

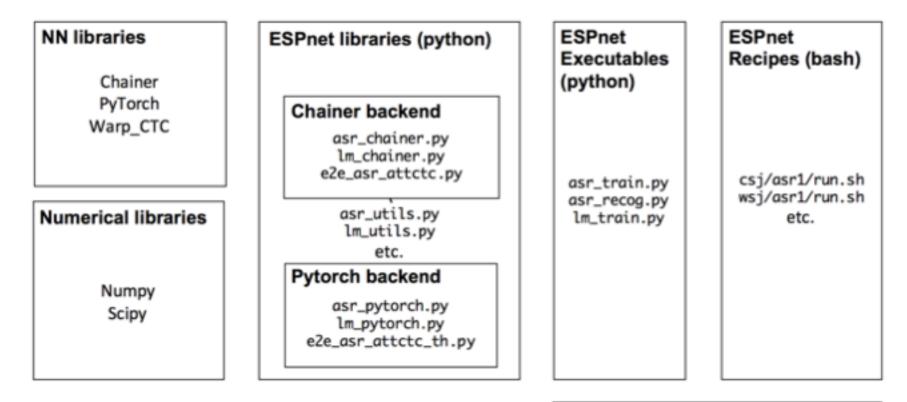
ESPnet: End-to-end speech processing toolkit

Shinji Watanabe Center for Language and Speech Processing Johns Hopkins University

Joint work with Takaaki Hori , Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin Chen, Adithya Renduchintala, Tsubasa Ochiai

Lab instruction

https://hackmd.io/s/rJ6TDZPeQ



ESPnet

https://github.com/espnet/espnet

- Open source (Apache2.0) end-to-end ASR toolkit
 - Developed for the 2018 JSALT workshop "Multilingual End-to-end ASR for Incomplete Data"
- Actively developed by researchers all over the world (JHU, MERL, Nagoya Univ., NTT, Paderborn Univ., PFN, ...)
- Chainer or Pytorch backend
- Follows the Kaldi style
 - Data processing
 - Feature extraction/format
 - Recipes to provide a complete setup for speech recognition and other speech processing experiments

Software architecture

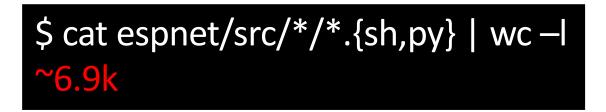
ASR libraries Kaldi, Sclite

Functionalities

- Kaldi style data preprocessing
 - 1) fairly compare the performance obtained by Kaldi hybrid systems
 - 2) make use of data preprocessing developed in the Kaldi recipe
- Attention-based encoder-decoder
 - Subsampled BLSTM and/or VGG-like encoder
 - location-based attention (+10 attentions)
- CTC
 - WarpCTC, label-synchronous decoding
- Hybrid CTC/attention
 - Multitask learning, joint decoding
- Use of language models
 - Combination of RNNLM and label-synchronous hybrid CTC/attention decoding

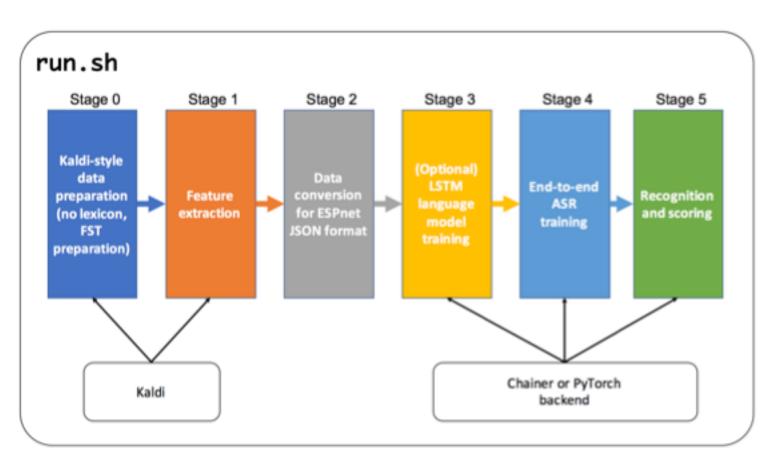
Backends

• Use Chainer and PyTorch


	Chainer	PyTorch	
Performance	Ø	0	
Speed	0	Ø	
Multi-GPU	supported	supported	
VGG-like encoder	supported	no support	
RNNLM integration	supported	supported	
#Attention types	3 (no attention, dot, location)	12 including variants of multihead	

Lines of code, etc.

• Kaldi



• ESPnet

- Chainer/Pytorch as a main deep learning engine
- Use Kaldi feature extraction, and python-based reader/writer

Basic flow of recipes

- Very simple flow
 - No Gaussian construction
 - No FST
 - No alignments
 - No lattice outpts
- Easily ported from existing Kaldi recipes

Supported recipes (15 recipes)

- ami
- an4
- babel
- chime4
- chime5
- csj
- fisher_swbd
- hkust

- hub4_Spanish
- librispeech
- li10
- swbd
- tedlium
- voxforge
- wsj

Supported languages (25 languages)

Major English tasks (WSJ, Fisher+Switchboard, Librispeech)

Japanese (Corpus of Spontaneous Japanese)

Mandarin (HKUST CTS)

Babel 15 languages

 Cantonese , Assamese, Bengali, Pashto, Turkish, Georgian, Tagalog , Vietnamese , Haitian, Swahili, Lao, Tamil, Zulu, Kurmanji Kurdish, Tok Pisin

VoxForge 7 languages

• German, Spanish, French, Italian, Portuguese, Russian, Dutch

Performance

• WSJ

Method		Metric	dev93	eval92
ESPnet with VGG2-BLSTM		CER	10.1	7.6
+ BLSTM layers $(4 \rightarrow 6)$		CER	8.5	5.9
+ char-LSTMLM		CER	8.3	5.2
+ joint decoding		CER	5.5	3.8
+ label smoothing		CER	5.3	3.6
-		WER	12.4	8.9
seq2seq + CNN (no LM) [33] seq2seq + FST word LM [35]		WER	N/A	10.5
		CER	N/A	3.9
		WER	N/A	9.3
CTC + FST word LM [11]		WER	N/A	7.3
Method	Wal	l Clock Ti	me # (GPUs
ESPnet (Chainer)	20 hours 1			1
ESPnet (PyTorch)	5 hours			1
seq2seq + CNN [33]		120 hours		10

• CSJ

		eval1	eval2	eval3
ESPnet	Ι	8.7	6.2	6.9
ESPnet (5 GPUs)		8.5	6.1	6.8
HMM/DNN (Kaldi nnet1)		9.0	7.2	9.6
CTC-syllable [43]		9.4	7.3	7.5

• HKUST

	eval
ESPnet	28.3
HMM/LSTM (Kaldi nnet3)	33.5
CTC with language model [11]	34.8
HMM/TDNN, LF MMI [27]	28.2

Summary

- Easy to develop, easy to perform experiments
 - Thanks to the simplification of end-to-end ASR and recent developments of deep learning toolkits
- Multilingual functions
 - Make use of end-to-end ASR benefits
- Good performance
 - Moderate ASR performance on English benchmarks
 - State-of-the-art ASR performance on ideogram languages (Japanese and Mandarin)
 - Fast training
- Future development plans
 - Stabilities, faster training/recognition, performance improvement
 - Multi-*** (multilingual, multispeaker, multichannel, multimodal, etc.)

Lab instruction

https://hackmd.io/s/rJ6TDZPeQ

