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Long Term Goal…



Very Long Term Goal…



Descartes (c.1630)
If there were machines which bore a resemblance to our bodies and 

imitated our actions as closely as possible for all practical purposes, we 
should still have two very certain means of recognizing that they were not 

real men. The first is that they could never use words, or put 
together signs, as we do in order to declare our 

thoughts to others. For we can certainly conceive of a machine so 
constructed that it utters words, and even utters words that correspond to 

bodily actions causing a change in its organs…But it is not 
conceivable that such a machine should produce 
different arrangements of words so as to give an 

appropriately meaningful answer to whatever is said in its 
presence, as the dullest of men can do…

as quoted in  
https://plato.stanford.edu/entries/turing-test/



Turing (c. 1950)

I believe that in about fifty years' time it will be possible to 
programme computers, with a storage capacity of about 109, to 
make them play the imitation game so well that an average 
interrogator will not have more than 70 percent 

chance of making the right identification after five 
minutes of questioning. … I believe that at the end of the 
century the use of words and general educated opinion will have 

altered so much that one will be able to speak of machines thinking 
without expecting to be contradicted.

as quoted in  
https://plato.stanford.edu/entries/turing-test/



The Media (c. now)
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Passing the Turing Test…?
Syntax and  
Structure



Passing the Turing Test…?

Common 
Sense and Social 

Awareness



Passing the Turing Test…?

Context, 
Knowledge, and 

“State”



Representing language 
is hard.



Crash Course: 
Non-Computational 

Linguistics



Pencil-and-Paper NLP

Crash Course: 
Non-Computational 
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Language Variables 
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The World (TBD)



Model Theory
Language

Relations 
(defined)
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Model Theory
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Model Theory

x > y 
z > w 
x > w

x = 10  y = 5  z = 12  w = 11

✘

Entailment



Model Theory

8I((I |= p) ) (I |= h))
<latexit sha1_base64="ze9bGCTpFE7qVxsineTehI6XkXk="></latexit><latexit sha1_base64="ze9bGCTpFE7qVxsineTehI6XkXk="></latexit><latexit sha1_base64="ze9bGCTpFE7qVxsineTehI6XkXk="></latexit><latexit sha1_base64="ze9bGCTpFE7qVxsineTehI6XkXk="></latexit>

A premise (p) entails a 
hypothesis (h) iff, in every 

possible world in which p is 
true, h is also true.



Formal Semantics



Formal Semantics
There is in my opinion no important theoretical 
difference between natural languages and 
the artificial languages of logicians; indeed I 

consider it possible to comprehend the syntax and 
semantics of both kinds of languages with a single 
natural and mathematically precise theory. 

(Richard Montague)



Formal Semantics

The basic aim of semantics is to characterize 
the notion of a true sentence 
(under a given interpretation) and of 

entailment.  

(Richard Montague)



Broca is a bird

Formal Semantics
the notion of a true sentence
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Formal Semantics

✔

Predicates

All birds are gray 
Broca is a bird 
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the notion of a entailment



Formal Semantics

✔

Higher-Order Relations

All birds are gray 
Broca is a bird 
Broca is gray

the notion of a entailment
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Formal Semantics

Broca is a bird 
⟺ 

∀x(⟦Broca⟧(x)⇒⟦bird⟧(x)) 

Predicates

Takes entity as argument. 
Returns true if x is “Broca”.



Formal Semantics

Broca is a bird 
⟺ 

∀x(⟦Broca⟧(x)⇒⟦bird⟧(x)) 

Predicates

Takes entity as argument. 
Returns true if x is an element of the  

set referred to by “bird”.
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Formal Semantics
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Predicates



⟦gray⟧ ( 

⟦bird⟧ 

) = 

⟦gray bird⟧ 

Formal Semantics



⟦gray⟧ ( 

⟦bird⟧ 

) = 

⟦gray bird⟧ 

Formal Semantics

⟦gray bird⟧(x) ⟺  
(⟦bird⟧(x) ⋀ ⟦gray⟧(x))

Takes set as argument. 
Returns true if x is an element of the  

set referred to by “bird”.
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Formal Semantics

∀x(⟦Broca⟧(x)⇒ 
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Formal Semantics

∀x(⟦Broca⟧(x)⇒⟦bird⟧(x))  

⇒ 
∀x(⟦Broca⟧(x)⇒⟦bird⟧(x))

✔



Formal Semantics

All gray birds are birds 
Broca is a gray bird 

Broca is a bird



Formal Semantics

Higher-Order Relations

All gray birds are birds 
Broca is a gray bird 

Broca is a bird



Formal Semantics

All gray birds are birds 
Broca is a gray bird 

Broca is a bird
⟦all⟧(x)=λPλQ∀x(P(x)⇒Q(x))



Formal Semantics

All gray birds are birds 
Broca is a gray bird 

Broca is a bird
⟦all⟧(x)=λPλQ∀x(P(x)⇒Q(x))

Takes arbitrary predicates (P and Q) as arguments. 
Returns true if Q is true whenever P is true.



Formal Semantics

All gray birds are birds 
Broca is a gray bird 

Broca is a bird⟦all⟧(x)(gray_birds)(birds)= 
∀x(gray_bid(x)⇒bird(x))

Takes arbitrary predicates (P and Q) as arguments. 
Returns true if Q is true whenever P is true.



Formal Semantics: 
Takeaways

• Language is like logic—we can ground symbols to the 
world, but we can also reason abstractly using only the 
ungrounded symbols 

• The world can be represented as sets of entities 

• Word meanings are represented in terms of entities, 
sets, or functions which operate on entities/sets 

• Words have types (nouns, verbs, adjectives) which 
determine their representation (i.e. nouns refer to sets, 
adjectives to functions on sets)
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Distributional Semantics

The Distributional Hypothesis: 

You shall know a word by the company it keeps!  
(Firth, 1957)



Distributional Semantics

The Distributional Hypothesis: 

The meaning of a word is determined 
by the contexts where it is used.



BOW Vector Space Models
The domestic cat is a small, typically furry, carnivorous mammal. 

Your cat's online owners manual, featuring articles about breed 
information, cat selection, training, grooming and care for cats and 

kittens. 

Wish you had a secret decoder guide to cat behavior and cat language? 
Here's a primer to things your cat wishes you understood. 

"The cat does not offer services," William Burroughs wrote. "The cat offers 
itself." But it does so with unapologetic ambivalence.  

Welcome to the new WebMD Cat Health Center. WebMD veterinary 
experts provide comprehensive information about cat health care, offer 

nutrition and feeding … 

Yes, they're independent and willful, but felines can be taught certain 
behaviors—to the benefit of both cat and human.
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The domestic cat is a small, typically furry, carnivorous mammal. 

Your cat's online owners manual, featuring articles about breed information, cat selection, training, grooming and care for 
cats and kittens. 

Wish you had a secret decoder guide to cat behavior and cat language? Here's a primer to things your cat wishes you 
understood. 

"The cat does not offer services," William Burroughs wrote. "The cat offers itself." But it does so with unapologetic 
ambivalence.  

Welcome to the new WebMD Cat Health Center. WebMD veterinary experts provide comprehensive information about cat 
health care, offer nutrition and feeding … 

Yes, they're independent and willful, but felines can be taught certain behaviors—to the benefit of both cat and human.

BOW Vector Space Models
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Skip-Gram Model 
(word2vec)



Skip-Gram Model 
(word2vec)
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Skip-Gram Model 
(word2vec)
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https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b



https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b



son
wife

woman

man

miss
lady

room
house

2-D projection of word vectors learned from Pride and Prejudice 
(http://www.ghostweather.com/files/word2vecpride/)

Skip-Gram Model 
(word2vec)

http://www.ghostweather.com/files/word2vecpride/


Representing Context

The Distributional Hypothesis: 

The meaning of a word is determined
by the contexts where it is used.
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Australian scientist discovers star with telescope

Skip-Gram contexts with n=2

Levy and Goldberg, 2014
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Australian scientist discovers star with telescope

Levy and Goldberg, 2014

amod nsubj
dobj

prep

pobj

collapsing “prep” links

Australian scientist discovers star with telescope

amod nsubj
dobj

prep_with

Representing Context



Australian scientist discovers star with telescope

Levy and Goldberg, 2014

amod nsubj
dobj

prep

pobj

collapsing “prep” links

Australian scientist discovers star with telescope

amod nsubj
dobj

prep_with

scientist/nsubj star/dobj telescope/prep_with

Representing Context
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Representing Context
All embeddings were trained on English

Wikipedia. For DEPS, the corpus was tagged
with parts-of-speech using the Stanford tagger
(Toutanova et al., 2003) and parsed into labeled
Stanford dependencies (de Marneffe and Man-
ning, 2008) using an implementation of the parser
described in (Goldberg and Nivre, 2012). All to-
kens were converted to lowercase, and words and
contexts that appeared less than 100 times were
filtered. This resulted in a vocabulary of about
175,000 words, with over 900,000 distinct syntac-
tic contexts. We report results for 300 dimension
embeddings, though similar trends were also ob-
served with 600 dimensions.

4.1 Qualitative Evaluation

Our first evaluation is qualitative: we manually in-
spect the 5 most similar words (by cosine similar-
ity) to a given set of target words (Table 1).

The first target word, Batman, results in similar
sets across the different setups. This is the case for
many target words. However, other target words
show clear differences between embeddings.

In Hogwarts - the school of magic from the
fictional Harry Potter series - it is evident that
BOW contexts reflect the domain aspect, whereas
DEPS yield a list of famous schools, capturing
the semantic type of the target word. This ob-
servation holds for Turing3 and many other nouns
as well; BOW find words that associate with w,
while DEPS find words that behave like w. Turney
(2012) described this distinction as domain simi-
larity versus functional similarity.

The Florida example presents an ontologi-
cal difference; bag-of-words contexts generate
meronyms (counties or cities within Florida),
while dependency-based contexts provide cohy-
ponyms (other US states). We observed the same
behavior with other geographical locations, partic-
ularly with countries (though not all of them).

The next two examples demonstrate that simi-
larities induced from DEPS share a syntactic func-
tion (adjectives and gerunds), while similarities
based on BOW are more diverse. Finally, we ob-
serve that while both BOW5 and BOW2 yield top-
ical similarities, the larger window size result in
more topicality, as expected.

3DEPS generated a list of scientists whose name ends with
“ing”. This is may be a result of occasional POS-tagging
errors. Still, the embedding does a remarkable job and re-
trieves scientists, despite the noisy POS. The list contains
more mathematicians without “ing” further down.

Target Word BOW5 BOW2 DEPS

batman

nightwing superman superman
aquaman superboy superboy
catwoman aquaman supergirl
superman catwoman catwoman
manhunter batgirl aquaman

hogwarts

dumbledore evernight sunnydale
hallows sunnydale collinwood
half-blood garderobe calarts
malfoy blandings greendale
snape collinwood millfield

turing

nondeterministic non-deterministic pauling
non-deterministic finite-state hotelling
computability nondeterministic heting
deterministic buchi lessing
finite-state primality hamming

florida

gainesville fla texas
fla alabama louisiana
jacksonville gainesville georgia
tampa tallahassee california
lauderdale texas carolina

object-oriented

aspect-oriented aspect-oriented event-driven
smalltalk event-driven domain-specific
event-driven objective-c rule-based
prolog dataflow data-driven
domain-specific 4gl human-centered

dancing

singing singing singing
dance dance rapping
dances dances breakdancing
dancers breakdancing miming
tap-dancing clowning busking

Table 1: Target words and their 5 most similar words, as in-
duced by different embeddings.

We also tried using the subsampling option
(Mikolov et al., 2013b) with BOW contexts (not
shown). Since word2vec removes the subsam-
pled words from the corpus before creating the
window contexts, this option effectively increases
the window size, resulting in greater topicality.

4.2 Quantitative Evaluation

We supplement the examples in Table 1 with
quantitative evaluation to show that the qualita-
tive differences pointed out in the previous sec-
tion are indeed widespread. To that end, we use
the WordSim353 dataset (Finkelstein et al., 2002;
Agirre et al., 2009). This dataset contains pairs of
similar words that reflect either relatedness (top-
ical similarity) or similarity (functional similar-
ity) relations.4 We use the embeddings in a re-
trieval/ranking setup, where the task is to rank the
similar pairs in the dataset above the related ones.

The pairs are ranked according to cosine sim-
ilarities between the embedded words. We then
draw a recall-precision curve that describes the
embedding’s affinity towards one subset (“sim-
ilarity”) over another (“relatedness”). We ex-
pect DEPS’s curve to be higher than BOW2’s
curve, which in turn is expected to be higher than

4Some word pairs are judged to exhibit both types of sim-
ilarity, and were ignored in this experiment.
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Representing Context

ahogados a la playa ...

get washed up on beaches ...

... fünf Landwirte , weil

... 5 farmers were in Ireland ...

...

oder wurden , gefoltert

or have been , tortured

festgenommen 

thrown into jail

festgenommen

imprisoned

...

... ...

...

Bannard and Callison-Burch, 2005
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Distributional Semantics: 
Takeaways

• The “meaning” of a word is the contexts in which that word 
can be used 

• We can represent word as a point in continuous space by 
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representing the contexts that used to be stored as big 
sparse vectors 

• We can (and should) be as creative as we want with how 
we define “contexts” 
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Sentence-Level Semantics
Natural Language 

Inference Logical Forms

given a premise p and a 
hypothesis h, predict 
whether p entails h

given a sentence s return 
an executable 

representation (e.g. 
mathematical formula, 

SQL query…)
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… 
Prolog 
SQL 

FunQL 
First-order logic 

λ-calculus 
…
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Abbrev. AK

SIZE 663,268

CAPITAL Juneau

What is the 
largest state? Alaskaλ-calculus 

Zettlemoyer and 
Collins (2012)
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Syntax

Semantics
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Combinatory Categorial Grammar



borders  := (S\NP)/NP : λx.λy.borders(y,x) 

Zettlemoyer and Collins (2012)

Combinatory Categorial Grammar



borders  := (S\NP)/NP : λx.λy.borders(y,x) 

borders 
(S\NP)/NP

idaho 
NP

utah 
NP

Zettlemoyer and Collins (2012)

Combinatory Categorial Grammar



borders  := (S\NP)/NP : λx.λy.borders(y,x) 

borders(utah,idaho) 

Zettlemoyer and Collins (2012)

Combinatory Categorial Grammar



borders 
(S\NP)/NP

idaho 
NP

utah 
NP

λx.λy.borders(y,x) idahoutah

Zettlemoyer and Collins (2012)

Combinatory Categorial Grammar



borders 
(S\NP)/NP

idaho 
NP

utah 
NP

λx.λy.borders(y,x) idahoutah

Zettlemoyer and Collins (2012)

Combinatory Categorial Grammar



borders idaho 
(S\NP)

utah 
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Does Utah 
border Idaho? Yesborders(utah,idaho)
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What is the largest state? S:argmax(λx.state(x),λx.size(x))

Utah borders Idaho S:borders(utah,idaho
)

highest point in the US NP:argmax(λx.point(x
),λx.elevation(x)

city in California
NP:λx.
(city(x)⋀location(x,
CA))training data

$$$
$



(utah, 
idaho)

TRUE

(utah, 
michigan)

FALSE

(idaho, 
michigan)

FALSE

(idaho, 
montatana)

TRUE

Does Utah 
border Idaho? Yesborders(utah,idaho)

Liang et al. (2012)

Weakly-supervised Semantic Parsing



(utah, 
idaho)

TRUE

(utah, 
michigan)

FALSE

(idaho, 
michigan)

FALSE

(idaho, 
montatana)

TRUE

Does Utah 
border Idaho? Yesborders(utah,idaho)

Liang et al. (2012)

Weakly-supervised Semantic Parsing



(utah, 
idaho)

TRUE

(utah, 
michigan)

FALSE

(idaho, 
michigan)

FALSE

(idaho, 
montatana)

TRUE

Does Utah 
border Idaho? Yesborders(utah,idaho)

Liang et al. (2012)

Weakly-supervised Semantic Parsing



Does Utah 
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Does Utah 
border Idaho? Yes

Liang et al. (2012)

Weakly-supervised Semantic Parsing

LATENT 
What is the largest state? Alaska

Utah borders Idaho TRUE

highest point in the US Mt. McKinley

city in California Los Angeles, San 
Fransisco…training data
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Dependency-based compositional 
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Yes 
No 
No 
Yes 
Yes

Liang et al. (2012)
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variations of these theme
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The movie was [not] 
terrible.
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Every person danced.

SUB(person,woman) Every woman danced.

INS(young) Every young woman danced.

SUB(danced,moved) Every young woman moved.

Entailment Classification



The NatLog System
Entailment Classification

to capture these diverse relations.
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!
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vore 
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hippo food
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Figure 5.2: The 16 elementary set relations, represented by Johnston diagrams. Each
box represents the universe U , and the two circles within the box represent the sets
x and y. A region is white if it is empty, and shaded if it is non-empty. Thus in the
diagram labeled R1101, only the region x� y is empty, indicating that � � x � y � U .

equivalence class in which only partition 10 is empty.) These equivalence classes are
depicted graphically in figure 5.2.

In fact, each of these equivalence classes is a set relation, that is, a set of ordered
pairs of sets. We will refer to these 16 set relations as the elementary set relations,
and we will denote this set of 16 relations by R. By construction, the relations in R

are both mutually exhaustive (every ordered pair of sets belongs to some relation in
R) and mutually exclusive (no ordered pair of sets belongs to two different relations
in R). Thus, every ordered pair of sets can be assigned to exactly one relation in R.
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forward  
entailment

reverse  
entailment

negation

alternation

independence no pathhypernymy

hyponymy shared  
hypernym

antonymsynonym

Thai 

Asian

Figure 2: Mappings of set-theorhetic entailment relations
onto the WordNet hierarchy. In the Venn diagrams, re-
produced from (MacCartney, 2009), the left circle repre-
sents states in which x is true and the right circle states in
which y is true. The shaded area represents all possible
true states. E.g. when x ⌘ y (equivalence), in every true
state, either both x and y are true, or neither is.

3 Entailment Relations

We use the relations from Bill MacCartney’s the-
sis on natural language inference as the basis for
our categorization of relations (MacCartney, 2009).
MacCartney’s work focused on integrating the se-
mantic properties previously employed by systems
for question answering (Harabagiu and Hickl, 2006)
and RTE (Bar-Haim et al., 2007) within the formal
theory of natural logic (Lakoff, 1972). As a result,
he provides a simple framework which models lexi-
cal entailment in 7 “basic entailment relationships”:

Equivalence (⌘): if X is true then Y is true, and
if Y is true then X is true.

Forward entailment (@): if X is true then Y is
true, but if Y is true then X may or may not be true.

Reverse entailment (A): if Y is true then X is
true, but if X is true then Y may or may not be true.

Negation (^): if X is true then Y is false, and if
Y is false then X is true; either X or Y must be true.

Alternation (|): if X is true then Y is false, but if
Y is false then X may or may not be true.

Cover (^): if X is true then Y may or may not be
true, and if Y is true then X may or may not be true;

either X or Y must be true. We omit this relation,
since its applicability to RTE is not clear.

Independence (#): if X is true then Y may or
may not be true, and if Y is true then X may or may
not be true.

4 Extracting entailment relations from

WordNet

4.1 Mapping onto Natural Logic relations

We would like to train a model to automatically dis-
tinguish between the relationships described above.
In order to gather labelled training data, we first look
to the information available in the existing Word-
Net hierarchy. For roughly 2.5 million (60%) of the
noun pairs in PPDB, both nouns appear in WordNet
(although not necessarily in the same synset). We
use the rules in Table 2 (shown graphically in Fig-
ure 2) to map a pair of nodes in the WordNet noun
hierarchy onto one of the basic entailment relations
described in section 3.

Other Relatedness In addition to MacCartney’s
relations, we define a sixth catch-all category for
terms which are flagged as related by WordNet but
whose relation is not built into the hierarchical struc-
ture. These noun pairs do not meet the criteria of the
basic entailment relations but carry more informa-
tion than do truly independent terms. We combine
holonymy (part/whole relationships), attributes (ad-
jectives closely tied to a specific noun), and deriva-
tionally related terms as “other” relations.

4.2 Shortcomings of WordNet labeling

Our definitions give the desired results for the ⌘,
A, @, and “other” categories. Table 1 shows some
examples of nouns in PPDB which were assigned
to each of these labels. However, whereas Mac-
Cartney’s alternation is strictly contradictory (X !
¬Y ), co-hyponyms of a common parent in WordNet
do not necessarily have this property. Some exam-
ples behave well (e.g. lunch and dinner share the
parent meal), but others are better labelled as @ or #
(e.g. boy and guy share the parent man and brother
and worker share the parent person). As a result,
the WordNet alternation provides no information in
terms of entailment, behaving instead like MacCart-
ney’s independence (i.e. “if X is true then Y may or
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Denotation Graph

Young et al. (2014) 

Gray haired man in black suit and yellow tie working in a financial environment.
A graying man in a suit is perplexed at a business meeting.
A businessman in a yellow tie gives a frustrated look.
A man in a yellow tie is rubbing the back of his neck.
A man with a yellow tie looks concerned.

A butcher cutting an animal to sell.
A green-shirted man with a butcher’s apron uses a knife to carve out the hanging carcass of a cow.
A man at work, butchering a cow.
A man in a green t-shirt and long tan apron hacks apart the carcass of a cow

while another man hoses away the blood.
Two men work in a butcher shop; one cuts the meat from a butchered cow, while the other hoses the floor.

Figure 1: Two images from our data set and their five captions

similar meaning (Harris, 1954). This has led to the
definition of vector-based distributional similarities,
which represent each word w as a vector w derived
from counts of w’s co-occurrence with other words.
These vectors can be used directly to compute the
lexical similarities of words, either via the cosine
of the angle between them, or via other, more com-
plex metrics (Lin, 1998). More recently, asymmetric
similarities have been proposed as more suitable for
semantic inference tasks such as entailment (Weeds
and Weir, 2003; Szpektor and Dagan, 2008; Clarke,
2009; Kotlerman et al., 2010). Distributional word
vectors can also be used to define the compositional
similarity of longer strings (Mitchell and Lapata,
2010). To compute the similarity of two strings, the
lexical vectors of the words in each string are first
combined into a single vector (e.g. by element-wise
addition or multiplication), and then an appropriate
vector similarity (e.g. cosine) is applied to the re-
sulting pair of vectors.

2.2 Visual Denotations

Our approach is inspired by truth-conditional se-
mantic theories in which the denotation of a declar-
ative sentence is assumed to be the set of all situa-
tions or possible worlds in which the sentence is true
(Montague, 1974; Dowty et al., 1981; Barwise and
Perry, 1980). Restricting our attention to visually
descriptive sentences, i.e. non-negative, episodic
(Carlson, 2005) sentences that can be used to de-
scribe an image (Figure 1), we propose to instantiate
the abstract notions of possible worlds or situations
with concrete sets of images. The interpretation
function J·K maps sentences to their visual denota-
tions JsK, which is the set of images i 2 Us ✓ U in

a ‘universe’ of images U that s describes:

JsK = {i 2 U | s is a truthful description of i} (1)

Similarly, we map nouns and noun phrases to the
set of images that depict the objects they describe,
and verbs and verb phrases to the set of images that
depict the events they describe.

2.3 Denotation Graphs
Denotations induce a partial ordering over descrip-
tions: if s (e.g. “a poodle runs on the beach”) en-
tails a description s

0 (e.g. “a dog runs”), its denota-
tion is a subset of the denotation of s

0 (JsK ✓ Js0K),
and we say that s

0 subsumes the more specific s

(s0 � s). In our domain of descriptive sentences,
we can obtain more generic descriptions by simple
syntactic and lexical operations � 2 O ⇢ S ⇥ S
that preserve upward entailment, so that if �(s) =
s
0, JsK ✓ Js0K. We consider three types of oper-

ations: the removal of optional material (e.g PPs
like on the beach), the extraction of simpler con-
stituents (NPs, VPs, or simple Ss), and lexical sub-
stitutions of nouns by their hypernyms (poodle !
dog). These operations are akin to the atomic ed-
its of MacCartney and Manning (2008)’s NatLog
system, and allow us to construct large subsump-
tion hierarchies over image descriptions, which we
call denotation graphs. Given a set of (upward
entailment-preserving) operations O ⇢ S ⇥ S, the
denotation graph DG = hE, V i of a set of images I
and a set of strings S represents a subsumption hier-
archy in which each node V = hs, JsKi corresponds
to a string s 2 S and its denotation JsK ✓ I . Di-
rected edges e = (s, s0) 2 E ✓ V ⇥ V indicate a
subsumption relation s � s

0 between a more generic
expression s and its child s

0. An edge from s to s
0

Figure 6: An example of an image and associated captions used to in building
the denotation graph, taken from Young et al. (2014).

expressions h that it entails. Semantically, entailment is represented by the
fact that the denotation of one string is a subset of another. Syntactically, a
string is related to the strings that it entails by reduction functions. The set
of reduction functions R : S ! S are upward-entailment preserving, so that
if r 2 R and r(s) = t, then JsK ✓ JtK. A denotation graph is then defined as
a graph DG over S, I, and R. DG contains a vertex vs labeled hs, JsKi for
every s 2 S. DG contains an edge hvs, vti if there exists a reduction r 2 R
such that r(s) = t.

The set of reduction functions R is manually defined using the function
templates below, which can be applied to the human-written captions to
produce more general strings:

• Drop NP articles: one man ! man

• Drop NP and VP modifiers: red shirt ! shirt, run quickly ! run

• Drop PPs: play on the beach ! play

• Drop wearing phrases: woman wearing red ! woman

• Replace head nouns with hypernyms: man sitting ! person sitting

• Replace X of Y NPs with X or Y : glass of beer ! glass/beer

• Replace X or Y NPs with X or Y : man or woman ! man/woman

• Replace X to Y VPs with X and/or Y : jump to catch ! jump/catch

• Extract S, V, VO, and SVO chunks: man having co↵ee and a mu�n
! man, co↵ee, have co↵ee, man have co↵ee, . . .

Before applying these rules, a number of special cases and exceptions are
checked. For example, in the case of the X to Y pattern, a separate lexicon
must be consulted to determine whether X implies that Y has alread occured
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while another man hoses away the blood.
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Figure 1: Two images from our data set and their five captions

similar meaning (Harris, 1954). This has led to the
definition of vector-based distributional similarities,
which represent each word w as a vector w derived
from counts of w’s co-occurrence with other words.
These vectors can be used directly to compute the
lexical similarities of words, either via the cosine
of the angle between them, or via other, more com-
plex metrics (Lin, 1998). More recently, asymmetric
similarities have been proposed as more suitable for
semantic inference tasks such as entailment (Weeds
and Weir, 2003; Szpektor and Dagan, 2008; Clarke,
2009; Kotlerman et al., 2010). Distributional word
vectors can also be used to define the compositional
similarity of longer strings (Mitchell and Lapata,
2010). To compute the similarity of two strings, the
lexical vectors of the words in each string are first
combined into a single vector (e.g. by element-wise
addition or multiplication), and then an appropriate
vector similarity (e.g. cosine) is applied to the re-
sulting pair of vectors.

2.2 Visual Denotations

Our approach is inspired by truth-conditional se-
mantic theories in which the denotation of a declar-
ative sentence is assumed to be the set of all situa-
tions or possible worlds in which the sentence is true
(Montague, 1974; Dowty et al., 1981; Barwise and
Perry, 1980). Restricting our attention to visually
descriptive sentences, i.e. non-negative, episodic
(Carlson, 2005) sentences that can be used to de-
scribe an image (Figure 1), we propose to instantiate
the abstract notions of possible worlds or situations
with concrete sets of images. The interpretation
function J·K maps sentences to their visual denota-
tions JsK, which is the set of images i 2 Us ✓ U in

a ‘universe’ of images U that s describes:

JsK = {i 2 U | s is a truthful description of i} (1)

Similarly, we map nouns and noun phrases to the
set of images that depict the objects they describe,
and verbs and verb phrases to the set of images that
depict the events they describe.

2.3 Denotation Graphs
Denotations induce a partial ordering over descrip-
tions: if s (e.g. “a poodle runs on the beach”) en-
tails a description s

0 (e.g. “a dog runs”), its denota-
tion is a subset of the denotation of s

0 (JsK ✓ Js0K),
and we say that s

0 subsumes the more specific s

(s0 � s). In our domain of descriptive sentences,
we can obtain more generic descriptions by simple
syntactic and lexical operations � 2 O ⇢ S ⇥ S
that preserve upward entailment, so that if �(s) =
s
0, JsK ✓ Js0K. We consider three types of oper-

ations: the removal of optional material (e.g PPs
like on the beach), the extraction of simpler con-
stituents (NPs, VPs, or simple Ss), and lexical sub-
stitutions of nouns by their hypernyms (poodle !
dog). These operations are akin to the atomic ed-
its of MacCartney and Manning (2008)’s NatLog
system, and allow us to construct large subsump-
tion hierarchies over image descriptions, which we
call denotation graphs. Given a set of (upward
entailment-preserving) operations O ⇢ S ⇥ S, the
denotation graph DG = hE, V i of a set of images I
and a set of strings S represents a subsumption hier-
archy in which each node V = hs, JsKi corresponds
to a string s 2 S and its denotation JsK ✓ I . Di-
rected edges e = (s, s0) 2 E ✓ V ⇥ V indicate a
subsumption relation s � s

0 between a more generic
expression s and its child s

0. An edge from s to s
0

Figure 6: An example of an image and associated captions used to in building
the denotation graph, taken from Young et al. (2014).

expressions h that it entails. Semantically, entailment is represented by the
fact that the denotation of one string is a subset of another. Syntactically, a
string is related to the strings that it entails by reduction functions. The set
of reduction functions R : S ! S are upward-entailment preserving, so that
if r 2 R and r(s) = t, then JsK ✓ JtK. A denotation graph is then defined as
a graph DG over S, I, and R. DG contains a vertex vs labeled hs, JsKi for
every s 2 S. DG contains an edge hvs, vti if there exists a reduction r 2 R
such that r(s) = t.

The set of reduction functions R is manually defined using the function
templates below, which can be applied to the human-written captions to
produce more general strings:

• Drop NP articles: one man ! man

• Drop NP and VP modifiers: red shirt ! shirt, run quickly ! run

• Drop PPs: play on the beach ! play

• Drop wearing phrases: woman wearing red ! woman

• Replace head nouns with hypernyms: man sitting ! person sitting

• Replace X of Y NPs with X or Y : glass of beer ! glass/beer

• Replace X or Y NPs with X or Y : man or woman ! man/woman

• Replace X to Y VPs with X and/or Y : jump to catch ! jump/catch

• Extract S, V, VO, and SVO chunks: man having co↵ee and a mu�n
! man, co↵ee, have co↵ee, man have co↵ee, . . .

Before applying these rules, a number of special cases and exceptions are
checked. For example, in the case of the X to Y pattern, a separate lexicon
must be consulted to determine whether X implies that Y has alread occured

38

Gray haired man in black suit and yellow tie working in a financial environment. 
 A graying man in a suit is perplexed at a business meeting.  

A businessman in a yellow tie gives a frustrated look.  
A man in a yellow tie is rubbing the back of his neck.  

A man with a yellow tie looks concerned. 

Denotation Graph



Young et al. (2014) 
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A green-shirted man with a butcher’s apron uses a knife to carve out the hanging carcass of a cow.
A man at work, butchering a cow.
A man in a green t-shirt and long tan apron hacks apart the carcass of a cow

while another man hoses away the blood.
Two men work in a butcher shop; one cuts the meat from a butchered cow, while the other hoses the floor.

Figure 1: Two images from our data set and their five captions

similar meaning (Harris, 1954). This has led to the
definition of vector-based distributional similarities,
which represent each word w as a vector w derived
from counts of w’s co-occurrence with other words.
These vectors can be used directly to compute the
lexical similarities of words, either via the cosine
of the angle between them, or via other, more com-
plex metrics (Lin, 1998). More recently, asymmetric
similarities have been proposed as more suitable for
semantic inference tasks such as entailment (Weeds
and Weir, 2003; Szpektor and Dagan, 2008; Clarke,
2009; Kotlerman et al., 2010). Distributional word
vectors can also be used to define the compositional
similarity of longer strings (Mitchell and Lapata,
2010). To compute the similarity of two strings, the
lexical vectors of the words in each string are first
combined into a single vector (e.g. by element-wise
addition or multiplication), and then an appropriate
vector similarity (e.g. cosine) is applied to the re-
sulting pair of vectors.

2.2 Visual Denotations

Our approach is inspired by truth-conditional se-
mantic theories in which the denotation of a declar-
ative sentence is assumed to be the set of all situa-
tions or possible worlds in which the sentence is true
(Montague, 1974; Dowty et al., 1981; Barwise and
Perry, 1980). Restricting our attention to visually
descriptive sentences, i.e. non-negative, episodic
(Carlson, 2005) sentences that can be used to de-
scribe an image (Figure 1), we propose to instantiate
the abstract notions of possible worlds or situations
with concrete sets of images. The interpretation
function J·K maps sentences to their visual denota-
tions JsK, which is the set of images i 2 Us ✓ U in

a ‘universe’ of images U that s describes:

JsK = {i 2 U | s is a truthful description of i} (1)

Similarly, we map nouns and noun phrases to the
set of images that depict the objects they describe,
and verbs and verb phrases to the set of images that
depict the events they describe.

2.3 Denotation Graphs
Denotations induce a partial ordering over descrip-
tions: if s (e.g. “a poodle runs on the beach”) en-
tails a description s

0 (e.g. “a dog runs”), its denota-
tion is a subset of the denotation of s

0 (JsK ✓ Js0K),
and we say that s

0 subsumes the more specific s

(s0 � s). In our domain of descriptive sentences,
we can obtain more generic descriptions by simple
syntactic and lexical operations � 2 O ⇢ S ⇥ S
that preserve upward entailment, so that if �(s) =
s
0, JsK ✓ Js0K. We consider three types of oper-

ations: the removal of optional material (e.g PPs
like on the beach), the extraction of simpler con-
stituents (NPs, VPs, or simple Ss), and lexical sub-
stitutions of nouns by their hypernyms (poodle !
dog). These operations are akin to the atomic ed-
its of MacCartney and Manning (2008)’s NatLog
system, and allow us to construct large subsump-
tion hierarchies over image descriptions, which we
call denotation graphs. Given a set of (upward
entailment-preserving) operations O ⇢ S ⇥ S, the
denotation graph DG = hE, V i of a set of images I
and a set of strings S represents a subsumption hier-
archy in which each node V = hs, JsKi corresponds
to a string s 2 S and its denotation JsK ✓ I . Di-
rected edges e = (s, s0) 2 E ✓ V ⇥ V indicate a
subsumption relation s � s

0 between a more generic
expression s and its child s

0. An edge from s to s
0

Figure 6: An example of an image and associated captions used to in building
the denotation graph, taken from Young et al. (2014).

expressions h that it entails. Semantically, entailment is represented by the
fact that the denotation of one string is a subset of another. Syntactically, a
string is related to the strings that it entails by reduction functions. The set
of reduction functions R : S ! S are upward-entailment preserving, so that
if r 2 R and r(s) = t, then JsK ✓ JtK. A denotation graph is then defined as
a graph DG over S, I, and R. DG contains a vertex vs labeled hs, JsKi for
every s 2 S. DG contains an edge hvs, vti if there exists a reduction r 2 R
such that r(s) = t.

The set of reduction functions R is manually defined using the function
templates below, which can be applied to the human-written captions to
produce more general strings:

• Drop NP articles: one man ! man

• Drop NP and VP modifiers: red shirt ! shirt, run quickly ! run

• Drop PPs: play on the beach ! play

• Drop wearing phrases: woman wearing red ! woman

• Replace head nouns with hypernyms: man sitting ! person sitting

• Replace X of Y NPs with X or Y : glass of beer ! glass/beer

• Replace X or Y NPs with X or Y : man or woman ! man/woman

• Replace X to Y VPs with X and/or Y : jump to catch ! jump/catch

• Extract S, V, VO, and SVO chunks: man having co↵ee and a mu�n
! man, co↵ee, have co↵ee, man have co↵ee, . . .

Before applying these rules, a number of special cases and exceptions are
checked. For example, in the case of the X to Y pattern, a separate lexicon
must be consulted to determine whether X implies that Y has alread occured
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A graying man in a suit is perplexed at a business meeting.
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A butcher cutting an animal to sell.
A green-shirted man with a butcher’s apron uses a knife to carve out the hanging carcass of a cow.
A man at work, butchering a cow.
A man in a green t-shirt and long tan apron hacks apart the carcass of a cow

while another man hoses away the blood.
Two men work in a butcher shop; one cuts the meat from a butchered cow, while the other hoses the floor.

Figure 1: Two images from our data set and their five captions

similar meaning (Harris, 1954). This has led to the
definition of vector-based distributional similarities,
which represent each word w as a vector w derived
from counts of w’s co-occurrence with other words.
These vectors can be used directly to compute the
lexical similarities of words, either via the cosine
of the angle between them, or via other, more com-
plex metrics (Lin, 1998). More recently, asymmetric
similarities have been proposed as more suitable for
semantic inference tasks such as entailment (Weeds
and Weir, 2003; Szpektor and Dagan, 2008; Clarke,
2009; Kotlerman et al., 2010). Distributional word
vectors can also be used to define the compositional
similarity of longer strings (Mitchell and Lapata,
2010). To compute the similarity of two strings, the
lexical vectors of the words in each string are first
combined into a single vector (e.g. by element-wise
addition or multiplication), and then an appropriate
vector similarity (e.g. cosine) is applied to the re-
sulting pair of vectors.

2.2 Visual Denotations

Our approach is inspired by truth-conditional se-
mantic theories in which the denotation of a declar-
ative sentence is assumed to be the set of all situa-
tions or possible worlds in which the sentence is true
(Montague, 1974; Dowty et al., 1981; Barwise and
Perry, 1980). Restricting our attention to visually
descriptive sentences, i.e. non-negative, episodic
(Carlson, 2005) sentences that can be used to de-
scribe an image (Figure 1), we propose to instantiate
the abstract notions of possible worlds or situations
with concrete sets of images. The interpretation
function J·K maps sentences to their visual denota-
tions JsK, which is the set of images i 2 Us ✓ U in

a ‘universe’ of images U that s describes:

JsK = {i 2 U | s is a truthful description of i} (1)

Similarly, we map nouns and noun phrases to the
set of images that depict the objects they describe,
and verbs and verb phrases to the set of images that
depict the events they describe.

2.3 Denotation Graphs
Denotations induce a partial ordering over descrip-
tions: if s (e.g. “a poodle runs on the beach”) en-
tails a description s

0 (e.g. “a dog runs”), its denota-
tion is a subset of the denotation of s

0 (JsK ✓ Js0K),
and we say that s

0 subsumes the more specific s

(s0 � s). In our domain of descriptive sentences,
we can obtain more generic descriptions by simple
syntactic and lexical operations � 2 O ⇢ S ⇥ S
that preserve upward entailment, so that if �(s) =
s
0, JsK ✓ Js0K. We consider three types of oper-

ations: the removal of optional material (e.g PPs
like on the beach), the extraction of simpler con-
stituents (NPs, VPs, or simple Ss), and lexical sub-
stitutions of nouns by their hypernyms (poodle !
dog). These operations are akin to the atomic ed-
its of MacCartney and Manning (2008)’s NatLog
system, and allow us to construct large subsump-
tion hierarchies over image descriptions, which we
call denotation graphs. Given a set of (upward
entailment-preserving) operations O ⇢ S ⇥ S, the
denotation graph DG = hE, V i of a set of images I
and a set of strings S represents a subsumption hier-
archy in which each node V = hs, JsKi corresponds
to a string s 2 S and its denotation JsK ✓ I . Di-
rected edges e = (s, s0) 2 E ✓ V ⇥ V indicate a
subsumption relation s � s

0 between a more generic
expression s and its child s

0. An edge from s to s
0

Figure 6: An example of an image and associated captions used to in building
the denotation graph, taken from Young et al. (2014).

expressions h that it entails. Semantically, entailment is represented by the
fact that the denotation of one string is a subset of another. Syntactically, a
string is related to the strings that it entails by reduction functions. The set
of reduction functions R : S ! S are upward-entailment preserving, so that
if r 2 R and r(s) = t, then JsK ✓ JtK. A denotation graph is then defined as
a graph DG over S, I, and R. DG contains a vertex vs labeled hs, JsKi for
every s 2 S. DG contains an edge hvs, vti if there exists a reduction r 2 R
such that r(s) = t.

The set of reduction functions R is manually defined using the function
templates below, which can be applied to the human-written captions to
produce more general strings:

• Drop NP articles: one man ! man

• Drop NP and VP modifiers: red shirt ! shirt, run quickly ! run

• Drop PPs: play on the beach ! play

• Drop wearing phrases: woman wearing red ! woman

• Replace head nouns with hypernyms: man sitting ! person sitting

• Replace X of Y NPs with X or Y : glass of beer ! glass/beer

• Replace X or Y NPs with X or Y : man or woman ! man/woman

• Replace X to Y VPs with X and/or Y : jump to catch ! jump/catch

• Extract S, V, VO, and SVO chunks: man having co↵ee and a mu�n
! man, co↵ee, have co↵ee, man have co↵ee, . . .

Before applying these rules, a number of special cases and exceptions are
checked. For example, in the case of the X to Y pattern, a separate lexicon
must be consulted to determine whether X implies that Y has alread occured
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Gray haired man in black suit and yellow tie working in a financial environment.
A graying man in a suit is perplexed at a business meeting.
A businessman in a yellow tie gives a frustrated look.
A man in a yellow tie is rubbing the back of his neck.
A man with a yellow tie looks concerned.

A butcher cutting an animal to sell.
A green-shirted man with a butcher’s apron uses a knife to carve out the hanging carcass of a cow.
A man at work, butchering a cow.
A man in a green t-shirt and long tan apron hacks apart the carcass of a cow

while another man hoses away the blood.
Two men work in a butcher shop; one cuts the meat from a butchered cow, while the other hoses the floor.

Figure 1: Two images from our data set and their five captions

similar meaning (Harris, 1954). This has led to the
definition of vector-based distributional similarities,
which represent each word w as a vector w derived
from counts of w’s co-occurrence with other words.
These vectors can be used directly to compute the
lexical similarities of words, either via the cosine
of the angle between them, or via other, more com-
plex metrics (Lin, 1998). More recently, asymmetric
similarities have been proposed as more suitable for
semantic inference tasks such as entailment (Weeds
and Weir, 2003; Szpektor and Dagan, 2008; Clarke,
2009; Kotlerman et al., 2010). Distributional word
vectors can also be used to define the compositional
similarity of longer strings (Mitchell and Lapata,
2010). To compute the similarity of two strings, the
lexical vectors of the words in each string are first
combined into a single vector (e.g. by element-wise
addition or multiplication), and then an appropriate
vector similarity (e.g. cosine) is applied to the re-
sulting pair of vectors.

2.2 Visual Denotations

Our approach is inspired by truth-conditional se-
mantic theories in which the denotation of a declar-
ative sentence is assumed to be the set of all situa-
tions or possible worlds in which the sentence is true
(Montague, 1974; Dowty et al., 1981; Barwise and
Perry, 1980). Restricting our attention to visually
descriptive sentences, i.e. non-negative, episodic
(Carlson, 2005) sentences that can be used to de-
scribe an image (Figure 1), we propose to instantiate
the abstract notions of possible worlds or situations
with concrete sets of images. The interpretation
function J·K maps sentences to their visual denota-
tions JsK, which is the set of images i 2 Us ✓ U in

a ‘universe’ of images U that s describes:

JsK = {i 2 U | s is a truthful description of i} (1)

Similarly, we map nouns and noun phrases to the
set of images that depict the objects they describe,
and verbs and verb phrases to the set of images that
depict the events they describe.

2.3 Denotation Graphs
Denotations induce a partial ordering over descrip-
tions: if s (e.g. “a poodle runs on the beach”) en-
tails a description s

0 (e.g. “a dog runs”), its denota-
tion is a subset of the denotation of s

0 (JsK ✓ Js0K),
and we say that s

0 subsumes the more specific s

(s0 � s). In our domain of descriptive sentences,
we can obtain more generic descriptions by simple
syntactic and lexical operations � 2 O ⇢ S ⇥ S
that preserve upward entailment, so that if �(s) =
s
0, JsK ✓ Js0K. We consider three types of oper-

ations: the removal of optional material (e.g PPs
like on the beach), the extraction of simpler con-
stituents (NPs, VPs, or simple Ss), and lexical sub-
stitutions of nouns by their hypernyms (poodle !
dog). These operations are akin to the atomic ed-
its of MacCartney and Manning (2008)’s NatLog
system, and allow us to construct large subsump-
tion hierarchies over image descriptions, which we
call denotation graphs. Given a set of (upward
entailment-preserving) operations O ⇢ S ⇥ S, the
denotation graph DG = hE, V i of a set of images I
and a set of strings S represents a subsumption hier-
archy in which each node V = hs, JsKi corresponds
to a string s 2 S and its denotation JsK ✓ I . Di-
rected edges e = (s, s0) 2 E ✓ V ⇥ V indicate a
subsumption relation s � s

0 between a more generic
expression s and its child s

0. An edge from s to s
0

Figure 6: An example of an image and associated captions used to in building
the denotation graph, taken from Young et al. (2014).

expressions h that it entails. Semantically, entailment is represented by the
fact that the denotation of one string is a subset of another. Syntactically, a
string is related to the strings that it entails by reduction functions. The set
of reduction functions R : S ! S are upward-entailment preserving, so that
if r 2 R and r(s) = t, then JsK ✓ JtK. A denotation graph is then defined as
a graph DG over S, I, and R. DG contains a vertex vs labeled hs, JsKi for
every s 2 S. DG contains an edge hvs, vti if there exists a reduction r 2 R
such that r(s) = t.

The set of reduction functions R is manually defined using the function
templates below, which can be applied to the human-written captions to
produce more general strings:

• Drop NP articles: one man ! man

• Drop NP and VP modifiers: red shirt ! shirt, run quickly ! run

• Drop PPs: play on the beach ! play

• Drop wearing phrases: woman wearing red ! woman

• Replace head nouns with hypernyms: man sitting ! person sitting

• Replace X of Y NPs with X or Y : glass of beer ! glass/beer

• Replace X or Y NPs with X or Y : man or woman ! man/woman

• Replace X to Y VPs with X and/or Y : jump to catch ! jump/catch

• Extract S, V, VO, and SVO chunks: man having co↵ee and a mu�n
! man, co↵ee, have co↵ee, man have co↵ee, . . .

Before applying these rules, a number of special cases and exceptions are
checked. For example, in the case of the X to Y pattern, a separate lexicon
must be consulted to determine whether X implies that Y has alread occured
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Gray haired man in black suit and yellow tie working in a financial environment.
A graying man in a suit is perplexed at a business meeting.
A businessman in a yellow tie gives a frustrated look.
A man in a yellow tie is rubbing the back of his neck.
A man with a yellow tie looks concerned.

A butcher cutting an animal to sell.
A green-shirted man with a butcher’s apron uses a knife to carve out the hanging carcass of a cow.
A man at work, butchering a cow.
A man in a green t-shirt and long tan apron hacks apart the carcass of a cow

while another man hoses away the blood.
Two men work in a butcher shop; one cuts the meat from a butchered cow, while the other hoses the floor.

Figure 1: Two images from our data set and their five captions

similar meaning (Harris, 1954). This has led to the
definition of vector-based distributional similarities,
which represent each word w as a vector w derived
from counts of w’s co-occurrence with other words.
These vectors can be used directly to compute the
lexical similarities of words, either via the cosine
of the angle between them, or via other, more com-
plex metrics (Lin, 1998). More recently, asymmetric
similarities have been proposed as more suitable for
semantic inference tasks such as entailment (Weeds
and Weir, 2003; Szpektor and Dagan, 2008; Clarke,
2009; Kotlerman et al., 2010). Distributional word
vectors can also be used to define the compositional
similarity of longer strings (Mitchell and Lapata,
2010). To compute the similarity of two strings, the
lexical vectors of the words in each string are first
combined into a single vector (e.g. by element-wise
addition or multiplication), and then an appropriate
vector similarity (e.g. cosine) is applied to the re-
sulting pair of vectors.

2.2 Visual Denotations

Our approach is inspired by truth-conditional se-
mantic theories in which the denotation of a declar-
ative sentence is assumed to be the set of all situa-
tions or possible worlds in which the sentence is true
(Montague, 1974; Dowty et al., 1981; Barwise and
Perry, 1980). Restricting our attention to visually
descriptive sentences, i.e. non-negative, episodic
(Carlson, 2005) sentences that can be used to de-
scribe an image (Figure 1), we propose to instantiate
the abstract notions of possible worlds or situations
with concrete sets of images. The interpretation
function J·K maps sentences to their visual denota-
tions JsK, which is the set of images i 2 Us ✓ U in

a ‘universe’ of images U that s describes:

JsK = {i 2 U | s is a truthful description of i} (1)

Similarly, we map nouns and noun phrases to the
set of images that depict the objects they describe,
and verbs and verb phrases to the set of images that
depict the events they describe.

2.3 Denotation Graphs
Denotations induce a partial ordering over descrip-
tions: if s (e.g. “a poodle runs on the beach”) en-
tails a description s

0 (e.g. “a dog runs”), its denota-
tion is a subset of the denotation of s

0 (JsK ✓ Js0K),
and we say that s

0 subsumes the more specific s

(s0 � s). In our domain of descriptive sentences,
we can obtain more generic descriptions by simple
syntactic and lexical operations � 2 O ⇢ S ⇥ S
that preserve upward entailment, so that if �(s) =
s
0, JsK ✓ Js0K. We consider three types of oper-

ations: the removal of optional material (e.g PPs
like on the beach), the extraction of simpler con-
stituents (NPs, VPs, or simple Ss), and lexical sub-
stitutions of nouns by their hypernyms (poodle !
dog). These operations are akin to the atomic ed-
its of MacCartney and Manning (2008)’s NatLog
system, and allow us to construct large subsump-
tion hierarchies over image descriptions, which we
call denotation graphs. Given a set of (upward
entailment-preserving) operations O ⇢ S ⇥ S, the
denotation graph DG = hE, V i of a set of images I
and a set of strings S represents a subsumption hier-
archy in which each node V = hs, JsKi corresponds
to a string s 2 S and its denotation JsK ✓ I . Di-
rected edges e = (s, s0) 2 E ✓ V ⇥ V indicate a
subsumption relation s � s

0 between a more generic
expression s and its child s

0. An edge from s to s
0

Figure 6: An example of an image and associated captions used to in building
the denotation graph, taken from Young et al. (2014).

expressions h that it entails. Semantically, entailment is represented by the
fact that the denotation of one string is a subset of another. Syntactically, a
string is related to the strings that it entails by reduction functions. The set
of reduction functions R : S ! S are upward-entailment preserving, so that
if r 2 R and r(s) = t, then JsK ✓ JtK. A denotation graph is then defined as
a graph DG over S, I, and R. DG contains a vertex vs labeled hs, JsKi for
every s 2 S. DG contains an edge hvs, vti if there exists a reduction r 2 R
such that r(s) = t.

The set of reduction functions R is manually defined using the function
templates below, which can be applied to the human-written captions to
produce more general strings:

• Drop NP articles: one man ! man

• Drop NP and VP modifiers: red shirt ! shirt, run quickly ! run

• Drop PPs: play on the beach ! play

• Drop wearing phrases: woman wearing red ! woman

• Replace head nouns with hypernyms: man sitting ! person sitting

• Replace X of Y NPs with X or Y : glass of beer ! glass/beer

• Replace X or Y NPs with X or Y : man or woman ! man/woman

• Replace X to Y VPs with X and/or Y : jump to catch ! jump/catch

• Extract S, V, VO, and SVO chunks: man having co↵ee and a mu�n
! man, co↵ee, have co↵ee, man have co↵ee, . . .

Before applying these rules, a number of special cases and exceptions are
checked. For example, in the case of the X to Y pattern, a separate lexicon
must be consulted to determine whether X implies that Y has alread occured
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Gray haired man in black suit and yellow tie working in a financial environment.
A graying man in a suit is perplexed at a business meeting.
A businessman in a yellow tie gives a frustrated look.
A man in a yellow tie is rubbing the back of his neck.
A man with a yellow tie looks concerned.

A butcher cutting an animal to sell.
A green-shirted man with a butcher’s apron uses a knife to carve out the hanging carcass of a cow.
A man at work, butchering a cow.
A man in a green t-shirt and long tan apron hacks apart the carcass of a cow

while another man hoses away the blood.
Two men work in a butcher shop; one cuts the meat from a butchered cow, while the other hoses the floor.

Figure 1: Two images from our data set and their five captions

similar meaning (Harris, 1954). This has led to the
definition of vector-based distributional similarities,
which represent each word w as a vector w derived
from counts of w’s co-occurrence with other words.
These vectors can be used directly to compute the
lexical similarities of words, either via the cosine
of the angle between them, or via other, more com-
plex metrics (Lin, 1998). More recently, asymmetric
similarities have been proposed as more suitable for
semantic inference tasks such as entailment (Weeds
and Weir, 2003; Szpektor and Dagan, 2008; Clarke,
2009; Kotlerman et al., 2010). Distributional word
vectors can also be used to define the compositional
similarity of longer strings (Mitchell and Lapata,
2010). To compute the similarity of two strings, the
lexical vectors of the words in each string are first
combined into a single vector (e.g. by element-wise
addition or multiplication), and then an appropriate
vector similarity (e.g. cosine) is applied to the re-
sulting pair of vectors.

2.2 Visual Denotations

Our approach is inspired by truth-conditional se-
mantic theories in which the denotation of a declar-
ative sentence is assumed to be the set of all situa-
tions or possible worlds in which the sentence is true
(Montague, 1974; Dowty et al., 1981; Barwise and
Perry, 1980). Restricting our attention to visually
descriptive sentences, i.e. non-negative, episodic
(Carlson, 2005) sentences that can be used to de-
scribe an image (Figure 1), we propose to instantiate
the abstract notions of possible worlds or situations
with concrete sets of images. The interpretation
function J·K maps sentences to their visual denota-
tions JsK, which is the set of images i 2 Us ✓ U in

a ‘universe’ of images U that s describes:

JsK = {i 2 U | s is a truthful description of i} (1)

Similarly, we map nouns and noun phrases to the
set of images that depict the objects they describe,
and verbs and verb phrases to the set of images that
depict the events they describe.

2.3 Denotation Graphs
Denotations induce a partial ordering over descrip-
tions: if s (e.g. “a poodle runs on the beach”) en-
tails a description s

0 (e.g. “a dog runs”), its denota-
tion is a subset of the denotation of s

0 (JsK ✓ Js0K),
and we say that s

0 subsumes the more specific s

(s0 � s). In our domain of descriptive sentences,
we can obtain more generic descriptions by simple
syntactic and lexical operations � 2 O ⇢ S ⇥ S
that preserve upward entailment, so that if �(s) =
s
0, JsK ✓ Js0K. We consider three types of oper-

ations: the removal of optional material (e.g PPs
like on the beach), the extraction of simpler con-
stituents (NPs, VPs, or simple Ss), and lexical sub-
stitutions of nouns by their hypernyms (poodle !
dog). These operations are akin to the atomic ed-
its of MacCartney and Manning (2008)’s NatLog
system, and allow us to construct large subsump-
tion hierarchies over image descriptions, which we
call denotation graphs. Given a set of (upward
entailment-preserving) operations O ⇢ S ⇥ S, the
denotation graph DG = hE, V i of a set of images I
and a set of strings S represents a subsumption hier-
archy in which each node V = hs, JsKi corresponds
to a string s 2 S and its denotation JsK ✓ I . Di-
rected edges e = (s, s0) 2 E ✓ V ⇥ V indicate a
subsumption relation s � s

0 between a more generic
expression s and its child s

0. An edge from s to s
0

Figure 6: An example of an image and associated captions used to in building
the denotation graph, taken from Young et al. (2014).

expressions h that it entails. Semantically, entailment is represented by the
fact that the denotation of one string is a subset of another. Syntactically, a
string is related to the strings that it entails by reduction functions. The set
of reduction functions R : S ! S are upward-entailment preserving, so that
if r 2 R and r(s) = t, then JsK ✓ JtK. A denotation graph is then defined as
a graph DG over S, I, and R. DG contains a vertex vs labeled hs, JsKi for
every s 2 S. DG contains an edge hvs, vti if there exists a reduction r 2 R
such that r(s) = t.

The set of reduction functions R is manually defined using the function
templates below, which can be applied to the human-written captions to
produce more general strings:

• Drop NP articles: one man ! man

• Drop NP and VP modifiers: red shirt ! shirt, run quickly ! run

• Drop PPs: play on the beach ! play

• Drop wearing phrases: woman wearing red ! woman

• Replace head nouns with hypernyms: man sitting ! person sitting

• Replace X of Y NPs with X or Y : glass of beer ! glass/beer

• Replace X or Y NPs with X or Y : man or woman ! man/woman

• Replace X to Y VPs with X and/or Y : jump to catch ! jump/catch

• Extract S, V, VO, and SVO chunks: man having co↵ee and a mu�n
! man, co↵ee, have co↵ee, man have co↵ee, . . .

Before applying these rules, a number of special cases and exceptions are
checked. For example, in the case of the X to Y pattern, a separate lexicon
must be consulted to determine whether X implies that Y has alread occured
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Gray haired man in black suit and yellow tie working in a financial environment.
A graying man in a suit is perplexed at a business meeting.
A businessman in a yellow tie gives a frustrated look.
A man in a yellow tie is rubbing the back of his neck.
A man with a yellow tie looks concerned.

A butcher cutting an animal to sell.
A green-shirted man with a butcher’s apron uses a knife to carve out the hanging carcass of a cow.
A man at work, butchering a cow.
A man in a green t-shirt and long tan apron hacks apart the carcass of a cow

while another man hoses away the blood.
Two men work in a butcher shop; one cuts the meat from a butchered cow, while the other hoses the floor.

Figure 1: Two images from our data set and their five captions

similar meaning (Harris, 1954). This has led to the
definition of vector-based distributional similarities,
which represent each word w as a vector w derived
from counts of w’s co-occurrence with other words.
These vectors can be used directly to compute the
lexical similarities of words, either via the cosine
of the angle between them, or via other, more com-
plex metrics (Lin, 1998). More recently, asymmetric
similarities have been proposed as more suitable for
semantic inference tasks such as entailment (Weeds
and Weir, 2003; Szpektor and Dagan, 2008; Clarke,
2009; Kotlerman et al., 2010). Distributional word
vectors can also be used to define the compositional
similarity of longer strings (Mitchell and Lapata,
2010). To compute the similarity of two strings, the
lexical vectors of the words in each string are first
combined into a single vector (e.g. by element-wise
addition or multiplication), and then an appropriate
vector similarity (e.g. cosine) is applied to the re-
sulting pair of vectors.

2.2 Visual Denotations

Our approach is inspired by truth-conditional se-
mantic theories in which the denotation of a declar-
ative sentence is assumed to be the set of all situa-
tions or possible worlds in which the sentence is true
(Montague, 1974; Dowty et al., 1981; Barwise and
Perry, 1980). Restricting our attention to visually
descriptive sentences, i.e. non-negative, episodic
(Carlson, 2005) sentences that can be used to de-
scribe an image (Figure 1), we propose to instantiate
the abstract notions of possible worlds or situations
with concrete sets of images. The interpretation
function J·K maps sentences to their visual denota-
tions JsK, which is the set of images i 2 Us ✓ U in

a ‘universe’ of images U that s describes:

JsK = {i 2 U | s is a truthful description of i} (1)

Similarly, we map nouns and noun phrases to the
set of images that depict the objects they describe,
and verbs and verb phrases to the set of images that
depict the events they describe.

2.3 Denotation Graphs
Denotations induce a partial ordering over descrip-
tions: if s (e.g. “a poodle runs on the beach”) en-
tails a description s

0 (e.g. “a dog runs”), its denota-
tion is a subset of the denotation of s

0 (JsK ✓ Js0K),
and we say that s

0 subsumes the more specific s

(s0 � s). In our domain of descriptive sentences,
we can obtain more generic descriptions by simple
syntactic and lexical operations � 2 O ⇢ S ⇥ S
that preserve upward entailment, so that if �(s) =
s
0, JsK ✓ Js0K. We consider three types of oper-

ations: the removal of optional material (e.g PPs
like on the beach), the extraction of simpler con-
stituents (NPs, VPs, or simple Ss), and lexical sub-
stitutions of nouns by their hypernyms (poodle !
dog). These operations are akin to the atomic ed-
its of MacCartney and Manning (2008)’s NatLog
system, and allow us to construct large subsump-
tion hierarchies over image descriptions, which we
call denotation graphs. Given a set of (upward
entailment-preserving) operations O ⇢ S ⇥ S, the
denotation graph DG = hE, V i of a set of images I
and a set of strings S represents a subsumption hier-
archy in which each node V = hs, JsKi corresponds
to a string s 2 S and its denotation JsK ✓ I . Di-
rected edges e = (s, s0) 2 E ✓ V ⇥ V indicate a
subsumption relation s � s

0 between a more generic
expression s and its child s

0. An edge from s to s
0

Figure 6: An example of an image and associated captions used to in building
the denotation graph, taken from Young et al. (2014).

expressions h that it entails. Semantically, entailment is represented by the
fact that the denotation of one string is a subset of another. Syntactically, a
string is related to the strings that it entails by reduction functions. The set
of reduction functions R : S ! S are upward-entailment preserving, so that
if r 2 R and r(s) = t, then JsK ✓ JtK. A denotation graph is then defined as
a graph DG over S, I, and R. DG contains a vertex vs labeled hs, JsKi for
every s 2 S. DG contains an edge hvs, vti if there exists a reduction r 2 R
such that r(s) = t.

The set of reduction functions R is manually defined using the function
templates below, which can be applied to the human-written captions to
produce more general strings:

• Drop NP articles: one man ! man

• Drop NP and VP modifiers: red shirt ! shirt, run quickly ! run

• Drop PPs: play on the beach ! play

• Drop wearing phrases: woman wearing red ! woman

• Replace head nouns with hypernyms: man sitting ! person sitting

• Replace X of Y NPs with X or Y : glass of beer ! glass/beer

• Replace X or Y NPs with X or Y : man or woman ! man/woman

• Replace X to Y VPs with X and/or Y : jump to catch ! jump/catch

• Extract S, V, VO, and SVO chunks: man having co↵ee and a mu�n
! man, co↵ee, have co↵ee, man have co↵ee, . . .

Before applying these rules, a number of special cases and exceptions are
checked. For example, in the case of the X to Y pattern, a separate lexicon
must be consulted to determine whether X implies that Y has alread occured
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Pause: Questions!



So….uh…does this 
really matter?



Deep Learning is Taking 
Over NLP!

Titles of ACL Papers, 2017



Language 
Modeling 

Bengio et al. 
(2003)

200

230

260

290

320

Perplexity

252

312

Best N-gram
Best MLP

Dependency 
Parsing 

Chen et al. 
(2014)

90

90.75

91.5

92.25

93

Unlabelled Attachment Score

91.8

90.7

Graph-Based Model
Nueral Model

Machine 
Translation 
Devlin et al. 

(2014)

45

47

49

51

53

BLEU (Ar-En)

52.8

49.5

Best Phrase-Based
Best Nueral

Sentiment 
Analysis 

Socher et al. 
(2013)

40

41.5

43

44.5

46

Accuracy

45.7

41.9

Naive Bayes
RNN

SOTA on all the benchmark tasks



But what, exactly, are our 
systems learning?



Modifier 
Composition

50

60

70

80

90

Accuracy

8685

Random LSTM

But what, exactly, are our 
systems learning?

The attack killed at least 12 civilians.

The deadly attack killed at least 12 civilians.
Pavlick and Callison-Burch (2016)

NOT

⇒



Modifier 
Composition

50

60

70

80

90

Accuracy

8685

Random LSTM

But what, exactly, are our 
systems learning?

 The past record was held by John Elway… 
Jeff Dean had jersey number 37…

John Elway
Jia and Liang (2017)

NOT

⇒

Invariance to 
Distractors

0

22.5

45

67.5

90

Accuracy

49.8

81.1

Before After

NOT



Modifier 
Composition

50

60

70

80

90

Accuracy

8685

Random LSTM

But what, exactly, are our 
systems learning?

The man is holding a saxophone.

The man is holding an electric guitar.
Glockner et al (ACL 2018)
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But what, exactly, are our 
systems learning?

 The woman is more cheerful than the man.

The woman is less cheerful than the man.
Dasgupta et al (2018)
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Probing Tasks Galore! 
White et al (IJCNLP 2017) 

Mahler et al (2017) 
Ettinger et al. (EMNLP 2017) 

Adi et al. (ICLR 2017) 
Poliak et al. (*SEM 2018) 

Conneau et al. (ACL 2018) 
Zhu et al. (ACL 2018)
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Deep Representations= 
very good at tasks…



Language 
Modeling

200

230

260

290

320

Perplexity

252

312

N-gram MLP

Dependency 
Parsing

90

90.75

91.5

92.25

93

Unlabelled Attachment

91.8

90.7

Graph Neural

Machine 
Translation

45

47

49

51

53

BLEU (Ar-En)

52.8

49.5

Phrase Neural

Sentiment 
Analysis

40

41.5

43

44.5

46

Accuracy

45.7

41.9

NB RNN

Modifier 
Composition

50

60

70

80

90

Accuracy

8685

Random LSTM

Lexical 
Entailments

0

22.5

45

67.5

90

Accuracy

52

85

SNLI LexEnt

Negations

45

47

49

51

53

Accuracy

5050

Random SOTA

Random 
Noise

0

22.5

45

67.5

90

Accuracy

49.8

81.1

Before After

Deep Representations= 
very good at tasks…

…but very bad at language



What do we want our 
systems to learn?



This workshop deals with the evaluation of general-purpose 
vector representations for linguistic units (morphemes, words, 

phrases, sentences, etc). What distinguishes these 
representations (or embeddings) is that they are not trained with a 
specific application in mind, but rather to capture broadly useful 

features of the represented units. Another way to view their usage 
is through the lens of transfer learning: The embeddings are 

trained with one objective, but applied on others. 

Evaluating general-purpose representation learning systems is 
fundamentally difficult. They can be trained on a variety of 

objectives, making simple intrinsic evaluations useless as a 
means of comparing methods. They are also meant to be applied 

to a variety of downstream tasks, which will place different 
demands on them…

RepEval 2017  
(Bowman, Goldberg, Hill, Lazaridou, Levy, Reichart, and Søgaard)
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“There is in my opinion no important theoretical difference 
between natural languages and the artificial languages of 
logicians; indeed I consider it possible to comprehend the 

syntax and semantics of both kinds of languages with a 
single natural and mathematically precise theory.”

—Richard Montague  
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“There is in my opinion no important theoretical difference 
between natural languages and the artificial languages of 

logicians; indeed I consider it possible to 
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Language

→
Math



Language

→
8x8y(P (f(x)) ! ¬(Q(f(y), x))
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Language

→
�x.f(y, g(x)) ^ h(y)
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Language
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ot = �g(Woxt + Uoht�1 + bo)
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→
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Questions!


