Today's agenda

- Multilingual End-to-end ASR for Incomplete Data (Team Leader: Takaaki Hori)
- 08:30 AM 09:00 AM Continental Breakfast
- 09:00 AM 10:30 AM End-to-end speech recognition (Shinji Watanabe)
- 10:30 AM 10:50 AM Break
- 10:50 AM 12:10 PM Advanced topics in end-to-end speech recognition (Takaaki Hori)
- 12:10 PM 01:00 PM Lunch Break
- 01:00 PM 01:30 PM Computer Setup Time
- 01:30 PM 03:00 PM Brief introduction of end-to-end speech processing toolkit ESPnet (Shinji Watanabe and Takaaki Hori)
- 03:00 PM 03:30 PM Coffee Break (ECE lounge)
- 03:30 PM 05:00 PM Building end-to-end ASR using ESPnet (Shinji Watanabe and Takaaki Hori)

2018 JHU Summer School on Human Language Technology Wednesday, June 20, 2018

End-to-end speech recognition

Shinji Watanabe

Table of contents

- Preliminaries
- Connectionist Temporal Classification (CTC)
- Attention based encoder-decoder

Notation

Туре	Font, case	Latex command	Looks like
Scalar variable	Italic font, lower case	\$x\$	x
Vector variable	Bold font, lower case	\$\mathbf{x}\$	X
Matrix variable	Bold font, upper case	\$\mathbf{X}\$	\mathbf{X}

Notation

- Please specify the domain of variables
 - D -dimensional continuous vector: $\mathbf{o} \in \mathbb{R}^D$
 - • $(D \times D)$ -dimensional matrix: $\mathbf{\Sigma} \in \mathbb{R}^{D \times D}$
 - Word with vocabulary $\mathcal{V}: w \in \mathcal{V}$
- Set: calligraphic font, upper case, a set of elements are represented with curly brackets

$$\mathcal{V} = \{\text{"one"}, \text{"two"}, \text{"three"}, \cdots \}$$

• Sequence: italic font, upper case, a sequence of elements are represented with round brackets

$$O = (\mathbf{o}_1, \mathbf{o}_2, \cdots)$$
 $O = (\mathbf{o}_t \in \mathbb{R}^D | t = 1, \cdots, T)$ My recommendation

Speech recognition cases

• T-length speech feature sequence (D-dimensional vector)

$$O = (\mathbf{o}_t \in \mathbb{R}^D | t = 1, \dots, T)$$

• N-length word sequence with vocabulary γ

$$W = (w_n \in \mathcal{V} | n = 1, \dots, N)$$

Probabilistic rules

Product rule

$$p(x|y)p(y) = p(x,y)$$

Sum rule

$$p(y) = \sum_{x} p(x, y)$$

Conditional independence assumption

$$p(x|y,z) = p(x|z) \qquad p(x,y|z) = p(x|z)p(y|z)$$

Other rules

Bayes rule

$$p(x|y) = \frac{p(y|x)p(x)}{p(y)} = \frac{p(y|x)p(x)}{\sum_{x} p(y|x)p(x)}$$

Probabilistic chain rule

$$p(x_1,\cdots,x_N) = \prod_{n=1}^N p(x_n|x_{1:n-1})$$
 where $p(x_1|x_{1:0}) = p(x_1)$

Both are derived with a combination of the product and sum rules

Why we use a probability?

- It is intuitive
- The value is reasonably bounded, e.g.,

$$\sum_{x} p(x) = 1, \quad p(x) \ge 0 \ \forall x$$

• Easy to formulate. We basically only remember the three rules.

Speech recognition with a probabilistic formulation

- Let $O = (\mathbf{o}_t \in \mathbb{R}^D | t = 1, \dots, T)$ be a T-length speech feature sequence (D-dimensional vector)
- Let $W=(w_n\in\mathcal{V}|n=1,\ldots,N)$ be a N-length word sequence with vocabulary \mathcal{V}

Speech recognition with a probabilistic formulation

• MAP decision theory: Estimate the most probable word sequence \hat{W} among all possible word sequences \mathcal{W} (I'll omit the domain sometimes) $\hat{W} = \operatorname{argmax} p(W|O)$

G OW T UW

G OW Z T UW

Acoustic Lexicon Language modeling

"go to"
"go two"
"go too"
"goes too"
"goes two"
"goes two"
"goes too"

 $W \in \mathcal{W}$

Sequence to sequence mapping was really difficult problems!!!

How to obtain the posterior p(W|O)

- Noisy channel model
 - Regarding O as a probabilistic variable (noisy observation)
 - Use the product rule

$$\underset{W}{\operatorname{argmax}} p(W|O) = \underset{W}{\operatorname{argmax}} \frac{p(O|W)p(W)}{p(O)}$$
$$= \underset{W}{\operatorname{argmax}} p(O|W)p(W)$$

Likelihood

How to obtain the posterior p(W|O)

Noisy channel model

$$\underset{W}{\operatorname{argmax}} p(W|O) = \underset{W}{\operatorname{argmax}} \frac{p(O|W)p(W)}{p(O)}$$
$$= \underset{W}{\operatorname{argmax}} p(O|W)p(W)$$

- Solving generating process of noisy observations!!
- Still difficult to deal with them....

How to obtain the posterior p(W|O)

- Further factorize the model
 - Let $L=(l_i\in\{/\mathrm{AA}/,\ /\mathrm{AE}/,\cdots\}|i=1,\cdots,J)$ be a phoneme sequence

$$\underset{W}{\operatorname{argmax}} p(W|O) = \underset{W}{\operatorname{argmax}} \sum_{L} p(W, L|O)$$

$$= \underset{W}{\operatorname{argmax}} \sum_{L} p(O|L, W) p(L, W)$$

$$= \underset{W}{\operatorname{argmax}} \sum_{L} p(O|L) p(L|W) p(W)$$

Note: the right hand side does not hold the sum to one constraint

Speech recognition pipeline

Table of contents

- Preliminaries
- Connectionist Temporal Classification (CTC)
- Attention based encoder-decoder

Speech recognition pipeline

Character seq. vs. word seq.

- Example: "I see"
 - $W = (w_i \in \{\text{"i", "see",}\}|i = 1, 2)$
 - $C = (c_i \in \mathbb{U}|j = 1, ..., 5)$, where $\mathbb{U} = \{\text{"a", "b", "c", "d", "e", ...}\}$
- Low/zero count problem
 - Word "bitcoin" is not appeared in old WSJ sentences, but character seq. can cover it
- Semantic context, lexicon constraint
 - Word unit can handle them, but not in the character unit
- No word unit in some languages
 - Some languages do not have word boundaries (no explicit word units)

Connectionist temporal classification

Formulation

- Let character seq. be $C=(c_t\in \mathbb{U}|j=1,...,J)$ and feature seq. be $O=(\mathbf{o}_t\in \mathbb{R}^D|t=1,...,T)$
- Focus on the posterior distribution p(C|O), and rewrite it as

$$p(C|O) = \sum_{Z} p(C|Z, O)p(Z|O)$$

$$\approx \sum_{Z} \underbrace{p(C|Z)}_{\text{CTC LM CTC AM}} \underbrace{p(Z|O)}_{\text{CTC LM CTC AM}}.$$

- No Bayes theorem, but use conditional independence
- Introduce latent variable seq. $Z = (z_t \in \{\mathbb{U}, <\mathbf{b}>\}|t=1,...,T)$ that has the same length as input feature seq.

Recurrent neural network

Input and output are same length in general

Introduction of blank symbol

• First we insert to the character seq.

"see"

$$\Rightarrow C = (\text{"s", "e", "e"}), \text{ where } |C| = J$$

 $\Rightarrow C' = (\text{"", "s", "", "e", "", "e", ""), where $|C'| = 2J + 1$$

- Then, expand C' to the frame length T to form Z
 - All characters can be repeated
 - can be skipped except when it is inserted between repeated character
 - "s", "", "e": we can skip
 - "e", "", "e": we **cannot** skip

- *C* = ("s", "e", "e")
- C' = ("", "s", "", "e", "", "e", "")
- *T* = 5

	t=1	t=2	t=3	t=4	t=5
	0	0	0	0	0
S					
	0	0	0	0	0
e					
	0	0	0	0	0
е					
	0	0	0	0	0

CTC Formulation

CTC acoustic model

$$p(Z|O) = \prod_{t=1}^{T} p(z_t|z_1, \dots, z_{t-1}, O)$$
$$\approx \prod_{t=1}^{T} p(z_t|O).$$

- Using conditional independence assumption to factorize the posterior p(Z|O) but this is not bad assumption compared with HMM
- This can be realized by Bidirectional LSTM

$$p(z_t = j|O) = [\operatorname{softmax}(\mathbf{W}\mathbf{h}_t + \mathbf{b})]_j,$$

 $\mathbf{h}_t = \operatorname{BLSTM}(O) \text{ for } t = 1, \dots, T.$

Forward directional RNN

- $\overrightarrow{\mathbf{h}_t} = f(\mathbf{o}_1, ..., \mathbf{o}_t)$ Then,
- $p(z_t|\mathbf{o}_1,...,\mathbf{o}_t)$ $\approx p(z_t|\overrightarrow{\mathbf{h}_t})$

Backward directional RNN

- $\overleftarrow{\mathbf{h}_t} = f(\mathbf{o}_t, ..., \mathbf{o}_T)$ Then,
- $p(z_t|\mathbf{o}_t,...,\mathbf{o}_T)$ $\approx p(z_t|\overleftarrow{\mathbf{h}_t})$

Bidirectional RNN

•
$$\mathbf{h}_t = \begin{bmatrix} \overrightarrow{\mathbf{h}_t} \\ \overleftarrow{\mathbf{h}_t} \end{bmatrix} = f(O = (\mathbf{o}_1, ..., \mathbf{o}_T))$$

Then,

• $p(z_t|0)$ $\approx p(z_t|\mathbf{h_t})$

CTC Formulation

CTC Language model

$$p(C|Z) = \frac{p(Z|C)p(C)}{p(Z)}$$

$$= \prod_{t=1}^{T} p(z_t|z_1, \dots, z_{t-1}, C) \frac{p(C)}{p(Z)}$$

$$\approx \prod_{t=1}^{T} p(z_t|z_{t-1}, C) \frac{p(C)}{p(Z)},$$

- Using conditional independence assumption (1^{st} order Markov) to factorize the posterior, same as the HMM
- p(C): Letter language model (we can also combine the word language model)
- p(Z): Prior probability for the state sequence

Summary of CTC formulation

• p(C|O) is rewritten as follows

$$p(C|O) \approx \sum_{Z} \prod_{t=1}^{T} p(z_t|z_{t-1}, C) p(z_t|O) \frac{p(C)}{p(Z)}.$$

- In general, prior probabilities $p(\mathcal{C})$ and $p(\mathcal{Z})$ are separately obtained (not fully end-to-end)
- We can further eliminate the prior probabilities by assuming the uniform distributions as follows ($\mathcal{Z}(C)$ denotes all possible CTC paths given C):

$$p(C|O) \approx \underbrace{\sum_{Z \in \mathcal{Z}(C)} \prod_{t=1}^{T} p(z_t|O)}_{\triangleq p_{\text{ctc}}(C|O)}$$

Basically, we can use a forward-backward algorithm to estimate the parameter

Baidu CTC [Amodei+(2015)]

- Optimization of computational cost of CTC dynamic programming
- Multiple GPUs
- Architecture optimization (BLSTM -> GRU, use of CNN)
- Use 12,000 hours of data for training
- Data augmentation (noise)

Read Speech					
Test set	DS1	DS2	Human		
WSJ eval'92	4.94	3.60	5.03		
WSJ eval'93	6.94	4.98	8.08		
LibriSpeech test-clean	7.89	5.33	5.83		
LibriSpeech test-other	21.74	13.25	12.69		

Google CTC [Soltau+(2016)]

- Word-level CTC, conventional BLSTM
- No language model
- 125,000 hours of training data (!) from Youtube

Model	Layers	Outputs	Params	Vocab	OOV(%)		WER(%) w/o LM
CTC CD phone	7x1000	6400	43m	500000	0.24	12.3	12.0
CTC spoken words	7x1000	82473	116m	82473	0.63	11.6	

Word-level CTC obtains comparable performance (even without LM)

Summary

• CTC

- One promising direction of end-to-end
- No language model
- Still based on conditional independence assumptions and Markov assumptions
- CTC is really end-to-end?

Attention

Another end-to-end

Table of contents

- Preliminaries
- Connectionist Temporal Classification (CTC)
- Attention based encoder-decoder

Speech recognition pipeline

Speech recognition pipeline

Attention based encoder-decoder

- Let $C = (c_i \in \mathbb{U}|j = 1, ..., J)$, be a character sequence
 - U : set of characters
- Let $O = (\mathbf{o}_t \in \mathbb{R}^D | t = 1, ..., T)$, be a sequence of D dimensional feature vectors

$$\hat{C} = \operatorname{argmax}_{C} p(C|O)$$

- Problem: T and J are different, and we cannot use normal neural networks
- Sequence to sequence is a solution to deal with it

Sequence to sequence

• We only use a probabilistic chain rule

$$p(C|O) = \prod_{j=1}^{J} p(c_j|C_{1:j-1}, O)$$

- Encoder-decoder architecture
 - Taking a final LSTM vector as an initial vector of a decoder network

$$p(C|O) = \prod_{j=1}^{J} p(c_j|C_{1:j-1}, O)$$

$$\approx \prod_{j=1}^{J} p(c_j|C_{1:j-1}, \mathbf{h}_T' = \text{LSTM}(O))$$

• RNNLM-style text generation given summarized acoustic information \mathbf{h}_T'

Input Sequence

Problem of encoder-decoder architecture

- We cannot explicitly have an alignment property
 - No connection between frame-level activations $\mathbf{h'}_t$ and output labels y_i
 - Long sentence would have issues
- Attention mechanism
 - Compute the assignment probability for each output j from a neural network
 - $\mathbf{a}_{j} = \{a_{jt} | t = 1, ..., T\} \in \mathbb{R}^{T}, 0 < a_{jt} < 1, \sum_{t=1}^{T} a_{jt} = 1$
 - Obtain the context vector $\mathbf{v}_j = \sum_{t=1}^T a_{jt} \mathbf{h'}_t$, which is feeded to the RNNLM generator

From seq2seq to attention encoder-decoder

44

Encoder network

- The encoder network to extract high-level features $\mathbf{H} = (\mathbf{h}_t'|t=1,...,T)$ from BLSTM, i.e., $\mathbf{H} = \mathrm{BLSTM}(O)$
- Subsampling
 - Reduces computational cost
 - Input and output lengths similar

Attention mechanism

- Compute the attention weights $\mathbf{a}_j = \{a_{jt} | t=1,\dots,T\}$ Compute the context vector
- Compute the context vector $\mathbf{v}_j = \sum_{t=1}^T a_{jt} \mathbf{h'}_t$

Decoder network

• RNNLM generator given the context vector \mathbf{v}_i

$$p(C|O) = \prod_{j=1}^{J} p(c_j|C_{1:j-1}, \mathbf{v}_j)$$

 Consider the acoustic information through the context vector

$$p(C|O) = \prod_{j=1}^{J} p(c_j|\mathbf{s}_j(C_{1:j-1},\mathbf{v}_{j-1}))$$

How to compute the attention?

- Use the decode state $\mathbf{s}_i \in \mathbb{R}^{D_{out}}$ and encoder output $\mathbf{H} \in \mathbb{R}^{\hat{D}_{in} \times T}$ to compute $\mathbf{a}_i \in \mathbb{R}^T$
- Dot product attention

ot product attention
$$e_{jt} = \sum_{\substack{d_{in}d_{out}\\d_{in}t}} w_{d_{in}d_{out}} s_{jd_{out}} h'_{d_{in}t}$$

$$= \left[\mathbf{H}^T \mathbf{W} \mathbf{s}_j\right]_{jt}$$

Energy based attention

$$e_{jt} = \mathbf{v}^{T} \tanh(\mathbf{W}^{S} \mathbf{s}_{j} + \mathbf{W}^{h} \mathbf{h}_{t} + \mathbf{b})$$

$$\mathbf{v} \in \mathbb{R}^{D_{att}}, \mathbf{W}^{S} \in \mathbb{R}^{D_{att} \times D_{out}}, \mathbf{W}^{h} \in \mathbb{R}^{D_{att} \times D_{in}}$$

- There are a lot of variations
- Softmax operation $\mathbf{a}_i = \operatorname{softmax}(\mathbf{e}_i)$

$$p(C|O) = \prod_{j=1}^{J} p(c_j|\mathbf{s}_j(C_{1:j-1},\mathbf{v}_{j-1}))$$

$$\mathbf{v}_j = \sum_{t=1}^T a_{jt} \, \mathbf{h'}_t$$

$$e_{jt} = \mathbf{v}^T \tanh(\mathbf{W}^s \mathbf{s}_j + \mathbf{W}^h \mathbf{h}_t + \mathbf{b})$$

 $\mathbf{a}_j = \operatorname{softmax}(\mathbf{e}_j)$

$$\mathbf{H} = \mathrm{BLSTM}(O)$$

All parameters are jointly optimized by back propagation to maximize a conditional likelihood

 $\widehat{\Theta} = \operatorname{argmax}_{\Theta} p(C|O)$

Summary of attention encoder-decoder

- No conditional independence assumption
 - No need for pronunciation lexicon
 - Attention & Encoder: acoustic model
 - Decoder: language model
 - Combine acoustic and language models with single network
- Attention model is too flexible for alignment issues

• Not easy to combine the language model trained with a bunch of text data

Experiments (Google, *slides from T. Sainath)

Exp ID	Model	WER - VS	WERR
E1	Grapheme	9.2	-
E2	WPM	9.0	2.2%
E3	+MHA	8.0	11.1%
E4	+Optimization*	6.7	16%
E5	MWER	5.8	13.4%

- WPM: Word piece model, MHA: Multihead attention, MWER, minimum word error rate
- Hybrid DNN/HMM system 6.7%

Experiments (MERL)

- Hybrid CTC/attention
 - Combine CTC and attention encoder-decoder networks
- Corpus of spontaneous Japanese (CSJ)

	Eval1	Eval2	Eval3
End-to-end	7.9	5.8	6.7
Hybrid DNN/HMM	8.4	6.9	7.1

• HKUST Chinese Telephone Conversation

	Test
End-to-end	28.0
Hybrid DNN/HMM	28.2

Summary

- Attention encoder-decoder
 - Another possible direction for end-to-end ASR
 - Single neural network to have acoustic, linguistic, and language modeling
 - Several reports that achieve better performance from conventional hybrid DNN/HMM
- Connection to NLP
- No need for pronunciation lexicon
 - Easily applied to multilingual ASR
- Opensource

ESPnet https://github.com/espnet/espnet

Today's lab