ING S(H YOIu
NGINI ING

i""]() l\s HOPKINS V"%, CENTER FOR LANGUAGE
))" HOSPECHPRCESOG

ESPnet: End-to-end speech processing toolkit

Shinji Watanabe
Center for Language and Speech Processing
Johns Hopkins University

Joint work with Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson Enrique
Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin
Chen, Adithya Renduchintala, Tsubasa Ochiai

Lab instruction

e https://hackmd.io/s/rJ6TDZPeQ

https://hackmd.io/s/rJ6TDZPeQ

ESPnet

https://github.com/espnet/espnet

* Open source (Apache2.0) end-to-end ASR toolkit
* Developed for the 2018 JSALT workshop “Multilingual End-to-end ASR for
Incomplete Data”

 Actively developed by researchers all over the world (JHU, MERL,
Nagoya Univ., NTT, Paderborn Univ., PFN, ...)

* Chainer or Pytorch backend

* Follows the Kaldi style
* Data processing

* Feature extraction/format
* Recipes to provide a complete setup for speech recognition and other speech

processing experiments

Software architecture

NN libraries ESPnet libraries (python) ESPnet ESPnet
Executables Recipes (bash)
Chainer (python)
"VT°'§:C Chainer backend
Warp_ asr_chainer.py

lm_chainer.py
eZe_asr_attctc.py

asr_train.py c¢sj/asrl/run.sh
‘. asr_recog.py ws)/asrl/run.sh
Numerical libraries asr_utils.py lm_train.py etc.
Im_utils.py
etc.
orch backend
Numpy 'yt
Scipy asr_pytorch.py
Llm_pytorch.py
eZe_asr_attctc_th.py
ASR libraries

Kaldi, Sclite

Functionalities

» Kaldi style data preprocessing

1) fairly compare the performance obtained by Kaldi hybrid systems
2) make use of data preprocessing developed in the Kaldi recipe

e Attention-based encoder-decoder
e Subsampled BLSTM and/or VGG-like encoder
* location-based attention (+10 attentions)

e CTC
 WarpCTC, label-synchronous decoding

* Hybrid CTC/attention

e Multitask learning, joint decoding

e Use of language models
 Combination of RNNLM and label-synchronous hybrid CTC/attention decoding

Backends

e Use Chainer and PyTorch

Performance
Speed

Multi-GPU
VGG-like encoder
RNNLM integration

#Attention types

Chainer

©

o
supported
supported
supported

3 (no attention, dot,
location)

PyTorch

o
©
supported
no support
supported

12 including variants of
multihead

Lines of code, etc.

e Kaldi

S cat kaldi/src/*/*.{cc,cu,h} | wc -

* ESPnet

S cat espnet/src/*/*.{sh,py} | wc I

* Chainer/Pytorch as a main deep learning engine
* Use Kaldi feature extraction, and python-based reader/writer

Basic flow of recipes

/

run.sh

Kaldi-style
data
preparation

(no lexicon,

FST
preparation)

Recognition
and scoring

Chainer or PyTorch
backend

* Very simple flow

* No Gaussian
construction

* No FST

* No alignments
* No lattice outpts

e Easily ported from
existing Kaldi
recipes

Supported recipes (15 recipes)

* ami
* an4
e babel

e chime4
e chime5

* CSj
e fisher swbd
* hkust

nub4_Spanish
ibrispeech

110

e swbd
e tedlium

e voxforge
* WSj

Supported languages (25 languages)

Major English tasks (WSJ, TR (S
Fisher+Switchboard, P P Mandarin (HKUST CTS)
o Spontaneous Japanese)
Librispeech)

Babel 15 languages VoxForge 7 languages

e German, Spanish, French, Italian,
Portuguese, Russian, Dutch

e Cantonese, Assamese, Bengali,

Pashto, Turkish, Georgian,
Tagalog, Vietnamese, Haitian,

Swahili, Lao, Tamil, Zulu,
Kurmanji Kurdish, Tok Pisin

Performance

* WSJ * CSJ

Method | Metric | dev93 eval92 | evall eval2 evald
ESPnet with VGG2-BLSTM CER 10.1 76 ESPnet 8.7 6.2 6.9
+ BLSTM layers (4 - 6) CER 8.5 59 ESPnet (5 GPUs) 8.5 6.1 6.8
+ char-LSTMLM CER 8.3 5.2 HMM/DNN (Kaldi nnetl) | 9.0 7.2 9.6
+ joint decoding CER 5.5 38 CTC-syllable [43) 94 73 7.5
+ label smoothing CER 53 36
WER | 124 89
()
seq2seq + CNN (no LM) [33) | WER | N/A 10.5 H KU ST
seq2seq + FST word LM [35) | CER N/A 39
WER | N/A 9.3
CTC + FST word LM [11] WER | N/A 73 | eval
Method | Wall Clock Time | # GPUs ESPnet 283
ESPnet (Chainer) 20 hours 1 HMM/LSTM (Kaldi nnet3) 335
ESPnet (PyTorch) S hours 1 CTC with language model [11] | 34.8
seq2seq + CNN [33) 120 hours 10 HMM/TDNN, LF MMI [27] 28.2

Summary

Easy to develop, easy to perform experiments

* Thanks to the simplification of end-to-end ASR and recent developments of deep
learning toolkits

Multilingual functions
e Make use of end-to-end ASR benefits

Good performance

* Moderate ASR performance on English benchmarks
e State-of-the-art ASR performance on ideogram languages (Japanese and Mandarin)
* Fast training

Future development plans
* Stabilities, faster training/recognition, performance improvement

e Multi-*** (multilingual, multispeaker, multichannel, multimodal, etc.)

Lab instruction

e https://hackmd.io/s/rJ6TDZPeQ

https://hackmd.io/s/rJ6TDZPeQ

