Today’s agenda

* Multilingual End-to-end ASR for Incomplete Data (Team Leader: Takaaki Hori)
* 08:30 AM - 09:00 AM Continental Breakfast

* 09:00 AM —10:30 AM End-to-end speech recognition (Shinji Watanabe)
 10:30 AM —-10:50 AM Break

e 10:50 AM - 12:10 PM Advanced topics in end-to-end speech recognition (Takaaki Hori)
e 12:10 PM - 01:00 PM Lunch Break

* 01:00 PM —01:30 PM Computer Setup Time

* 01:30 PM —03:00 PM Brief introduction of end-to-end speech processing toolkit ESPnet
(Shinji Watanabe and Takaaki Hori)

 03:00 PM —03:30 PM Coffee Break (ECE lounge)

 03:30 PM - 05:00 PM Building end-to-end ASR using ESPnet (Shinji Watanabe and
Takaaki Hori)
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Notation

Type Latex command Looks like

Scalar variable Italic font, lower case  SxS$ XL

Vector variable Bold font, lower case  S\mathbf{x}S X

Matrix variable Bold font, upper case  S\mathbf{X}$ X



Notation

* Please specify the domain of variables

e D-dimensional continuous vector: o & RD
*(D x D)-dimensional matrix: 37 & RP XD

* Word with vocabulary }V : w € )/

* Set: calligraphic font, upper case, a set of elements are represented
with curly brackets

Y = {"one”, "two”, "three”,---}
e Sequence: italic font, upper case, a sequence of elements are
represented with round brackets

O = (01,02, ) O:(OtERD’t:L”'?T)



Speech recognition cases

e T-length speech feature sequence (D-dimensional vector)

O=(o, cR°lt=1,...,T)
* N-length word sequence with vocabulary )

W=(w,eVn=1,...,N)



Probabilistic rules

* Product rule
p(z|y)p(y) = p(z,y)

* Sum rule
p(y) = plz,y)

* Conditional independence assumption

p(zly, z) = p(z|z)  p(z,ylz) = p(z|2)p(Y|?)



Other rules

* Bayes rule

p(y|z)p(x) p(y|z)p(x)

p(y) . p(ylr)p(a)

* Probabilistic chain rule

p(zly) =

N
p(xla " 7IN) — H p(xn|331:n—1) where p(xl‘xLO) — p(ﬁUl)
n=1

* Both are derived with a combination of the product and sum rules



Why we use a probability?

* It is intuitive
* The value is reasonably bounded, e.g.,

Zp ) =1, p(z)>0Vz

e Easy to formulate. We basically only remember the three rules.



Speech recognition with a probabilistic
formulation

*Let O = (o, € RP|t =1,...,T) be a T-length speech feature
sequence (D-dimensional vector)

‘let W = (w, €VIn=1,...,N) be a N-length word sequence
with vocabulary )
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Speech recognition with a probabilistic

formulation

 MAP decision theory: Estimate the most probable word sequence W
among all possible word sequences )V (I'll omit the domain

sometimes)
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“go two”
“go too”
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“goes two”
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“go to”

W = argmax p(W|O)

“I want to go to
Johns Hopkins cam

pUS"

Sequence to
sequence mapping
was really difficult
problems!!!



How to obtain the posterior p(W|0)

* Noisy channel model

* Regarding O as a probabilistic variable (noisy observation)
e Use the product rule

argmax p(W|0) = argmax POIW)p(IV)
1% 1% p(O)

= argmax p(O|W)p(W)
W

Likelihood Prior




How to obtain the posterior p(W|0)

* Noisy channel model

argmax p(W|0) = argmax POIW)p(IV)
1% 1% p(O)

= argmax p(O|W)p(W)
W

* Solving generating process of noisy observations!!
e Still difficult to deal with them....



How to obtain the posterior p(W|0)

* Further factorize the model
clet L=(l; € {/AA/, /AE/,---}¢=1,---,J) be a phoneme sequence

argmax p(W|0) = argmapr(W, L|O)
% w7
= argmax » p(O|L, W)p(L, W)
W

= argvrélaXZp(O\L)p(L\W)p(W)

Note: the right hand side does not hold the sum to one constraint



Speech recognition pipeline
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Speech recognition pipeline

GOW T UW

. Feature CcTC
extraction

Feature seq. goes

to sentence goes
directly goes

“l want to go to

Johns Hopkins campus”
Language
modeling
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Character seq. vs. word seq.

* Example: “| see”
e W = (w; € {1, “see”, ... }|i = 1,2)
C=(€el)j=1,..,5),whereU = {“a",“b",“c”,“d", “¢”, ... }

e Low/zero count problem

* Word “bitcoin” is not appeared in old WSJ sentences, but character seq. can
cover it

* Semantic context, lexicon constraint
* Word unit can handle them, but not in the character unit

* No word unit in some languages
* Some languages do not have word boundaries (no explicit word units)



Connectionist temporal classification

* Formulation

e Let characterseq.be C = (¢, € U|j = 1, ...,]) and feature seq. be O = (0; €
ROt =1,..,T) (¢ € U /) ] (.

* Focus on the posterior distribution p(C|0), and rewrite it as

p(C|O) = Z p(C|Z,0)p(Z|0)
VA

~ Z p(ClZ) p(Z|0) .
- ("I’("rl‘.\] ("l’("r.-\.\l
* No Bayes theorem, but use conditional independence

* Introduce latent variable seq. Z = (z; € {U,< b >}|t = 1,...,T) that has the
same length as input feature seq.




Recurrent neural network

y1 y2 y3 y4 y>

* Input and output are same length in general




Introduction of blank symbol <b>

* First we insert <b> to the character seq.

1 ”

see
% C — (ll ” l( »n  (( ”) Where |C|

% C, — ((l<b>”’ IISII’ (l<b>”’ (le”, ((<b>”’ l(ell’ (l<b>ll), Where |C,| — 2] + 1
* Then, expand C’ to the frame length T to form Z

* All characters can be repeated
e <b> can be skipped except when it is inserted between repeated character

owu_»”n »n

o “s” "<pb>"

o 17 n

o “@” "<b>"

n n_n,

e”: we can skip <b>

”n n_ 7,

e”: we cannot skip <b>



Example of Z

° C — ((l ) l( ” II)
° C’ — (ll<b>”’ ”S”, H<b>”’ lleH’ (l<b>”’ lle”’ l(<b>H)
T =5

o V4 (l 1) () l( II o _)) io_)J) ll II o _7) (l II o _)) io_)J) (( V4
o 7 = (“<b>”, e” e”), (“s e” e”), (“s
(( ) ll<b>” (l H)



Example of Z

<b>

I 2z = ¢ and z,_; = ¢ for all possible /
I 2y =c¢;and 2,y = ¢;_, for all possible [
X
| 2z, =¢; and 2, = ¢_, for all possible even !

0 otherwise

<b>

O ® O® O 0 O
O ® O® O 0 O
O ® O® O 0 O
O ® O® O 0 O
O ® O O 0 O

<b>
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Example of Z

(Tp]

)
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7O

O

O O O O O
O O O O O
O O O O O
O O O O O
O O O O O
O O O O O

<b>

<b>

<b>

24



Example of Z

t=5

=4

t=3

t=2

t=1

10
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CTC Formulation

e CTC acoustic model

-
p(Z|0) = Hp(:, 21, v 24-1.0)
t=1

y
= Hp( 2 |0).
t=1

* Using conditional independence assumption to factorize the posterior p(Z|0)
but this is not bad assumption compared with HMM

* This can be realized by Bidirectional LSTM

p(zy = 7|10) = [softmax(Wh, +4 l)):l .
h, BLSTM(O) for t l..... 1.
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Forward directional RNN

*h, = f(04, ...,0,)
me 0 OO OO E

* p(z¢|04,...,0;)

— b ™ b, ™ ™
et G000



Backward directional RNN

*h, = f(o,, ..., 07)
me 0 DO OO E

* p(z:|og, ..., 07)

h, h, h, hg h,
el OOOCOCOC




Bidirectional RNN

h;
b

eh, =
b

= f(0 = (04, ..., 07))

Then,

* p(z:|0)
~ p(z:|hy)




CTC Formulation

e CTC Language model

2(C|7) = p(Z|( ’)/)(( )
p(Z)
-
p(C)
= 2elzr o0 L2411, C
IIII'( t|21 t—1 )I)(_Z)
”
p(C)
~ 2l24-1.C .
l—lll’( r‘ t—1 )1’(2,

* Using conailtional Inaepenaence assumption (1% order Markov) to factorize
the posterior, same as the HMM

* p(C): Letter language model (we can also combine the word language model)
* p(Z): Prior probability for the state sequence



Summary of CTC formulation

* p(C|0) is rewritten as follows

-
L f ' 3 l)((')
(') ~ E 212 A > 10) .
pl ’ ) - ’l_[l[)( f‘ t—1 )Pl 24 )[)(Z‘)

* In general, prior probabilities p(C) and p(Z) are separately obtained (not fully
end-to-end

* We can further eliminate the prior probabilities by assuming the uniform
distributions as follows (Z(C) denotes all possible CTC paths given C):

/
p(ClO)~ > []p(z|0)

ZeZ(O) t=]

N -
a " o

& e (CO)

 Basically, we can use a forward-backward algorithm to estimate the parameter



Baidu CTC
[Amodei+(2015)]

e Optimization of computational cost of CTC dynamic programming
* Multiple GPUs
 Architecture optimization (BLSTM -> GRU, use of CNN)

e Use 12,000 hours of data for training
* Data augmentation (noise)

Read Speech

Test set DSI1 DS2 Human
WSJ eval’92 4.94 3.60 5.03
WSJ eval’93 6.94 4.98 8.08

LibriSpeech test-clean 7.89  5.33 5.83
LibriSpeech test-other  21.74  13.25 12.69




Google CTC
[Soltau+(2016)]

* Word-level CTC, conventional BLSTM

* No language model
e 125,000 hours of training data (!) from Youtube

Spoken WER(%)
Model Layers Outputs Params Vocab OOV(%) w/LM w/olLM
CTC CD phone 7x1000 6400 43m 500000 0.24 12.3 —
CTC spoken words 7x1000 82473 116m 82473 0.63 11.6 12.0

* Word-level CTC obtains comparable performance (even without LM)



Summary

* CTC

* One promising direction of end-to-end
* No language model

* Still based on conditional independence assumptions and Markov
assumptions

* CTCis really end-to-end?

* Attention
 Another end-to-end
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Speech recognition pipeline
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Attention based encoder-decoder

*Let C = (¢j € U|j = 1,...,]), be a character sequence
e U: set of characters

*Let 0 = (o; € RP|t =1, ...,T), be a sequence of D dimensional
feature vectors

A

C = argmax p(C|0)

* Problem: T and J are different, and we cannot use normal neural
networks

e Sequence to sequence is a solution to deal with it



Sequence to sequence

* \We only use a probabilistic chain rule

J
p(C|0) = || p(c;|Cij-1. 0)
=]

* Encoder-decoder architecture
* Taking a final LSTM vector as an initial vector of a decoder network

=

p(Cl0) = [] pl¢j|C1j-1.0)

.
~
p—

~ [ p(¢;|C1.;—1. b} = LSTM(O))

J

|

* RNNLM-style text generation given summarized acoustic information h7



Output Sequence

Decoder
Network

€OoS

J
])((1 ()) - ]T]:I)(()‘(THIJ l~())
J1=1
J
~ Hp((-jy(',;jﬁ..hf,. = LSTM(O))
j=1

Encoder Network

41

Input Sequence



Problem of encoder-decoder architecture

* We cannot explicitly have an alignment
property _ ot
* No connection between frame-level activations B

h’; and output labels y;
* Long sentence would have issues

e Attention mechanism

* Compute the assignment probability for each J
output j from a neural network

¢ aj — {a]t|t — 1, ,T} (S RT, 0< ajt <
1)2’11;=1 ajt =1
T

* Obtain the context vector v; = Y(_, a;; ', which
is feeded to the RNNLM generator




From seqg2seq to attention encoder-decoder

Output Sequence Output Sequence
Decoder Decoder m M
Network Network
el —{al—-
OB oRIONNENIO
Mechanism J
Encoder Network

Input Sequence Input Sequence
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Output Sequence
o

Decoder
Network

Attention
Mechanism

hi S b2 R h: 9 e
ol ol Lol Lol Lol Lol Lol La

Input Sequence

44



Encoder network

* The encoder network to
extract high-level features
H= (hit=1,..,T) from
BLSTM, i.e., H = BLSTM(O0)

 Subsampling

e Reduces computational
cost

Input and output lengths
similar

Encoder Network y

45
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Attention mechanism

Attention
Mechanism

* Compute the attention

weights aj = {ajt|t =1,..,T}

« Compute the context vector

_ VT '
Vi =Xt=1a: 'y



Decoder network

* RNNLM generator given the
context vector v;

J

p(ClO) = ] p(c;

J=1

Output Sequence

Decoder Chij-1,Vj)

Network

* Consider the acoustic
information through the
context vector

J
p(C|0) = | [ p(cjls;j(Crj—1,vi-1))

7=1

a7



How to compute the attention?

Attention
Mechanism

Use the decode state s; € RPeutand
encoder output H € RPin*Tto compute
a; e RT

Dot product attention

_ ] /
€] t— Wdin dout S] dout hdint

Energy based attention
ejr = vitanh(W5Ss; + W'h; + b

Dai:t>< in

vV E RDatt’WS = RDattx out,wh €ER

There are a lot of variations

Softmax operation a; = softmax(e;)



Output Sequence

Decoder
Network J
[)((' ()) = ]TI:I)(FJ‘Si’(('IR"l'\h’l ))
1=1
T
Vj = Z ajt h,t
t=1
Attention
Mechanism

ejt = vl tanh(WSsj + W'h, + b)
a; = softmax(e;)

H = BLSTM(0)

i S 2 A b S hs Y hs| R he B 7 MY hs
ol ol Lol Lol Lol Lol Lol La

Input Sequence
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Decoder
Network

SOS

Encoder Network

hi S h2 I h: 5 hs

50, . e
Attention e e
Mechanism
|

2 il

Output Sequence

R
)
o

a

€OoS

4

All parameters are jointly optimized by

back propagation to maximize a
conditional likelihood

® = argmaxe p(C|0)

51



Summary of attention encoder-decoder

* No conditional independence assumption i
* No need for pronunciation lexicon Network 151 oo
* Attention & Encoder: acoustic model sof—Ys s -
* Decoder: language model
* Combine acoustic and language werion |G 1G) |G o
models with single network Mechanism

* Attention model is too flexible for alignment
issues

HMM or CTC case

Input Sequence

* Not easy to combine the I:mguage mc]el trained
with a bunch of text data




Experiments (Google, *slides from T. Sainath)

Exp ID Model WER - VS WERR
E1 Grapheme 9.2
E2 WPM 9.0 2.2%
E3 +MHA 8.0 11.1%
E4 +Optimization* 6.7 16%
ES MWER 5.8 13.4%

* WPWVI: Word plece model, IMHA: Mlultihead attention, MIWER, minimum
word error rate

* Hybrid DNN/HMM system 6.7%



Experiments (MERL)

» Hybrid CTC/attention

* Combine CTC and attention encoder-decoder networks

» Corpus of spontaneous Japanese (CSJ)

I 7S S S

End-to-end
Hybrid DNN/HMM 8.4 6.9 7.1

* HKUST Chinese Telephone Conversation

T e

End-to-end 28.0
Hybrid DNN/HMM  28.2
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Summary

e Attention encoder-decoder

* Another possible direction for end-to-end ASR
* Single neural network to have acoustic, linguistic, and language modeling

e Several reports that achieve better performance from conventional hybrid
DNN/HMM

e Connection to NLP

* No need for pronunciation lexicon
* Easily applied to multilingual ASR

* Opensource

ESPnet hitps://github.com/espnet/espnet
Today’s lab
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