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Descartes (c.1630)

It there were machines which bore a resemblance to our bodies and
imitated our actions as closely as possible for all practical purposes, we
should still have two very certain means of recognizing that they were not

real men. The first is that use words, or put
together sigins, as we do i order to declare our

thoughts to others. For we can certainly conceive of a machine so
constructed that it utters words, and even utters words that correspond to

bodily actions causing a change in its organs...But
that such a wmachine should produce
different arrangements of words so as ko give an

appropriately meaningful answer to whatever is said inits
presence, as the dullest of men can do...

as quoted in
https://plato.stanford.edu/entries/turing-test/



Turing (c. 1950)

| believe that it will be possible to
programme computers, with a storage capacity of about 109, to

make them play the imitation game so well that an average
interrogator will not have more than 70 percent
chance of making the right identification after five
minutes of questioning. ... | believe that at the end of the
century the use of words and general educated opinion will have

altered so much that one will be able to speak of machines thinking
without expecting to be contradicted.

as quoted in
https://plato.stanford.edu/entries/turing-test/



The Media (c. now)

MIT's artificial intelligence passes key
Turing test

A computer has passed the Turing test
for humanity - should we be worried?

What is the Turing test? And are we all

doomed now?
T Computer Posmg as Teenager

Achieves Artificial-Intelligence
Milestone

Computer Al passes Turing test in 'world [ —
first'
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Representing language
'S hard.
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Model Theory

Enbkailment
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Model Theory

A premise (p) entalls a

hypothesis (h) iff, In every
possipble world In which p IS

true, h IS also true.

VI((T

=p)=(Z

L))
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There is In my opinion

- Indeed |
consider it possible to comprehend the syntax and
semantics of both kinds of languages with a single

natural and

(Richard Montague)



Formal Semantics

The basic aim of semantics Is to characterize

(under a given interpretation) and of

(Richard Montague)
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the notion of a true sentence
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Formal Semantics

the notion of a entailment

No birds are gray
Broca 1s a bird
Broca 1s gray
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Formal Semantics

the notion of a entailment

birds are gray
Broca 1s a bird
Broca 1s gray v
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Formal Semantics

Predicates

Broca is a bird
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Vx ([Brocal] (x) =[bird] (x))
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Formal Semantics

[gray] | )

fgray bird]

[oray bird](x) <
([bird] (x) A [grayl(x))



Formal Semantics

[gray] | )

[bird] bfgray bird]

Broca is a gray bird
entails
Broca is a bird



Formal Semantics

Broca is a gray bird
entalls
Broca s a bird



vx ([Broca] (x) =[gray bird] (x))

Formal Semantics

entalls
Broca is a bird
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Formal Semantics
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Formal Semantics

Vx ([Brocal] (x) =[bird] (x))
—

Vx ([Brocal] (x) =[bird] (x))
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Formal Semantics

All gray birds are bilrds
Broca 1s a gray bird
Broca 1s a bird




Formal Semantics

gray bilrds are birds
Broca 1s a gray bird
Broca 1s a bird




Formal Semantics

gray bilrds are birds

[all](x)=APAQOVX (P (x) =0 (x))



Formal Semantics

gray bilrds are birds

[all](x)=APAQOVX (P (x) =0 (x))



Formal Semantics

gray bilrds are birds

[all] (x) (gray birds) (birds)=
Vx (gray bid(x)=bird(x))
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Formal Semantics:
Takeaways

Language is like logic—we can ground symbols to the
world, but we can also reason abstractly using only the
ungrounded symbols

The world can be represented as sets of entities

Word meanings are represented in terms of entities,
sets, or functions which operate on entities/sets

Words have types (nouns, verbs, adjectives) which
determine their representation (i.e. nouns refer to sets,
adjectives to functions on sets)



Distributional Semantics



Distributional Semantics

The Distributional Hypothesis:

You shall know a word by the company it keeps!
(Firth, 1957)



Distributional Semantics

The Distributional Hypothesis:

The meaning of a word is determined
by the contexts where it is used.



BOW Vector Space Models

The domestic cat is a small, typically furry, carnivorous mammal.

Your cat's online owners manual, featuring articles about breed
information, cat selection, training, grooming and care for cats and
Kittens.

Wish you had a secret decoder guide to cat behavior and cat language?
Here's a primer to things your cat wishes you understood.

"The cat does not offer services," William Burroughs wrote. "The cat offers
itselt.” But it does so with unapologetic ambivalence.

Welcome to the new WebMD Cat Health Center. WebMD veterinary
experts provide comprehensive information about cat health care, offer
nutrition and feeding ...

Yes, they're independent and willtul, but felines can be taught certain
behaviors—to the benefit of both cat and human.
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Your cat's online owners breed
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Here's things your cat wishes you
"The cat does not wrote. "The cat offers
itself.
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BOW Vector Space Models

The domestic cat is a

Your cat's online owners

cats and kittens.

guide to cat behavior and cat language? Here's

"The cat does not

new WebMD Cat Health Center

breed information, cat selection, training

wrote. "The cat offers itself.

things your cat wishes you

care for

information about cat

health care
of both cat and human.
the domes— a your  online owners Dbreed infqrma sglec—
tic -tion tion
cat 1000 40 500 /700 400 3 30 100 15 o)
dog 1050 50 400 950 500 1 105 160 4 2
lychee | 2000 2 500 | 1000 25 50 2 3 45 /700




BOW Vector Space Models

cat
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lychee
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Skip-Gram Model
(word2vec)

domes- S informa selec-

the a your  online owners breed . |
fiC -tion fion

cat 1000 | 40 500 | 700 | 400 3 80 100 15 0
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Output Layer
Softmax Classifier

Hidden Layer
Linear Neurons

Probability that the word at a
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position is “abandon”
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>

Skip-Gram Model

man

®
woman

(word2vec)

lady
: ® W
Mmiss

house
room ® wife

sSon

2-D projection of word vectors learned from Pride and Prejudice
(http://www.ghostweather.com/files/word2vecpride/)



http://www.ghostweather.com/files/word2vecpride/

Representing Context

The Distributional Hypothesis:

The meaning of a word is determined
by the contexts where it is used.



Representing Context

The domestic IS a
Your online owners breed
information, selection, training care for and
Kittens.
guide to behavior and language”
Here's things your wishes you
"The does not wrote. "The offers
itself.

new WebMD Health Center
iInNformation about health care

of both and human.
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Australian scientist discovers star with telescope



Representing Context

Australian

scientist

discovers

star

with|telescope

Skip-Gram contexts with n=2

Levy and Goldberg, 2014



Representing Context

prep

amod nsub| olele]

dobj /\

Australian scientist discovers star with telescope

@ collapsing “prep” links
prep_with

amod nsub|
dobj

Australian scientist discovers star with telescope

Levy and Goldberg, 2014



Representing Context

prep

amod nsub| olele]

dobj /\

Australian scientist discovers star with telescope

@ collapsing “prep” links
prep_with
amod nsub|
/\ dobj

Australian [scientist|discovers |star| with telescope

scientist/nsubj star/dobj telescope/prep_with

Levy and Goldberg, 2014



Representing Context

Target Word | BOW)S DEPS
nightwing superman
aquaman superboy

batman catwoman supergirl
superman catwoman
manhunter aquaman
dumbledore sunnydale
hallows collinwood

hogwarts half-blood calarts
malfoy greendale
snape millfield
nondeterministic | pauling
non-deterministic | hotelling

turing computability heting
deterministic lessing
finite-state hamming
gainesville texas
fla louisiana

florida jacksonville georgia
tampa california
lauderdale carolina

Cevy and Goldberg, 2014



Representing Context

... b farmers were N lreland ...
\ AN AT L7
\ ———\N—— T T T T 7 //
-\ \ 7
/ \ \ //
| \ \ 7
... funf Landwirte ~well
... oder wurden , gefoltert ...
/ A | \
/ / \ | \
/ /’ \ \ \
// ,/ \\ I' \
... Or have been - tortured...

Bannard and Callison-Burch, 2005



Representing Context

Cosine Similarity Monolingual (symmetric) Bilingual
1 shades/the shade - large/small =  dad/father
1 yard/backyard = few/several 1 some kid/child
#  each other/man - different/same = alot of/many
]  picture/drawing - other/same = female/woman
~  practice/target - put/take = male/man

Pavlick et al, 2015



S 2 o o & o e LJ ‘
rj rj »1 >4 >4 »1 >4 H J n

the cute little sat on the mat CAT
A
I
I
Liing(w;) = maximize context prediction L, icion(Wy) = maximize similarity

W '

cat

Lazaridou et al. (2015)



Representing Context

Target SKIP-GRAM MMSKIP-GRAM-B
donut fridge, diner, candy pizza, sushi, sandwich
owl pheasant, woodpecker, squirrel eagle, falcon, hawk
mural sculpture, painting, portrait painting, portrait, sculpture
tobacco coffee, cigarette, corn cigarette, cigar, smoking
depth size, bottom, meter sea, size, underwater
chaos anarchy, despair, demon demon, anarchy, shadow

Lazaridou et al. (2015)
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Distributional Semantics:
Takeaways

The "meaning” of a word is the contexts in which that word
can be used

We can represent word as a point in continuous space by
using a vector to store all the contexts in which the words
has been observed

"‘Embeddings” are just a low-dimensional way of
representing the contexts that used to be stored as big
sparse vectors

We can (and should) be as creative as we want with how
we define “contexts”



More General Takeaways

 Formal Semantics
* Represent language as logic

* Focus Is on representing compositionality: how do
word meanings combine”?
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» Distributional Semantics
* Represent language as vectors/points in space

e Focus is on learning meaning from context



More General Takeaways

e Formal Semantics

* Focus Is on representing compositionality: how do
word meanings combine”?

e Distributional Semantics

e Focus is on learning meaning from context



Pause: Questions!
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Natural Language

Logical Forms
Inference




Sentence-Level Semantics

Natural Language

Logical Forms
Inference

given a sentence s return
an executable
representation (e.g.
mathematical formula,
SQL query...)

given a premise p and a
hypothesis h, predict
whether p entalls h




Sentence-Level Semantics

Natural Language Logical Forms

Inference
ungrounded—relate text grounded—relate text to
to other text tables In a database, or

actions on a robot
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Natural Language Logical Forms

Inference
ungrounded—relate text grounded—relate text to
to other text tables In a database, or

actions on a robot
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~ |INAME Alaska

What ie the ¢ A¥brev. [AK

v; —>  Alagka
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CAPITAL |Juneau




Semantic Parsing

AN
C e N\
/ Prolog
/; What ig the FSQCIQ_L
| — > Fun —
largegt otate? . .
\ First-order logic
A-calculus
\ V4
N\ s

AME

\
\

Alaska

1

brev.

AK

ji
I

$1/FE

06063,268

CAPITAL

Juneau

—> Alagka



Supervised Semantic Parsing

NAME Alaska

| !/ e the N Abbrev. |AK
— A\-calculugy — —> Alacka

Wrgest etate? p SIZE  |663,268

\

CAPITAL |Juneau

/Zettlemoyer and
Collins (2012)



Supervised Semantic Parsing

What ig the largest state?

argmax (Ax.state (x),AX.s1ze (X))

Zettlemoyer and Collins (2012)



Supervised Semantic Parsing

What ie the ?

Zettlemoyer and Collins (2012)
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Combinatory Categorial Grammar

Semantics

Qtate = NP : state

Syntax

Zettlemoyer and Collins (2012)



Combinatory Categorial Grammar

bordere := (S\NP) /NP : AX.Ay.borders (y, x)

Zettlemoyer and Collins (2012)
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borderg := (S\NP) /NP : Ax.Ay.borders (y, x)

borders(utah,idaho)

Zettlemoyer and Collins (2012)



Combinatory Categorial Grammar

utah borderg idaho
NP (S\NP) /NP NP
utah AX.Ay.borders (y, x) idaho

Zettlemoyer and Collins (2012)



Combinatory Categorial Grammar

utah borderg idaho
NP (S\NP) /
utah .Ay.borders (y, %)

Zettlemoyer and Collins (2012)



Combinatory Categorial Grammar

utah borderg idaho
NP (S\NP)
utah Ay.borders (y, 1daho)

Zettlemoyer and Collins (2012)



Combinatory Categorial Grammar

utah borderq idaho
(S\NP)

.borders (v, 1daho)

Zettlemoyer and Collins (2012)



Combinatory Categorial Grammar

utah borderg idaho
S

borders (utah, 1daho)

Zettlemoyer and Collins (2012)



Supervised Semantic Parsing

(utah,
idaho) TRUS
Doeg Utah rﬁgtih’ L) |FALSE
—P borders (utah, idaho) —p +chtga — YQQ

border ldaho? S FALSE
michigan)
(idaho, TRUE
montatana)

Zettlemoyer and Collins (2012)



Supervised Semantic Parsing

(utah,
idaho) TRUS
Doeg Utah (L.ltih’ | |FALSE
—P borders (utah, idaho) —p [HLCHITAN —_ YQQ
border (daho? (1daho, FALSE
michigan)
, S:argmax (Ax.state (x) :
What ig the largest etate? . (1daho,
] rAx.slze (X)) montatana) TRUE

S:bow¢;rs(utah,idaho

Utah borderg ldaho

. o  fﬁi”ﬂf;.mF“X(AX.pOiDt(X
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Weakly-supervised Semantic Parsing
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border ldaho?
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Liang et al. (2012)
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Weakly-supervised Semantic Parsing
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Liang et al. (2012)



Weakly-supervised Semantic Parsing
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Dependency-based compositional
semantics

Utah borderg ldaho

borders

nsubj / \ dobj

Utah ldaho

Liang et al. (2012)



Dependency-based compositional
semantics

Utah borderg ldaho

border
1 2
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UT 1D

Liang et al. (2012)



Dependency-based compositional
semantics

Utah borderg ldaho

<
border
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UT 1D

predicates

Liang et al. (2012)



Dependency-based compositional
semantics

Utah borderg ldaho

relations
border
1/
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UT 1D

Liang et al. (2012)



Dependency-based compositional

semantics
(UT, ID) TRUE
Utah borderg [daho
(UT,MI) FALSE
(ID,MI) FALSE
border

] 5 (ID,MT) TRUE

1 / \1

UT 1D

Liang et al. (2012)



Dependency-based compositional

semantics
(UT, ID) TRUE
Utah borderg [daho
(UT,MI) FALSE
(ID,MI) FALSE
border
] 5 (ID,MT) TRUE
1 / \1
(UT) (ID)

Liang et al. (2012)



Dependency-based compositional
semantics

(UT, ID) TRUE
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(UT,MI) FALSE
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(UT,AZ), (UT,WY) }
1 5 (ID, MT) TRUE
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Liang et al. (2012)
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Sentence-Level Semantics

Natural Language Logical Forms

Inference
ungrounded—relate text grounded—relate text to
to other text tables In a database, or

actions on a robot




Compositional Distributional Semantics



Compositional Distributional Semantics

utah borderg idaho
NP (S\NP) /NP NP

Grefenstette and Sadrzadeh (2011)



Compositional Distributional Semantics

utah borderg idaho

Grefenstette and Sadrzadeh (2011)



Compositional Distributional Semantics
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Grefenstette and Sadrzadeh (2011)



Compositional Distributional Semantics

borderg idaho utah
=y owm
T .

Grefenstette and Sadrzadeh (2011)



Compositional Distributional Semantics

bordere  © / idaho & utah \
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Grefenstette and Sadrzadeh (2011)




Compositional Distributional Semantics

bordera  © / idoho & utah \
\ /

Grefenstette and Sadrzadeh (2011)



Compositional Distributional Semantics

idoho & utah
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borderg
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Grefenstette and Sadrzadeh (2011)



Compositional Distributional Semantics

bordere © idaho & utah ie near © boige @ ogden

Grefenstette and Sadrzadeh (2011)



Compositional Distributional Semantics

bad electronic historical
luck communication | map

bad elec. storage topographical
bad weekend elec. transmission| atlas

good spirit purpose hist. material
important route nice girl little war
important transport| good girl great war
important road big girl major war
major road guy small war

red cover special collection| young husban
black cover general collection| small son
hardback small collection | small daughter
red label archives mistress

Table 2: Nearest 3 neighbors of specific ANSs.
Grefenstette and Sadrzadeh (2011)
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luck communication | map
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important route nice girl little war
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Table 2: Nearest 3 neighbors of specific ANSs.
Grefenstette and Sadrzadeh (2011)



Compositional Distributional Semantics

bordere © idaho @ utah bordere © idaho ® texag

/ 277

Grefenstette and Sadrzadeh (2011)




Compositional Distributional Semantics
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Grefenstette and Sadrzadeh (2011)




Compositional Distributional Semantics

&
® O
© © |
o OO @
© O but it ) @
© o OO 0
There ~ has | o ) spice o ©
S ) just enough to o o
& o P “ry @
~ O repetitive it interesting
slow and

Socher et al (2013)



Compositional Distributional Semantics

G0 P2 = 8(a,p1)

© o p1=g(b,c)
© ©

X) QO
not very good...

a b C

Socher et al (2013)



Compositional Distributional Semantics

co P2 = g(a,p1)

BaSiC RN N Socher et al (2013)



Compositional Distributional Semantics

co P2 = g(a,p1)

Matrix-Vector RNN' gocrer et al (2013)



Compositional Distributional Semantics

G0 P2 = 8(a,p1)

©.o p1=8(b,c)
b C
() BE) )

Recursive Neural Tensor Network 43




Compositional Distributional Semantics

Model Accuracy
Negated Positive  Negated Negative
biNB 19.0 27.3
RNN 33.3 45.5
MV-RNN 52.4 54.6
RNTN 71.4 81.8

Socher et al (2013)



Compositional Distributional Semantics

Model JE—— \CCuracy
Megated Positive", Negated Negative
biNB /190 T 273
RNN ¢ 33.3 455
81.8

RNTN % 714

it is one of the most/
least compelling
variations of these theme

Socher et al (2013)



Compositional Distributional Semantics

Negated Positive _MNeg |
biNB 190
RNN 33.3
MV-RNN 52.4

71.4

The movie was [nok]

terrible.
Socher et al (2013)



Natural Logic



Natural Logic

Every person danced.

Every young woman danced.



Natural Logic

Every person danced.
VX (person (x) — danced (x))

VX ( (woman (x) Ayoung (x) ) - danced (x) )

Every young woman danced.



Natural Logic

Every person danced.
VX (person (x) — danced (x))

Vx (woman (x) — person(x))
Vx (VP ((P(x)Ayoung(x)) - P(x)))

VX ( (woman (x) Ayoung (x) ) - danced (x) )

Every young woman danced.
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Every person danced.

Every young woman danced.



Natural Logic

Every person danced.

Every young woman danced.
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Natural Logic

Every person danced.
VX (person (x) — danced (x))

Vx (woman (x) — person(x))
Vx (VP ((P(x)Ayoung(x)) - P(x)))

VX ( (woman (x) Ayoung (x) ) - danced (x) )

Every young woman danced.



Natural Logic

s Every pergon danced
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Every young woman danced.



Natural Logic

Every person danced.

Every young woman danced.



Natural Logic

Every person danced.

Every young woman danced.

semantic Inclusion



Natural Logic

person danced.

young woman danced.

downward monotone



Natural Logic

person danced.

person 1 young woman
every person C every young woman

young woman danced.

downward monotone



Natural Logic

person danced.

young woman danced.

downward monotone



The NatLog System

Every pergon danced.

Every young woman moved.

McCartney (2009)



The NatLog System

Alignment

Every pergon danced.
| | |

| | |
Every young woman moved.

McCartney (2009)



The NatLog System

Alignment

Every pergon danced.
SUB (person, woman) Eyery woman danced.
INS (young) Every young woman danced.

SUB (danced, moved) Eyery young woman moved.

McCartney (2009)



The NatLog System

Entailment Classification

Every pergon danced.
SUB (person, woman) Eyery woman danced.
INS (young) Every young woman danced.

SUB (danced, moved) Eyery young woman moved.

McCartney (2009)



The NatLog System

=

equivalence negation
couch able
o Rellicoe
sofa unable
forward alternation
entailment
woman cat
(O - &3 |
person dog
errﬁgi?r:nseent iIndependence
move happy
©) .. &
dance tall

N



The NatLog System

Entailment Classification

SUB (person, woman)

McCartney (2009)



The NatLog System

Entailment Classification

reverse entallment

SUB (person, woman) E

McCartney (2009)



The NatLog System

Entailment Classification

reverse entallment

INS (young) E

McCartney (2009)



The NatLog System

Entailment Classification

forward entallment

SUB (danced, moved) j

McCartney (2009)



The NatLog System

Entailment Classification

Every pergon danced.
SUB (person, woman) Eyery woman danced. [
INS (young) Every young wornan danced. [

SUB (danced, moved) Every young woman moved. _|

McCartney (2009)



The NatLog System

Projectivity Marking

Every pereon danced.

McCartney (2009)



The NatLog System

Projectivity Marking

Every pergon

McCartney (2009)



The NatLog System

Projectivity Marking

Every pergon

J—_]

danced © moved
every person danced c every person moved

McCartney (2009)



The NatLog System

Projectivity Marking

Every pereon danced.

downward
monotone

McCartney (2009)



The NatLog System

Projectivity Marking

Every woman danced.

downward
monotone

J—"0L

person 1 young woman
every person C every young woman

McCartney (2009)



The NatLog System

Projectivity Marking

Every pergon danced.
SUB (person, woman) Eyery woman danced. [
INS (young) Every young wornan danced. [

SUB (danced, moved) Every young woman moved. _|

McCartney (2009)



The NatLog System

Projectivity Marking

Every pergon danced.

SUB (person, woman) Everg woman danced. I:
INS (youngq) Everg gOUﬂg woman danced. E
SUB (danced, moved) E\}er‘g gOUﬂg woman . j

McCartney (2009)



The NatLog System

Projectivity Marking

Every pergon danced.

SUB (person, woman) Everg woman danced. j
INS (youngq) Everg gOUﬂg woman danced. ]
SUB (danced, moved) E\}er‘g gOUﬂg woman . j

McCartney (2009)



The NatLog System

Joining Entailment Relations

Every pergon danced.

SUB (person, woman) Everg woman danced. j
INS (youngq) Everg gOUﬂg woman danced. ]
SUB (danced, moved) E\}er‘g gOUﬂg woman . j

McCartney (2009)



The NatLog System

Joining Entailment Relations

Every pergon danced.

SUB (person, woman) Everg woman danced. j
INS (youngq) Everg gOUﬂg woman danced. ]
SUB (danced, moved) E\}er‘g gOUﬂg woman . j

v

_]

McCartney (2009)



The NatLog System

Joining Entailment Relations

Every pergon danced.

SUB (person, woman) Everg woman danced. j
INS (youngq) Everg yOUﬂg woman danced. ]

v
SUB (danced, moved) E\}er‘g gOUﬂg woman . j

_]

McCartney (2009)



The NatLog System

Joining Entailment Relations

No person danced.

SUB (person, woman) No woman danced. :l

INS (young) No young woman danced. _

v

#

McCartney (2009)

SUB (danced, moved) NO yOung woman moved, E



Sentence-Level Semantics

Natural Language L ogical Forms
Inference
ungrounded—relate text grounded—relate text to
to other text tables In a database, or
actions on a robot




Denotational semantics

ldaho =  Utah



Denotational semantics

ldaho #  Utah



Denotational semantics

ldaho #  Utah




Denotation Graph

Young et al. (2014)



Denotation Graph

Bray haired man in black suit and yellow tie working in a financial environment.
A graying man in a guit is perplexed at a buginegg meeting.
A buginegeman in a yellow tie giveg a frugtrated look.
A man in a yellow tie ie rubbing the back of hig neck.
A man with a yellow tie looke concerned.

Young et al. (2014)



Denotation Graph

A bugineggman in a yellow tie
gives a frugtrated look.

Young et al. (2014)



Denotation Graph

A bugineggman in a yellow tie

Young et al. (2014)



Denotation Graph
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A man in a yellow tie




Denotation Graph

A man in 4 tie

Young et al. (2014)



Denotation Graph

A man




Denotation Graph

A man

_]

A buginesgman in a yellow tie




Denotation Graph
play football

Distributional Similarity

Denotational Similarity

play game
play rugby
play soccer

play on field
play bal

tackle pergon
hold footbal

run down field

wear white jergey
avoid



Denotation Graph
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Pause: Questions!



SO....uh...does this
really matter?



Deep Learning Is Taking
Over NLP!
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Language Sentiment Dependency Machine

Modeling Analysis Parsing Translation
Bengio et al. Socher et al. Chen et al. Devlin et al.
(2003) (2013) (2014) (2014)
e b 7 S— 46 o O
290
260
230 -
200
Perplexity Accuracy Unlabelled Attachment Score BLEU (Ar-En)
@ Best N-gram " Naive Bayes © Graph-Based Model ! Best Phrase-Based
W Best MLP ™ RNN ™ Nueral Model ™ Best Nueral

SOTA on all the benchmark tasks



But what, exactly, are our
systems learning”



90
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But what, exactly, are our

systems learning”

Modifier
Composition

85

86

Accuracy

Random

LSTM

The attack killed at least 12 civilians.

\

The deadly attack killed at least 12 civilians.

Pavlick and Callison-Burch (2016)



But what, exactly, are our
systems learning”

“QE‘T Modifier “folnvariance to

Composition Distractors
N0 8586 0 8t
80 - - 675 -
70 - 45 -

60 - 225 -

0
Accuracy Accuracy

™ Random B LSTM " Before BB After

50

The past record was held by John Elway...
Jeff Dean had jersey nhumber 37...

\

John Elway
Jia and Liang (2017)



But what, exactly, are our

systems learning”?
“Q’T Modifier ﬁgflnvariance to ‘40;1* | exical

Composition Distractors Entailments
IO B Se—
- 875 -
45
225 -
0
Accuracy Accuracy Accuracy

™ Random B LSTM o Before B After o SNLI B LexEnt

The man is holding a saxophone.

\

The man is holding an electric guitar.
Glockner et al (ACL 2018)



But what, exactly, are our

systems learning”
NQ’T Modifier “Q#flnvariance to ‘.10"“ Lexical ‘401“

Composition

Distractors Entailments
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45 -
- 225 -

Accuracy Accuracy Accuracy Accuracy
' Random [ LSTM | Before @ After o1 SNLI B LexEnt ' Random [ SOTA

The woman is more cheerful than the man.

|

The woman is less cheerful than the man.
Dasgupta et al (2018)
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But what, exactly, are our
systems learning”

Invariance to | exical
Distractors Entailments

Probing Tasks Galore!
White et al (IJCNLP 2017)

Mahler et al (2017)

Ettinger et al. (EMNLP 2017)
Adi et al. (ICLR 2017)

Pol
Con
/

ak et al. ("SEM 2018)
neau et al. (ACL 2018)

nu et al. (ACL 2018)

The woman

Vv
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50
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= SOTA

IS less cheerful than the man.

Dasgupta et al (2018)



Language Sentiment Dependency Machine

Modeling Analysis Parsing Translation
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260
230 -
200
Perplexity Accuracy Unlabelled Attachment BLEU (Ar-En)
@ N-gram & MLP © NB B RNN & Graph B Neural ™ Phrase B Neural

Modifier Random Lexical
Composition Noise Entailments Negations
TIPS L B E— P R — e
67.5
45 -
225 -
0
Accuracy Accuracy Accuracy Accuracy

= Random & LSTM " Before I After W SNLI ™ LexEnt © Random B SOTA



Language Sentiment Dependency Machine
Modeling Analysis Parsing Translation
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What do we want our
systems to learn”



This workshop deals with the evaluation of general-purpose
vector representations for linguistic units (morphemes, words,
phrases, sentences, etc). What distinguishes these
representations (or embeddings) is that they are not trained with a
specific application in mind, but rather to capture broadly useful
features of the represented units. Another way to view their usage
s through the lens of transfer learning: The embeddings are
trained with one objective, but applied on others.

Evaluating general-purpose representation learning systems is
fundamentally difficult. They can be trained on a variety of
objectives, making simple intrinsic evaluations useless as a
means of comparing methods. They are also meant to be applied
to a variety of downstream tasks, which will place ditferent
demands on them...

Repkval 2017
(Bowman, Goldberg, Hill, Lazaridou, Levy, Reichart, and Sggaard)



This workshop deals with the evaluation of

(morphemes, words, phrases, sentences, etc). What
distinguishes these representations (or embeddings) is that
they are not trained with a specific application in mind, but
rather to capture broadly usetul features of the represented
units. Another way to view their usage is through the lens of

transter learning: The embeddings are trained with one
objective, but applied on others.

Evaluating general-purpose representation learning systems is
fundamentally difficult. They can be trained on a variety of
objectives, making simple intrinsic evaluations useless as a
means of comparing methods. They are also meant to be

applied to a variety of downstream tasks...

Repkval 2017
(Bowman, Goldberg, Hill, Lazaridou, Levy, Reichart, and Sggaard)




This workshop deals with the evaluation of general-purpose
vector representations for linguistic units (morphemes, words,
phrases, sentences, etc). What distinguishes these
representations (or embeddings) is that they are not trained with a

specific application in mind, but rather to

of the represented units. Another way to view

their usage is through the lens of transfer learning: The
embeddings are trained with one objective, but applied on others.

Evaluating general-purpose representation learning systems Is
fundamentally difficult. They can be trained on a variety of
objectives, making simple intrinsic evaluations useless as a
means of comparing methods. They are also meant to be applied
to a variety of downstream tasks, which will place different
demands on them...

Repkval 2017
(Bowman, Goldberg, Hill, Lazaridou, Levy, Reichart, and Sggaard)



This workshop deals with the evaluation of general-purpose
vector representations for linguistic units (morphemes, words,
phrases, sentences, etc). What distinguishes these
representations (or embeddings) is that they are not trained with a
specific application in mind, but rather to capture broadly usetul
features of the represented units. Another way to view their usage
s through the lens of transfer learning: The embeddings are
trained with one objective, but applied on others.

Evaluating general-purpose representation learning systems is
fundamentally difficult. They can be trained on a variety of
objectives, making simple intrinsic evaluations useless as a
means of comparing methods. They are also meant to be

, which will
place different demands on them...

Repkval 2017
(Bowman, Goldberg, Hill, Lazaridou, Levy, Reichart, and Sggaard)



“There Is In my opinion no important theoretical difference
between natural languages and the artificial languages of
logicians; indeed | consider it possible to comprehend the
syntax and semantics of both kinds of languages with a
single natural and mathematically precise theory.”

—Richard Montague
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VaVy(P(f(x)) = ~(Q(f(y),z))
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M. f(y,g(x)) A h(y)
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O — O'g(W()ﬁt —+ Uoht—l -+ bO)
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Questions!



