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ESPnet: End-to-end speech processing toolkit
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Lab instruction

e https://hackmd.io/s/rJ6TDZPeQ



https://hackmd.io/s/rJ6TDZPeQ

ESPnet

https://github.com/espnet/espnet

* Open source (Apache2.0) end-to-end ASR toolkit
* Developed for the 2018 JSALT workshop “Multilingual End-to-end ASR for
Incomplete Data”

 Actively developed by researchers all over the world (JHU, MERL,
Nagoya Univ., NTT, Paderborn Univ., PFN, ...)

* Chainer or Pytorch backend

* Follows the Kaldi style
* Data processing

* Feature extraction/format
* Recipes to provide a complete setup for speech recognition and other speech

processing experiments




Software architecture

NN libraries ESPnet libraries (python) ESPnet ESPnet
Executables Recipes (bash)
Chainer (python)
"VT°'§:C Chainer backend
Warp_ asr_chainer.py

lm_chainer.py
eZe_asr_attctc.py

asr_train.py c¢sj/asrl/run.sh
‘. asr_recog.py ws)/asrl/run.sh
Numerical libraries asr_utils.py lm_train.py etc.
Im_utils.py
etc.
orch backend
Numpy 'yt
Scipy asr_pytorch.py
Llm_pytorch.py
eZe_asr_attctc_th.py
ASR libraries

Kaldi, Sclite




Functionalities

» Kaldi style data preprocessing

1) fairly compare the performance obtained by Kaldi hybrid systems
2) make use of data preprocessing developed in the Kaldi recipe

e Attention-based encoder-decoder
e Subsampled BLSTM and/or VGG-like encoder
* location-based attention (+10 attentions)

e CTC
 WarpCTC, label-synchronous decoding

* Hybrid CTC/attention

e Multitask learning, joint decoding

e Use of language models
 Combination of RNNLM and label-synchronous hybrid CTC/attention decoding



Backends

e Use Chainer and PyTorch

Performance
Speed

Multi-GPU
VGG-like encoder
RNNLM integration

#Attention types

Chainer

©

o
supported
supported
supported

3 (no attention, dot,
location)

PyTorch

o
©
supported
no support
supported

12 including variants of
multihead




Lines of code, etc.

e Kaldi

S cat kaldi/src/*/*.{cc,cu,h} | wc -

* ESPnet

S cat espnet/src/*/*.{sh,py} | wc I

* Chainer/Pytorch as a main deep learning engine
* Use Kaldi feature extraction, and python-based reader/writer



Basic flow of recipes

/

run.sh

Kaldi-style
data
preparation

(no lexicon,

FST
preparation)

Recognition
and scoring

Chainer or PyTorch
backend

* Very simple flow

* No Gaussian
construction

* No FST

* No alignments
* No lattice outpts

e Easily ported from
existing Kaldi
recipes



Supported recipes (15 recipes)

* ami
* an4
e babel

e chime4
e chime5

* CSj
e fisher swbd
* hkust

nub4_Spanish
ibrispeech

110

e swbd
e tedlium

e voxforge
* WSj



Supported languages (25 languages)

Major English tasks (WSJ, TR (S
Fisher+Switchboard, P P Mandarin (HKUST CTS)
o Spontaneous Japanese)
Librispeech)

Babel 15 languages VoxForge 7 languages

e German, Spanish, French, Italian,
Portuguese, Russian, Dutch

e Cantonese, Assamese, Bengali,

Pashto, Turkish, Georgian,
Tagalog, Vietnamese, Haitian,

Swahili, Lao, Tamil, Zulu,
Kurmanji Kurdish, Tok Pisin




Performance

* WSJ * CSJ

Method | Metric | dev93  eval92 | evall eval2 evald
ESPnet with VGG2-BLSTM CER 10.1 76 ESPnet 8.7 6.2 6.9
+ BLSTM layers (4 - 6) CER 8.5 59 ESPnet (5 GPUs) 8.5 6.1 6.8
+ char-LSTMLM CER 8.3 5.2 HMM/DNN (Kaldi nnetl) | 9.0 7.2 9.6
+ joint decoding CER 5.5 38 CTC-syllable [43) 94 73 7.5
+ label smoothing CER 53 36
WER | 124 89
()
seq2seq + CNN (no LM) [33) | WER | N/A 10.5 H KU ST
seq2seq + FST word LM [35) | CER N/A 39
WER | N/A 9.3
CTC + FST word LM [11] WER | N/A 73 | eval
Method | Wall Clock Time | # GPUs ESPnet 283
ESPnet (Chainer) 20 hours 1 HMM/LSTM (Kaldi nnet3) 335
ESPnet (PyTorch) S hours 1 CTC with language model [11] | 34.8
seq2seq + CNN [33) 120 hours 10 HMM/TDNN, LF MMI [27] 28.2




Summary

Easy to develop, easy to perform experiments

* Thanks to the simplification of end-to-end ASR and recent developments of deep
learning toolkits

Multilingual functions
e Make use of end-to-end ASR benefits

Good performance

* Moderate ASR performance on English benchmarks
e State-of-the-art ASR performance on ideogram languages (Japanese and Mandarin)
* Fast training

Future development plans
* Stabilities, faster training/recognition, performance improvement

e Multi-*** (multilingual, multispeaker, multichannel, multimodal, etc.)



Lab instruction

e https://hackmd.io/s/rJ6TDZPeQ



https://hackmd.io/s/rJ6TDZPeQ

