summary 

# params independent from history length + lots 
of parameter reuse: 

- effectively processes very long histories 

 

 

Trades compute time for better performance! 

- no need to cram all past into a vector! 

- 𝑛-th step requires 𝑂(𝑛) ops 
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Beyond sequences 

Pixels generated left-to-right, 
top-to-bottom. 

 

Cond. probabilities 
estimated using recurrent or 
convolutional neural 
networks. 

van den Oord, A., et al. “Pixel Recurrent Neural Networks.” ICML (2016). 

PixelRNN: A “language model for images” 



Modeling pixels 

How to model pixel values: 

- A Gaussian with fixed st. dev? 

- A Gaussian with tunable st. dev? 

- A distribution over discrete levels [0,1,2,…255]? 

 

 

What are the implications? 



Modeling pixel values 

Model works best with a flexible distribution: better to use a 
SoftMax over pixel values! 



PixelCNN samples & completions 

Salimans et al, “A PixelCNN Implementation with Discretized Logistic Mixture Likelihood and 
Other Modifications” 
van den Oord, A., et al. “Pixel Recurrent Neural Networks.” ICML (2016). 



Autoregressive Models Summary 

The good: 

• Easy to exploit correlations in data. 

• Reduce data generation to many small 
decisions 
– Simple define (just pick an ordering) 

– Trains like fully supervised  

– Model operations are deterministic, randomness 
needed during generation 

• Often SOTA log-likelihood 



Autoregressive Model Summary 

The bad: 

• Train/test mismatch (teacher forcing): 
trained on ground truth sequences 
but applied to own predictions 

• Generation requires 𝑂 𝑛  steps 
(Training can be sometimes parallelized) 

• No compact intermediate data representation, 
not obvious how to use for downstream tasks. 
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Ad break 

I took the following slides from Ulrich Paquet 

See https://www.youtube.com/watch?v=xTsnNcctvmU for a 
recording of a his explanation! 

https://www.youtube.com/watch?v=xTsnNcctvmU
https://www.youtube.com/watch?v=xTsnNcctvmU
https://www.youtube.com/watch?v=xTsnNcctvmU


Latent Variable Models 

Intuition: the data have a simple structure 

2 3 4 2 1 

4 2 2 1 3 



Data structure 

We can capture most of the variability in the data through one 
number 

 

𝑧(𝑛) = 1 or 2, 3, 4 
 

for each image n, even though each image is 16 dimensional 

 

How? 
 



How? 

Take 𝑧(𝑛) = 2 

Draw bar in column 2 of image 

Et voila! You have 𝑥(𝑛) 
Some bar-drawing process 



How? 

Take 𝑧(𝑛) = 2 

Draw bar in column 2 of image 

Et voila! You have 𝑥(𝑛) Maybe some neural 
network, that takes z as 
input, and outputs a 16-
dimensional vector x…? 



Exercise 

Write or draw a function (like a 
multi-layer perceptron) that 
takes 𝑧 ∈ ℝ and produces 𝑥 

Is your input one-dimensional? 

Is your output 16-dimensional? 

Identify all the “tunable” 
parameters Θ of your function 

Θ 



Data manifold 

The 16-dimensional images live on a 1-
dimensional manifold, plus some “noise” 

 
“2” “3” “4” “1” 



and noise 

The 16-dimensional images live on a 1-
dimensional manifold, plus some “noise” 

 
“2” “3” “4” “1” 



Exercise 

Change the neural network to 
take 𝑧 and produce a 
distribution over 𝑥: 
 

𝑝Θ(𝑥|𝑧) 



Generation and Inference 

Generation: 
𝑝(𝑧) 
𝑝Θ 𝑥 𝑧  

 
Inference:  

𝑝Θ 𝑧 𝑥 = ? ? ? ? 
 
Bayes says: 

𝑝Θ 𝑧 𝑥 =
𝑝Θ 𝑥 𝑧 𝑝(𝑧)

∫ 𝑑𝑧′𝑝Θ 𝑥 𝑧′ 𝑝(𝑧′)
 

 
But often it’s intractable  



Inference starts with priors 

Area = 1 

“observed random variables” 

“unobserved random 
variables” 



Inference 

I give you      . Keeping     fixed, what was     ? 



Inference 

I give you      . Keeping     fixed, what was     ? 



Exercise 

Assuming the largest value of                  is 1, draw 

 

as a function of      on the same axis as above 



Joint density (with 𝑥 observed) 

Assuming the largest value of                  is 1, draw 

 

as a function of      on the same axis as above 



Joint density (with 𝑥 observed) 

Area = 1 

Area = ? 
1-minute exercise: 
what is the area? 



Posterior 

Area = 1 

Area = 1 

Dividing by the marginal 
likelihood (evidence) 
scales the area back to 1... 



Evidence of all data points 

Area for data 
point n 



Evidence for all data points 

The product of the areas 
underneath the green curves 

Maybe the x’s don’t even look 
that nice, when sampled with  



Maximizing the evidence 

The product of the areas 
underneath the green curves 

These     ’s don’t generate images like the ones in the 
data set… 
 
(With this    , the prior doesn’t capture the data 
manifold well)  

By changing       we can make the 
evidence for these data points 
bigger... 



Maximizing the evidence 

The product of the areas 
underneath the green curves 

That’s better…! 



For the sharp-sighted 

The product of the areas 
underneath the green curves 

20% 40% 20% 20% roughly... 



Generation and Learning 

Generation: 
𝑝(𝑧) 
𝑝Θ(𝑥|𝑧) 

 

Training by max log-likelihood 
argmax
Θ
log 𝑝Θ(𝑥) 

 

But 

𝑝Θ 𝑥 = ∫ 𝑑𝑧 𝑝Θ 𝑥 𝑧 𝑝(𝑧) 



Approximate likelihood optimization 

Our approach: 

- Lower bound log 𝑝Θ(𝑥) 

- Push the lower-bound up… 
… hoping to increase log 𝑝Θ(𝑥) 



Exercise 

Jensen’s inequality 

Draw log(...) as a function, convince yourself that 

log
2

3
𝑧1 +
1

3
𝑧2 ≥
2

3
log 𝑧1 +

1

3
log 𝑧2 

is true for any (nonnegative) setting of z1 and z2. 

 



Jensen’s inequality 

log ∫ 𝑑𝑧 𝑞 𝑧 𝑓 𝑧 ≥ ∫ 𝑑𝑧𝑞 𝑧 log 𝑓(𝑧) 



ELBO: A likelihood bound 
log 𝑝Θ 𝑥 = log ∫ 𝑑𝑧 𝑝Θ 𝑥, 𝑧 = 

= log ∫ 𝑑𝑧 𝑞Φ 𝑧 𝑥
𝑝Θ(𝑥, 𝑧)

𝑞Φ(𝑧|𝑥)
  

≥ ∫ 𝑑𝑧𝑞Φ 𝑧 𝑥 log
𝑝Θ 𝑥, 𝑧

𝑞Φ 𝑧 𝑥
 

= 𝔼𝑞Φ 𝑧 𝑥
𝑝Θ 𝑥 𝑧 𝑝(𝑧)

𝑞Φ 𝑧 𝑥
 

= 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 − 𝔼𝑞Φ 𝑧 𝑥
𝑞Φ 𝑧 𝑥

𝑝 𝑧
 

= 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 − 𝐾𝐿(𝑞Φ(𝑧|𝑥) ∥ 𝑝(𝑧)) 



ELBO interpretation 

log 𝑝Θ(𝑥) ≥ 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 − 𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧  

 

𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 : auto-encoding term! 

 

sample 



ELBO optimization 

log 𝑝Θ(𝑥) ≥ 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 − 𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧  

 

ELBO is a function of 𝑥, Θ, and Φ 

 

What it means to maximize ELBO over Φ? 

 

It can’t change log 𝑝Θ(𝑥)… 

 

It tries to make the bound tight! 



Exercise 

Recall Jensen’s inequality: 

log ∫ 𝑑𝑧 𝑞 𝑧 𝑓 𝑧 ≥ ∫ 𝑑𝑧𝑞 𝑧 log 𝑓(𝑧) 

 

When is it an equality? 

 

When 𝑓 𝑧 = const 

 



When is ELBO tight? 

log 𝑝Θ 𝑥 = log ∫ 𝑑𝑧 𝑞Φ 𝑧 𝑥
𝑝Θ(𝑥, 𝑧)

𝑞Φ(𝑧|𝑥)
  

≥ ∫ 𝑑𝑧𝑞Φ 𝑧 𝑥 log
𝑝Θ 𝑥, 𝑧

𝑞Φ 𝑧 𝑥
= 𝐸𝐿𝐵𝑂 

 

When 
𝑝Θ(𝑥,𝑧)

𝑞Φ(𝑧|𝑥)
= const! 

 
What does it mean? 
 
𝑝Θ(𝑥, 𝑧)

𝑞Φ(𝑧|𝑥)
=
𝑝Θ 𝑥 𝑧 𝑝(𝑧)

𝑞Φ(𝑧|𝑥)
= const ⇒ 𝑝Θ 𝑥 𝑧 = 𝑞Φ(𝑧|𝑥) 

 
ELBO is tight when 𝑞Φ(𝑧|𝑥) does exact inference! 
 
 



ELBO optimization 

log 𝑝Θ(𝑥) ≥ 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 − 𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧  

 

ELBO is a function of 𝑥, Θ, and Φ 

 

What it means to maximize ELBO over Θ? 

 

Can only affect 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 ! 

 

Makes 𝑝Θ x z  generate back our 𝑥! 
This affects log 𝑝Θ(𝑥)… 
…making room for improving 𝑞! 



ELBO optimization 

log 𝑝Θ(𝑥) ≥ 𝔼𝑞Φ 𝑧 𝑥 𝑝Θ 𝑥 𝑧 − 𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧  

 

Change Φ to maximize the bound, 
making 𝑞Φ 𝑧 𝑥 ≈ 𝑝Θ(𝑧|𝑥) 

 

Change Θ to (if bound sufficiently tight) 
improve log 𝑝Θ(𝑥) 

 

But we tune Φ and Θ at the same time! 

Similar to E step 

Similar to M step 



ELBO interpretation 
ELBO, or evidence lower bound: 
 
log 𝑝 𝑥 ≥ 𝔼𝑧~𝑞Φ 𝑧 𝑥 log 𝑝Θ 𝑥 𝑧 − 𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧  

 
where: 

𝔼𝑧~𝑞Φ 𝑧 𝑥 log 𝑝Θ 𝑥 𝑧  reconstruction quality:  
 how many nats we need to reconstruct 𝑥, 
 when someone gives us 𝑞 𝑧 𝑥  
 
𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧  code transmission cost: 
 how many nats we transmit about 𝑥 in 𝑞Φ(𝑧|𝑥) rather 
than 𝑝 𝑧  
 
Interpretation: do well at reconstructing 𝑥, limiting the amount of 
information about 𝑥 encoded in 𝑧. 
 



The Variational Autoencoder 

𝑥 

𝑞(𝑧|𝑥) q p 

𝑝(𝑥|𝑧) 

An input 𝑥 is put through the 𝑞 network to obtain a distribution over 
latent code 𝑧, 𝑞(𝑧|𝑥). 

Samples 𝑧1, … , 𝑧𝑘 are drawn from 𝑞(𝑧|𝑥). They 𝑘 reconstructions 
𝑝(𝑥|𝑧𝑘) are computed using the network 𝑝. 

𝔼𝑧~𝑞 𝑧 𝑥 log 𝑝 𝑥 𝑧  

𝑝(𝑧) 𝐾𝐿 𝑞 𝑧 𝑥 ∥ 𝑝 𝑧  



VAE is an Information Bottleneck  

Each sample is 
represented as a 
Gaussian 

 

This discards information 
(latent representation 
has low precision) 



How to evaluate a VAE 

Compute: 
log 𝑝 𝑥 ≥ 𝔼𝑧~𝑞Φ 𝑧 𝑥 log 𝑝Θ 𝑥 𝑧 − 𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧  

 

𝐾𝐿 𝑞Φ 𝑧 𝑥 ∥ 𝑝 𝑧  has closed form for simple 𝑞Φ(𝑧|𝑥) 

 

𝔼𝑧~𝑞Φ 𝑧 𝑥 log 𝑝Θ 𝑥 𝑧  can be approximated: 

𝔼𝑧~𝑞Φ 𝑧 𝑥 log 𝑝Θ 𝑥 𝑧 ≈ log 𝑝Θ 𝑥 𝑧𝑖
𝑖

 

Where 𝑧𝑖 drawn from 𝑞Φ 𝑧 𝑥  



How to train a VAE? 

• Forward computation involves drawing 
samples 

• Can’t backprop  

forward 
computation 

derivatives 



Reparameterization exercise 

Assume that 𝑞Φ 𝑧 𝑥 = 𝒩(μ𝑧, 𝜎𝑧). 

 

Exercise: 

you can sample from 𝒩(0,1) 

 

Q: how to draw samples from 𝒩 μ𝑧, 𝜎𝑧  

 

A: 
𝜖𝑖~𝒩 0,1  
𝑧𝑖 = 𝜇𝑧 + 𝜎𝑧𝜖 



Reparametrization to the rescue 

Assume that 𝑞Φ 𝑧 𝑥 = 𝒩(μ𝑧, 𝜎𝑧). 

 

Then: 
𝔼𝑧~𝑞Φ 𝑧 𝑥 log 𝑝Θ 𝑥 𝑧  
= 𝔼𝜖~𝒩(0,1) log 𝑝Θ 𝑥 𝜇𝑧 + 𝜎𝑧𝜖  

 

𝜖 is drawn from a fixed distribution. 
With 𝜖 given, the computaiton graph is 
deterministic -> we can backprop! 



Outline 

• Why unsupervised learning 
• Autoregressive models 

– Intuitions 
– Dilated convolutions  

RNNs  (Intermezzo: LSTM training dynamics) 
Transformers 

– Beyond sequences, summary 

• Latent variable models 
– VAE 
– Normalizing flows 

• Autoregressive + latent variable: why and how? 



Exercise 

𝑝 𝑥 = uniform 0,1 =  
1 for 𝑥 ∈ 0,1
0 otherwise

 

𝑦 = 2 ∗ 𝑥 + 1 
𝑝 𝑦 = ? 



Transforming distributions 

𝑦 also has a 
uniform 
distribution! 

 

 
𝑝 𝑦
= uniform 0,2

=  
1/2 for 𝑦 ∈ 1,3
0 otherwise

 

 

E Jang https://blog.evjang.com/2018/01/nf1.html 

https://blog.evjang.com/2018/01/nf1.html
https://blog.evjang.com/2018/01/nf1.html


The Jacobian: stretching space 

Let 𝑦 = 𝑓 𝑥  

Take a range (𝑥, 𝑥 + Δ𝑥) 

Question: 
How long is this range? 

Δ𝑥 

 

Question:  
How long is (𝑓 𝑥 , 𝑓 𝑥 + Δ𝑥 )? 

𝑓 𝑥 + Δ𝑥 ≈ 𝑓 𝑥 +
𝜕𝑓

𝜕𝑥
Δ𝑥 

𝜕𝑓

𝜕𝑥
Δ𝑥  

https://blog.evjang.com/2018/01/nf1.html 

https://blog.evjang.com/2018/01/nf1.html


Change of variables 
𝑦 = 𝑓(𝑥), 𝑓 is a bijection 

𝑝𝑥 𝑥 = 𝑝𝑦 𝑓 𝑥 det
𝜕𝑓(𝑥)

𝜕𝑥
 

𝑓 transforms 𝑥 ±
Δ𝑥

2
 to y ±

Δ𝑦

2
  

The space is stretched by  
𝜕𝑓(𝑥)

𝜕𝑥
≈
Δ𝑦

Δ𝑥
 



Idea 
Start with 𝑧~𝒩(0,1) 

Then 𝑥 = 𝑓−1 𝑧  (equivalently z = 𝑓(𝑥)) 

 

𝑝𝑥 𝑥 = 𝑝𝑧 𝑓 𝑥 det
𝜕𝑓(𝑥)

𝑥
 

 

Tractable when: 

- 𝑓 is easy to exactly invert 
𝑓 and 𝑓−1 form and exact auto-encoder! 

- det
𝜕𝑓(𝑥)

𝑥
 is easy to compute 

=> We need special 𝑓! 





A special form of 𝑓 

𝑥1, 𝑥2 = split(𝑥) 
𝑦1 = 𝑥1 

𝑦2 = 𝑥2𝑠 𝑥1 + 𝑡(𝑥1) 

Trivial to invert! 
𝜕𝑦

𝜕𝑥
 is diagonal, determinant is easy! 

L. Dinh et al “NICE”, L. Dinh et al “Real NVP” 



Normalizing flows in action 

Image credit Eric Jang, https://blog.evjang.com/2018/01/nf2.html 

https://blog.evjang.com/2018/01/nf2.html


Normalizing flows in action 

Prenger et al, “WAVEGLOW” Kingma et al, “GLOW” 



Outline 

• Why unsupervised learning 
• Autoregressive models 

– Intuitions 
– Dilated convolutions  

RNNs  (Intermezzo: LSTM training dynamics) 
Transformers 

– Beyond sequences, summary 

• Latent variable models 
– VAE 
– Normalizing flows 

• Autoregressive + latent variable: why and how? 
 



VAEs and sequential data 
To encode a long sequence, we apply the VAE to 
chunks: 

 

 

 

 

 

 

But neighboring chunks are similar! 

We are encoding the same information in many 𝑧s! 

We are wasting capacity! 

 

𝑧 𝑧 𝑧 𝑧 𝑧 



WaveNet + VAE 

The WaveNet uses information from: 

1. The past recording 

2. The latent vectors 𝑧 

3. Other conditioning, e.g. about speaker  

The encoder transmits in 𝑧s only the information that is missing 
from the past recording . 
The whole system is a very low bitrate codec 
(roughly 0.7kbits/sec, the waveform is 16k Hz* 8bit=128kbit/sec) 

A WaveNet reconstructs 
the waveform using the 
information from the past  

𝑧 𝑧 𝑧 𝑧 𝑧 Latent representations are 
extracted at regular 
inervals.  

van den Oord et al. Neural discrete representation learning 



VAE + autoregressive models: 
latent collapse danger 

• Purely Autoregressive models: SOTA log-
likelihoods 

• Conditioning on latents: 
information passed through bottleneck 
lower reconstruction x-entropy 

• In standard VAE model actively tries to 
- reduce information in the latents 
- maxmally use autoregressive information 
=> Collapse: latents are not used! 

• Solution: stop optimizing KL term 
(free bits), make it a hyperparam (VQVAE) 
 

 



Model description 

WaveNet decoder conditioned on: 

- latents extracted at 24Hz-50Hz 

- speaker 

 

3 bottleneck evaluated: 
- Dimensionality reduction, max 32 bits/dim 

- VAE, 𝐾𝐿 𝑞 𝑧 𝑥 ∥ 𝒩 0,1  nats (bits) 

- VQVAE with 𝐾 protos: log2𝐾 bits  

 

Input:  

Waveforms, Mel Filterbanks, MFCCs 

 

Hope: speaker separated form content. 

𝑧 𝑧 𝑧 𝑧 𝑧 

spkr spkr spkr spkr spkr 



Phonemes vs Gender tradeoff 

https://arxiv.org/abs/1901.08810 

https://arxiv.org/abs/1901.08810


Summary 

Model Evaluate 𝒑(𝒙) Sample 𝒑(𝒙) Extract  
latents 

Control info 
in latents 

Autoregressive Exact & Cheap Exact & 
Expensive 

Impossible N/A 

Latent var, VAE Lower Bound Exact & Cheap Easy No 

Latent var, 
Norm. Flow 

Exact & Cheap Exact & Cheap Easy No 

Autoregressive 
cond on latents 

Lower Bound Exact & 
Expensive 

Easy Yes 



Our topic at JSALT 

We will these ideas during JSALT’s topic  
“Distant supervision for representation learning”: 

- Work on speech and handwriting 

- Explore ways of integrating metadata and 
unlabeled data to control latent representations 

- Focus on downstream supervised OCR and ASR 
tasks under low data conditions 

 



Thank you! 

• Questions? 



References – other tutorials 

• https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf 

 

https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf
https://www.shakirm.com/slides/DeepGenModelsTutorial.pdf


Backup 



ELBO: A lower bound on log 𝑝(𝑥)  

Let 𝑞(𝑧|𝑥) be any distribution. We can show that 

 
log 𝑝 𝑥 = 

= 𝐾𝐿 𝑞 𝑧 𝑥 ∥ 𝑝 𝑧 𝑥 + 𝔼𝑧~𝑞 𝑧 𝑥 log
𝑝 𝑧|𝑥

𝑞 𝑧 𝑥
𝑝 𝑥  

≥ 𝔼𝑧~𝑞 𝑧 𝑥 log
𝑝 𝑧|𝑥

𝑞 𝑧 𝑥
𝑝 𝑥  

= 𝔼𝑧~𝑞 𝑧 𝑥 log 𝑝 𝑥 𝑧 − 𝐾𝐿 𝑞 𝑧 𝑥 ∥ 𝑝 𝑧  

 

The bound is tight for 𝑝 𝑧 𝑥 = 𝑞 𝑧 𝑥 . 

 



ELBO Derivation pt. 1 



ELBO derivation pt. 2 


