Sentence Representation Learning: Theories of Semantic Representation

Ellie Pavlick

Department of Computer Science, Brown University General Purpose Sentence Representation Learning Team, JSALT

Long Term Goal...

Very Long Term Goal...

Descartes (c.1630)

If there were machines which bore a resemblance to our bodies and imitated our actions as closely as possible for all practical purposes, we should still have two very certain means of recognizing that they were not real men. The first is that they could never use words, or put together signs, as we do in order to declare our thoughts to others. For we can certainly conceive of a machine so constructed that it utters words, and even utters words that correspond to bodily actions causing a change in its organs...But it is not <u>conceivable</u> that such a machine should produce different arrangements of words so as to give an appropriately meaningful answer to whatever is said in its presence, as the dullest of men can do...

as quoted in https://plato.stanford.edu/entries/turing-test/

Turing (c. 1950)

I believe that <u>in about fifty years' time</u> it will be possible to programme computers, with a storage capacity of about 10⁹, to make them play the imitation game so well that an average interrogator will not have more than 70 percent chance of making the right identification after five minutes of questioning. ... I believe that at the end of the century the use of words and general educated opinion will have altered so much that one will be able to speak of machines thinking without expecting to be contradicted.

as quoted in https://plato.stanford.edu/entries/turing-test/

The Media (c. now)

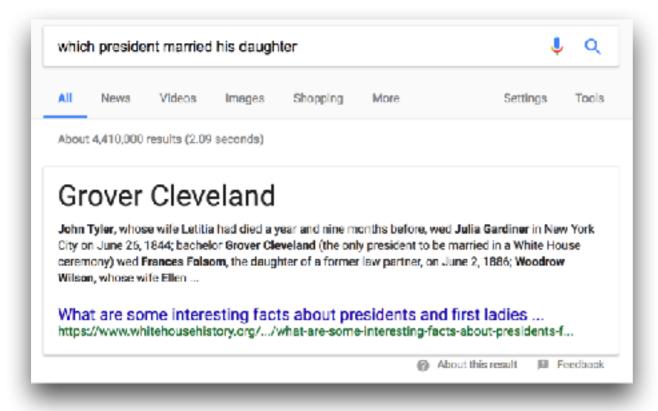
MIT's artificial intelligence passes key Turing test

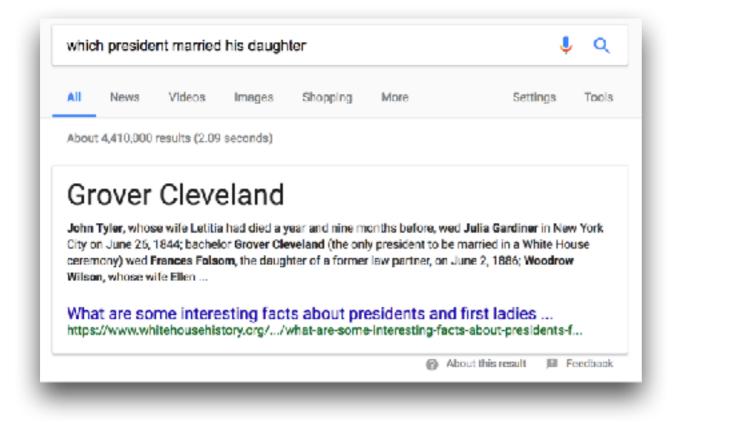
A computer has passed the Turing test for humanity – should we be worried?

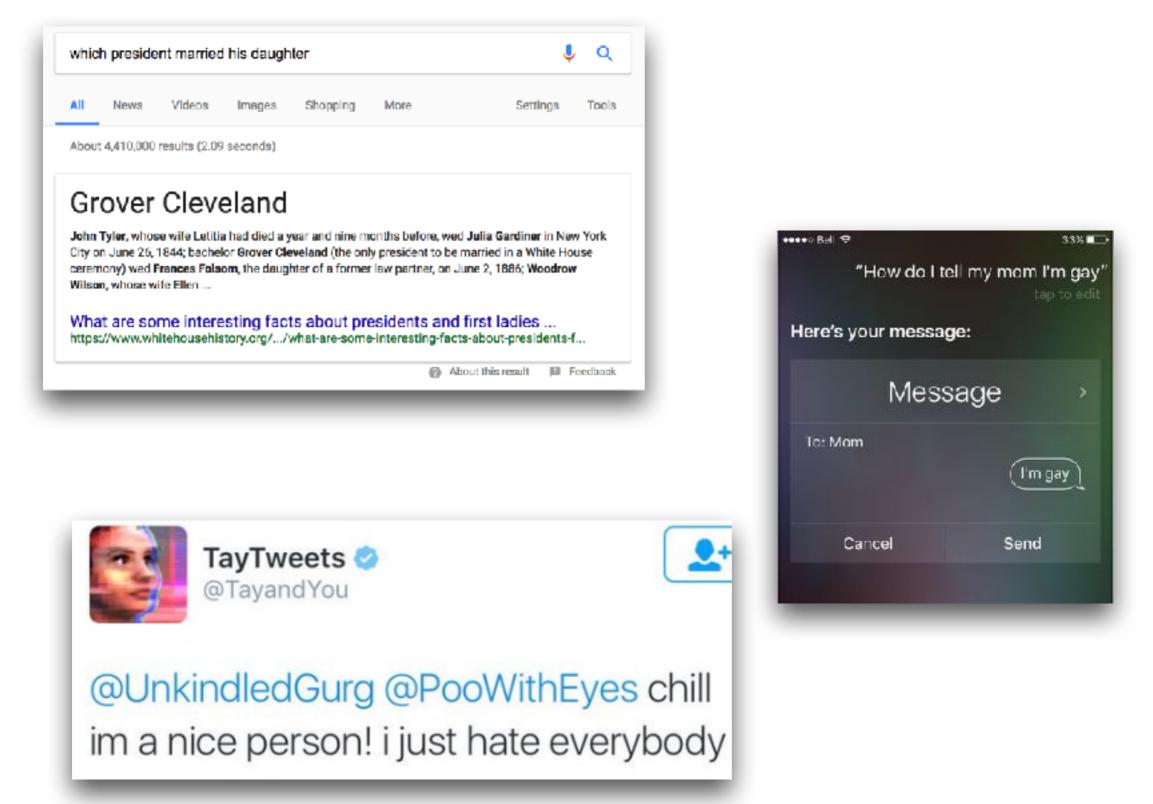
What is the Turing test? And are we all doomed now?

Computer Posing as Teenager Achieves Artificial-Intelligence Milestone

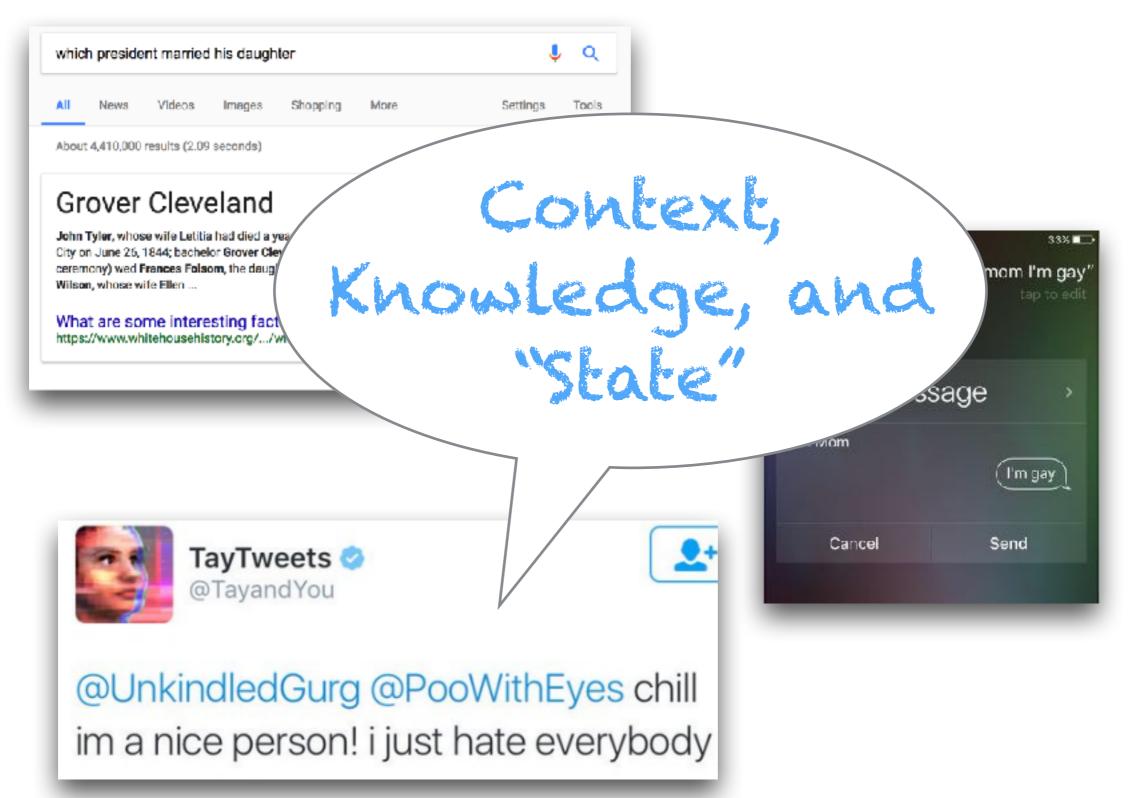
Computer AI passes Turing test in 'world first'





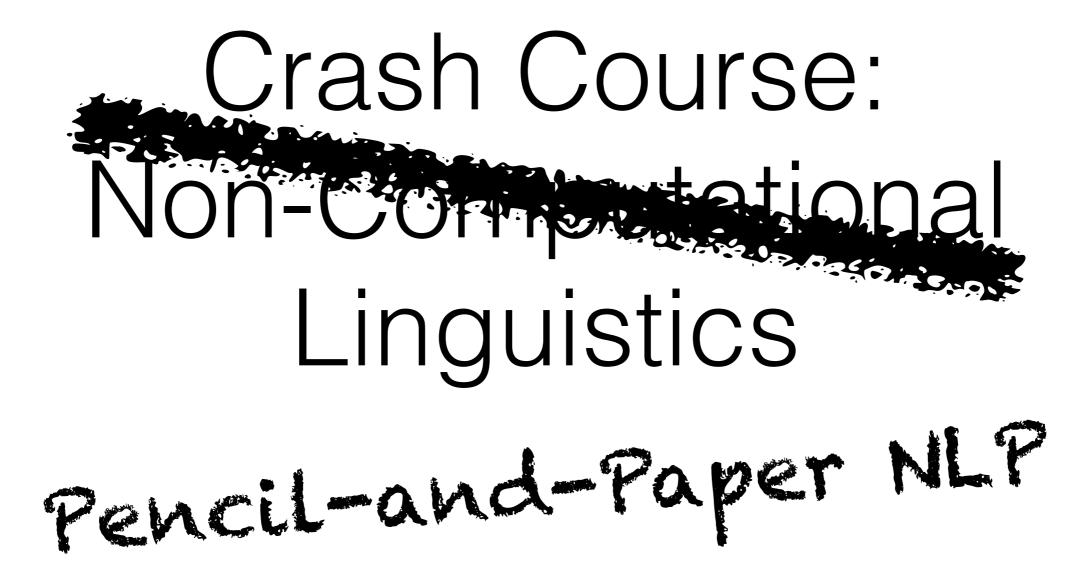


ul News V	narried his daughter	Synta	ix and	t k
About 4,410,000 resu		< hrss	ax and icture	
Grover C	leveland		for the backy of the	
City on June 26, 1844 ceremony) wed Fran	ife Letitia had died a year and nine m 4; bachelor Grover Cleveland (the on) ces Folsom, the daughter of a former	y pp		"How do I tell my mam
Vilson, whose wife E What are some https://www.whiteh	interesting facts aby	Finteresting-facts-about-presidents-f		re's your message:
_	_			Message
				:: Mom

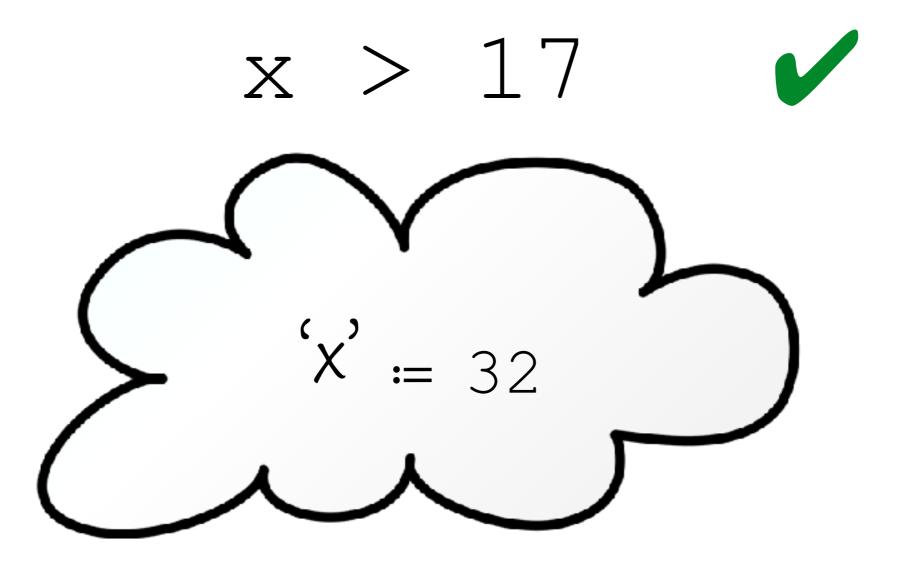


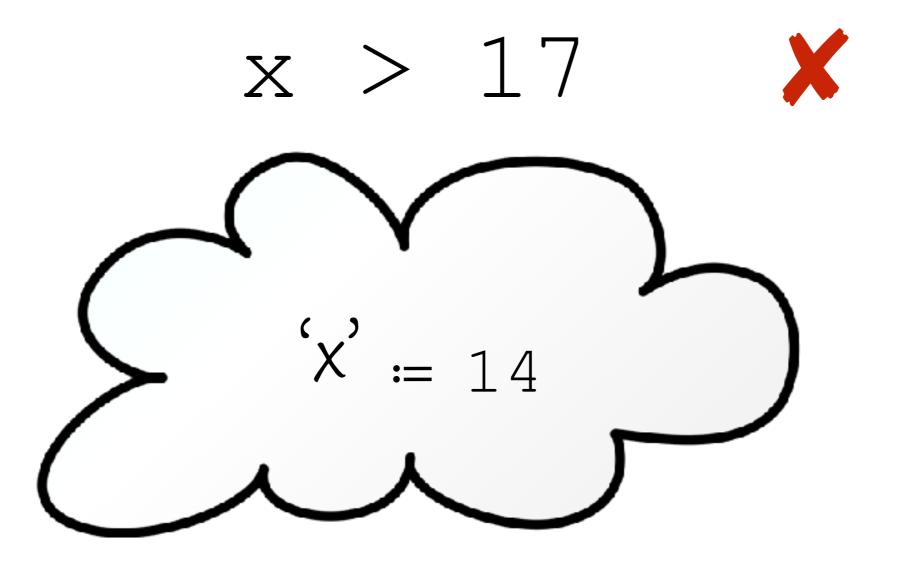
Representing language is hard.

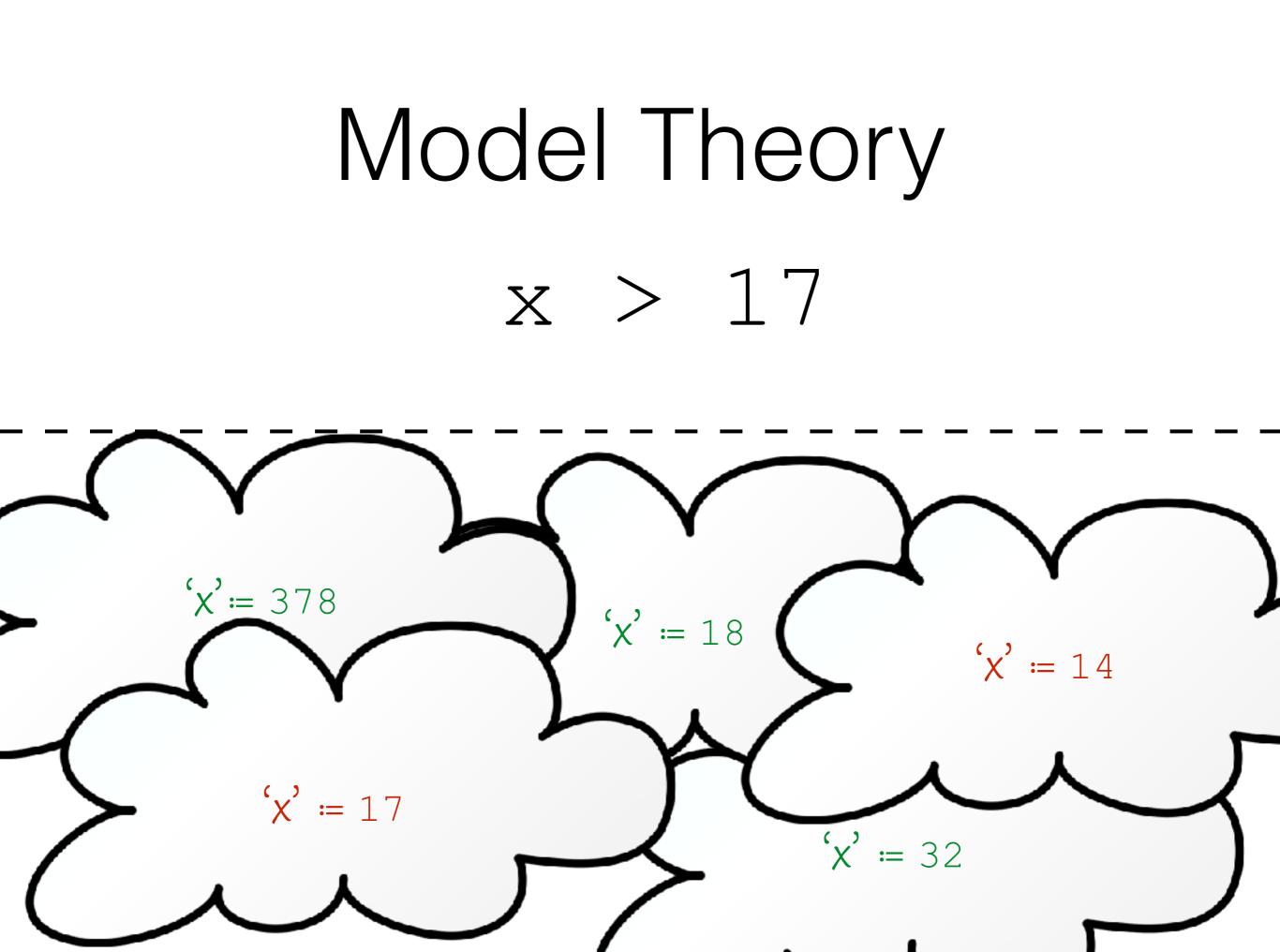
Crash Course: Non-Computational Linguistics

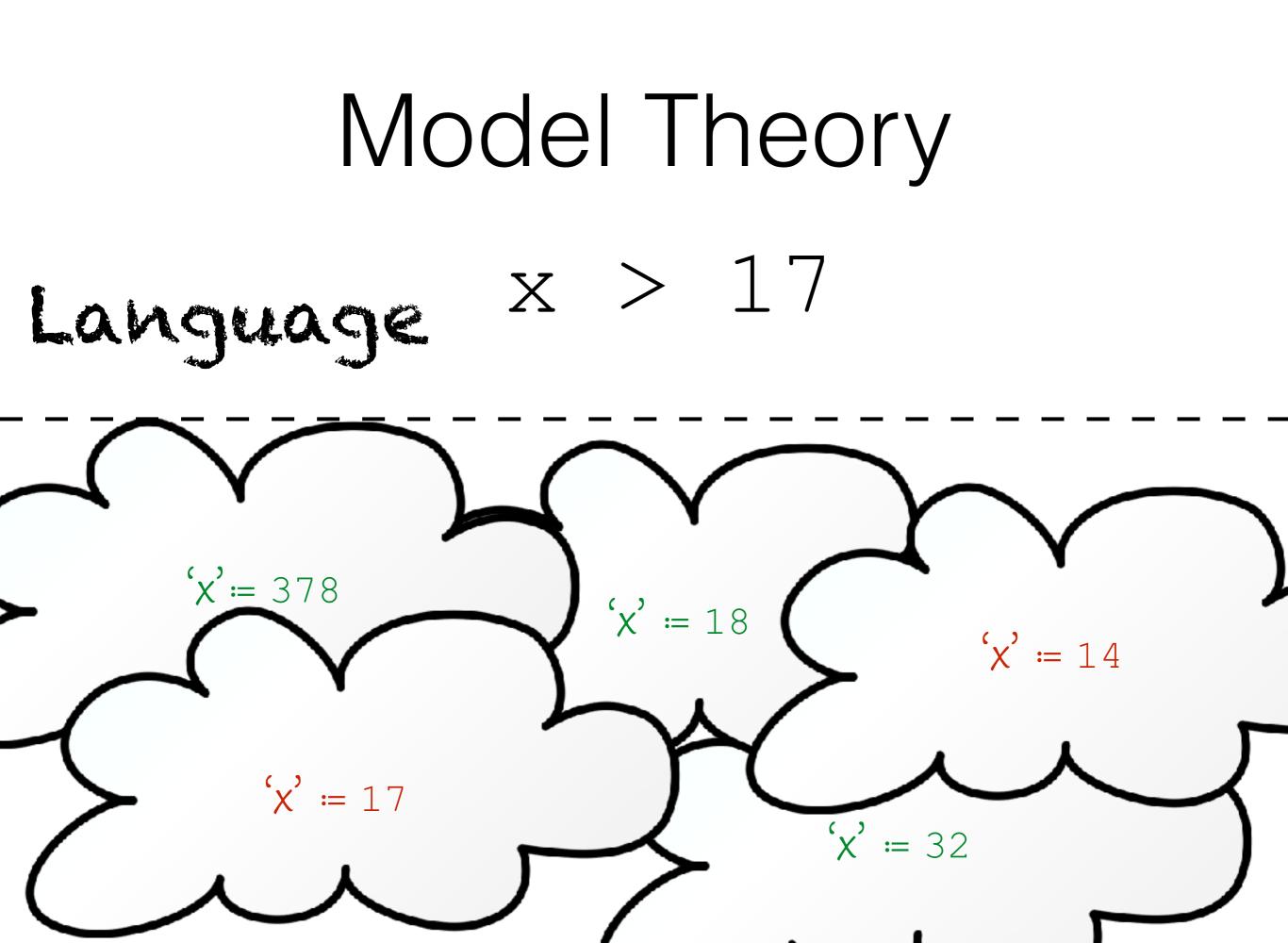


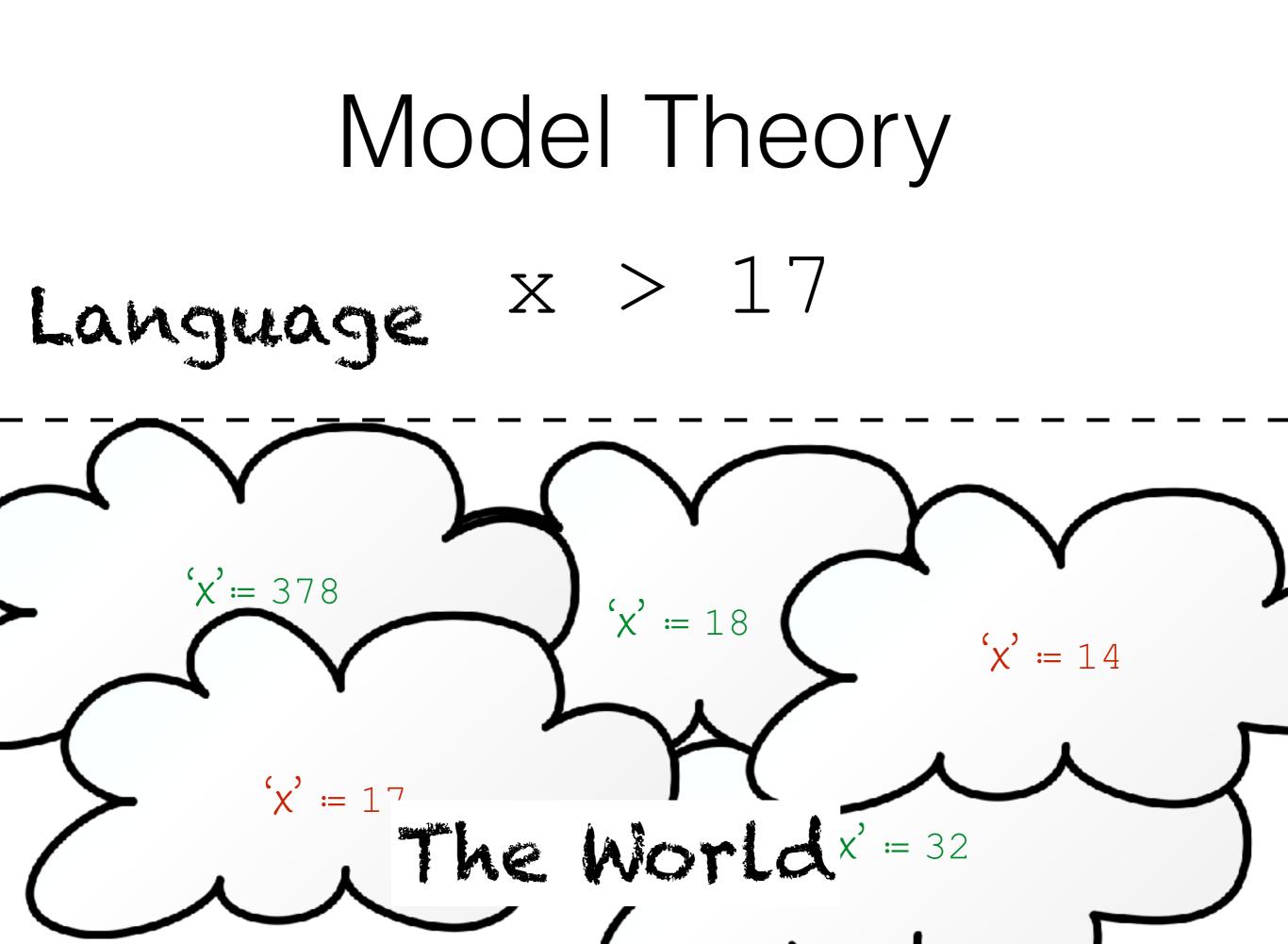
x > 17







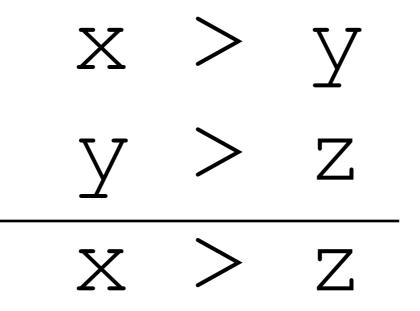




Language

x > 17

Language



Variables (to be grounded)

Language

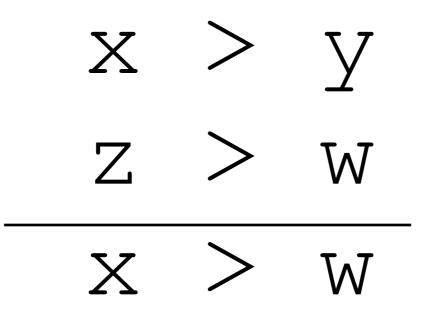
 $\begin{array}{c} \mathbf{x} > \mathbf{y} \\ \mathbf{y} > \mathbf{z} \\ \mathbf{x} > \mathbf{z} \end{array}$

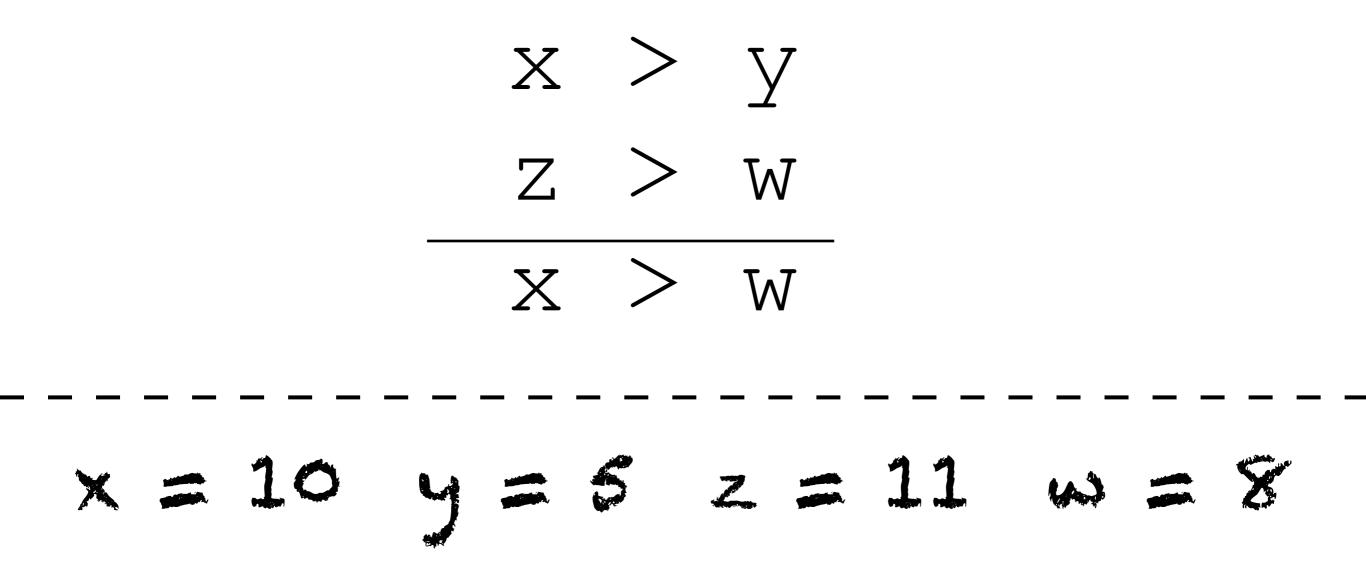
Language

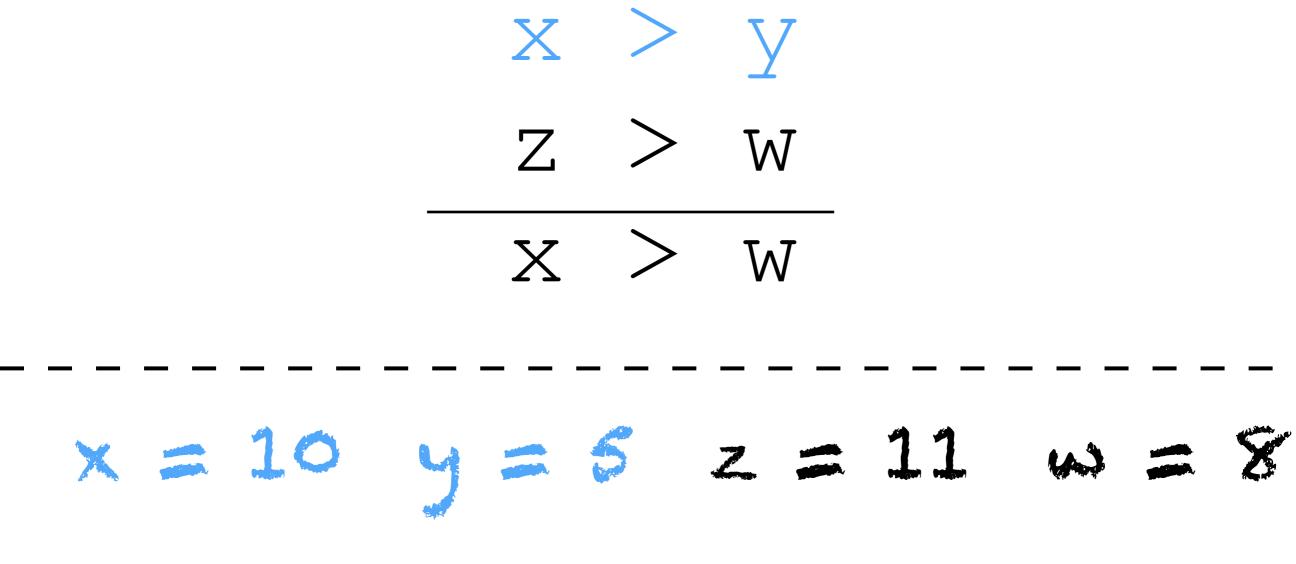
X > Y Y > Z X > Z

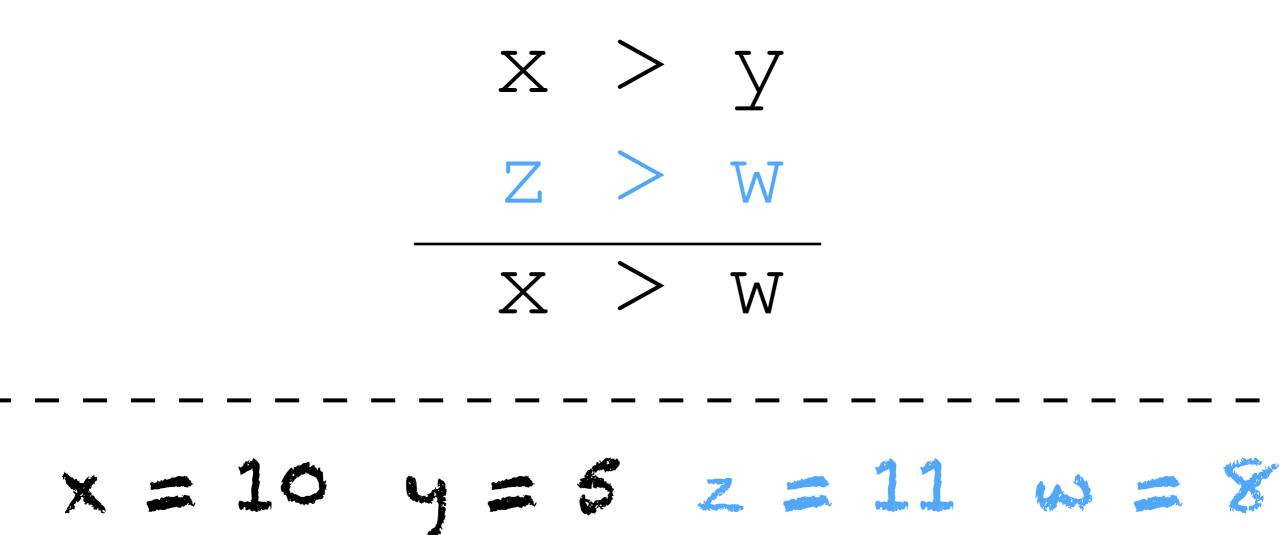
Relations (defined)

Entailment

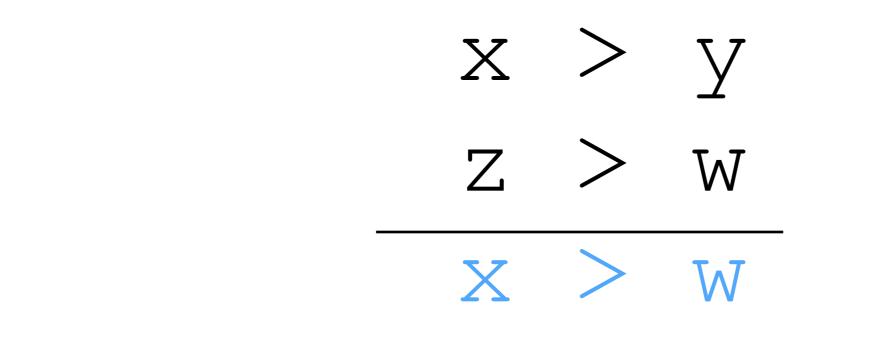




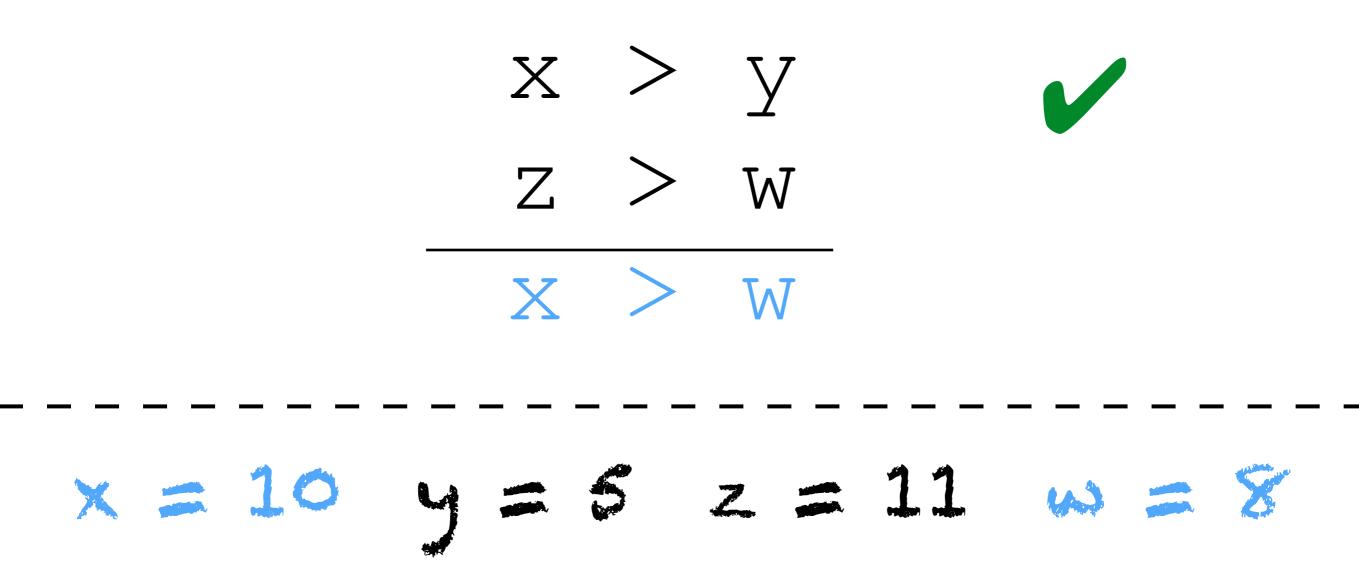


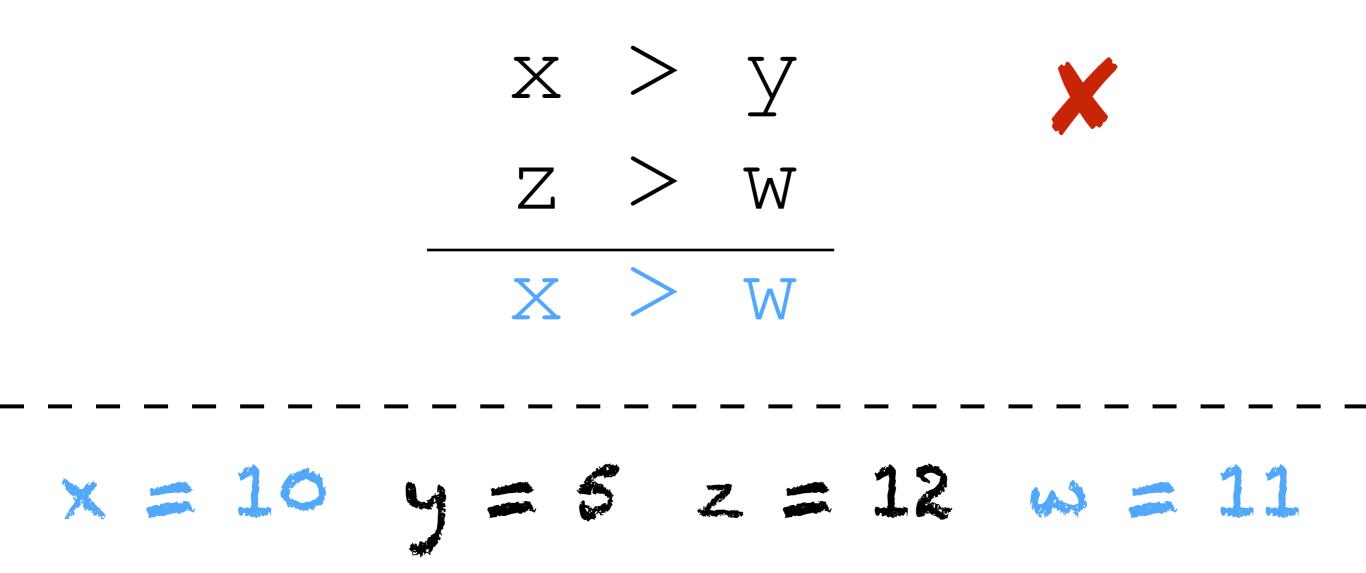


Entailment



x = 10 y = 5 z = 11 w = 8





Model Theory A premise (p) entails a hypothesis (h) iff, in every possible world in which p is true, h is also true.

 $\forall \mathcal{I}((\mathcal{I} \models p) \Rightarrow (\mathcal{I} \models h))$

Formal Semantics

There is in my opinion no important theoretical difference between natural languages and the artificial languages of logicians; indeed I consider it possible to comprehend the syntax and semantics of both kinds of languages with a single natural and mathematically precise theory.

(Richard Montague)

The basic aim of semantics is to characterize the notion of a true sentence (under a given interpretation) and of entailment.

(Richard Montague)

the notion of a true sentence

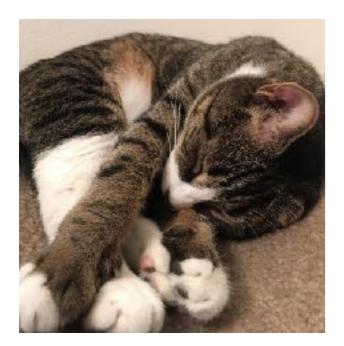
Broca is a bird

the notion of a true sentence

Broca is a bird 🖌

Broca

the notion of a true sentence



Broca

the notion of a entailment

No birds are gray Broca is a bird Broca is gray

the notion of a entailment

All birds are gray Broca is a bird Broca is gray

the notion of a entailment

All birds are gray Broca is a bird Broca is gray

Entities

the notion of a entailment

All **birds** are **gray** Broca is a **bird** Broca is **gray**

Predicates

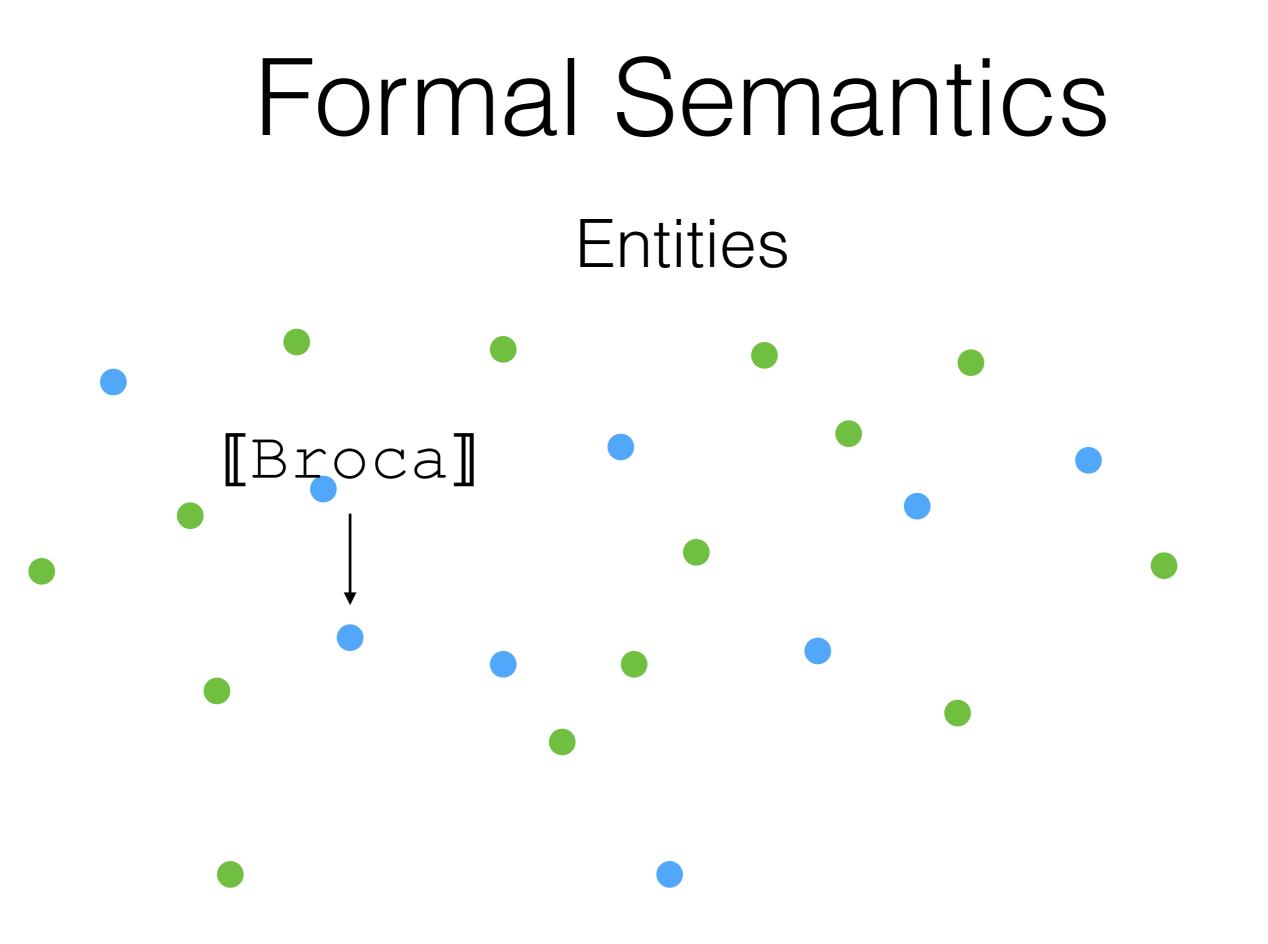
the notion of a entailment

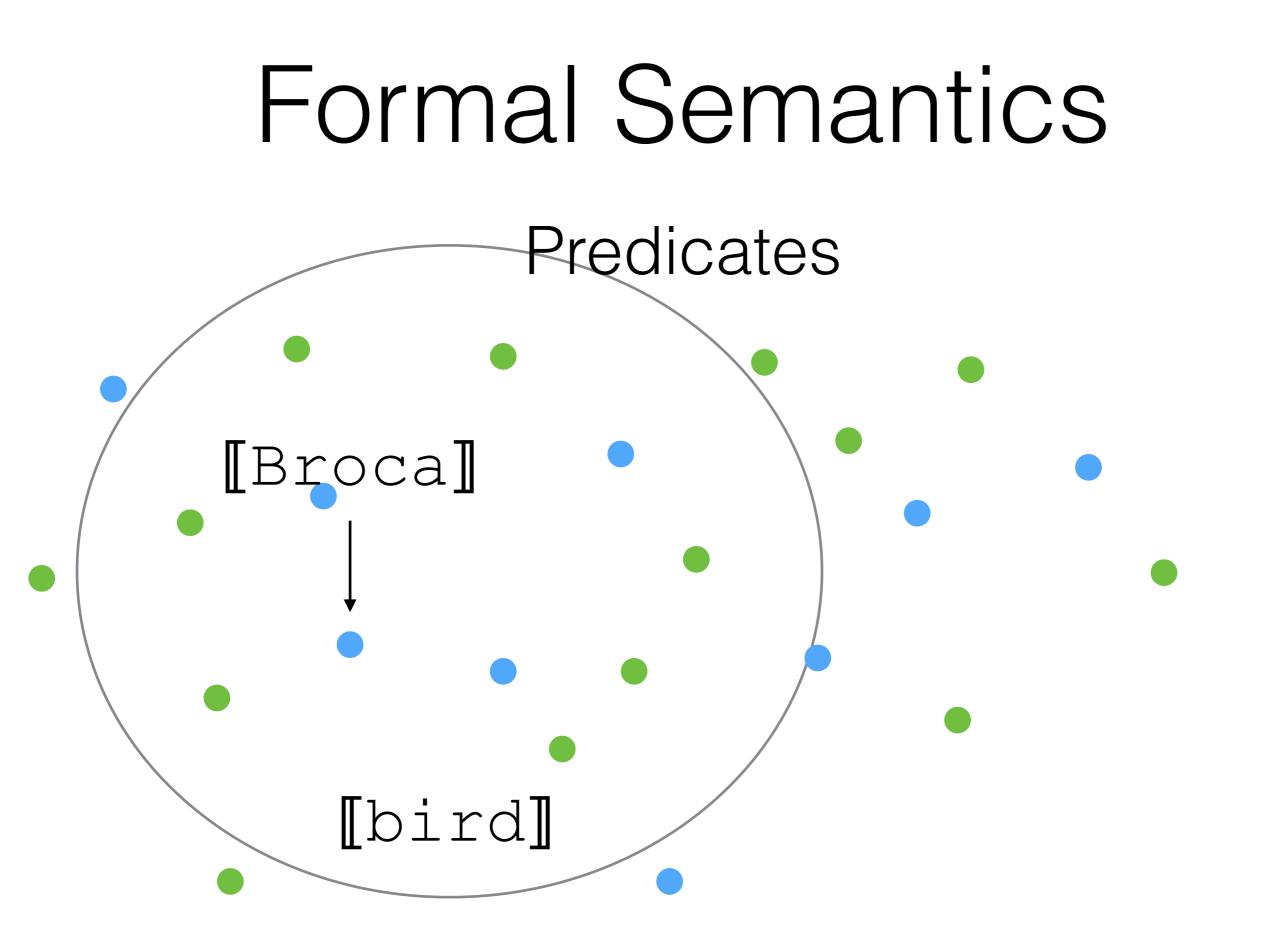
All birds are gray Broca is a bird Broca is gray

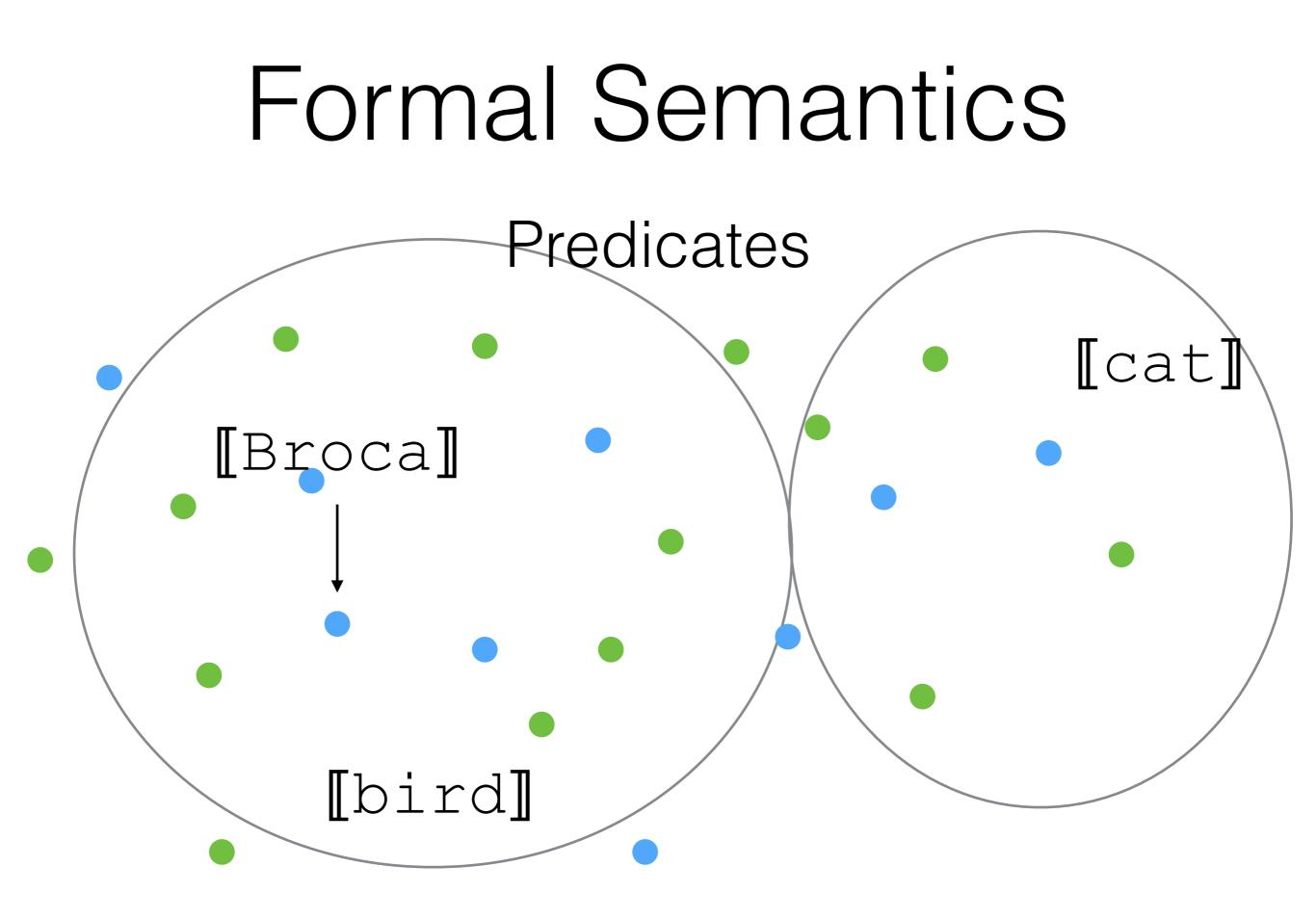
Higher-Order Relations

Formal Semantics Entities

[Broca]







Predicates

Broca is a bird ↔ ∀x([Broca](x) ⇒[bird](x))

Predicates

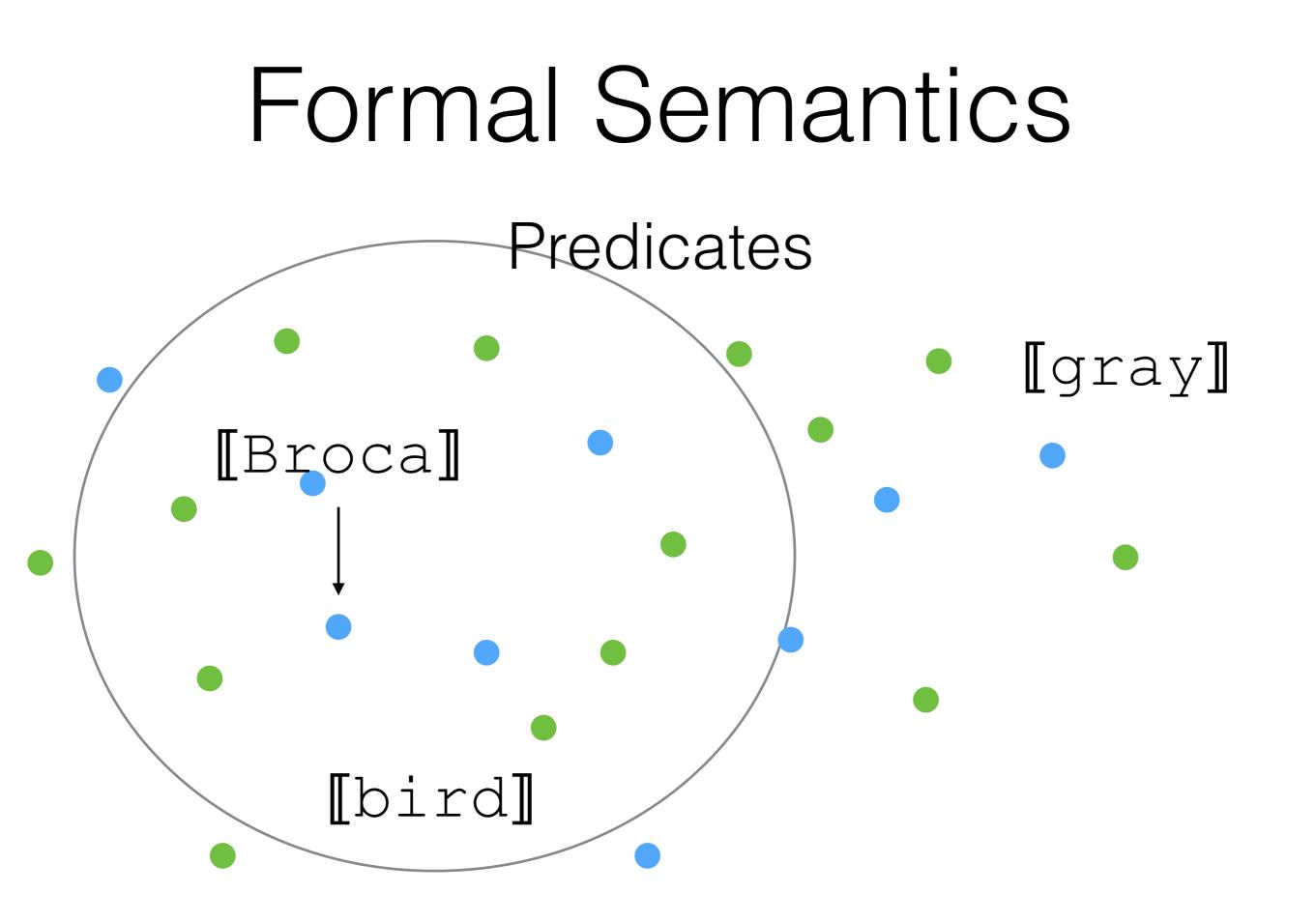
Broca is a bird ↔ ∀x([Broca](x)⇒[bird](x))

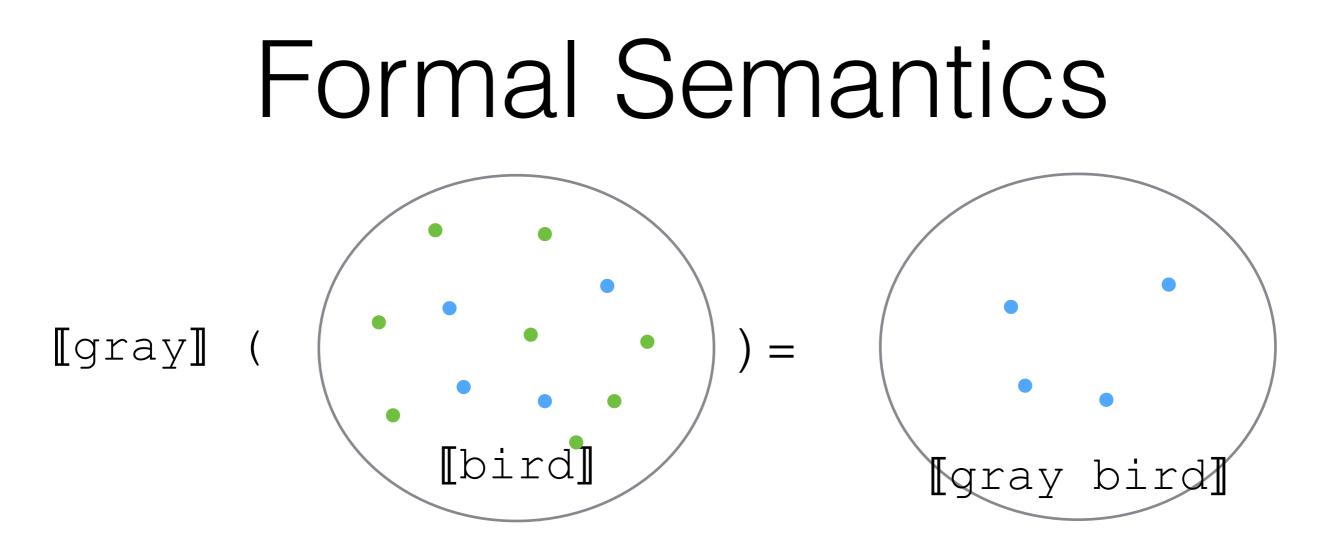
Takes entity as argument. Returns true if x is "Broca".

Predicates

Broca is a bird ↔ ∀x([Broca](x)⇒[bird](x))

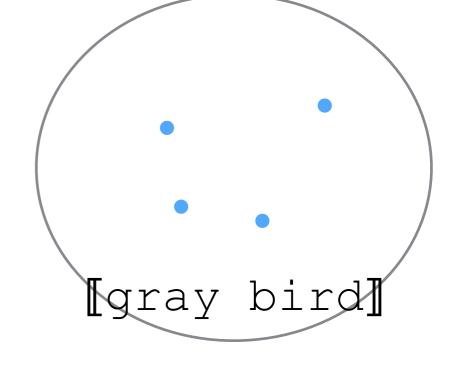
Takes entity as argument. Returns true if x is an element of the set referred to by "bird".



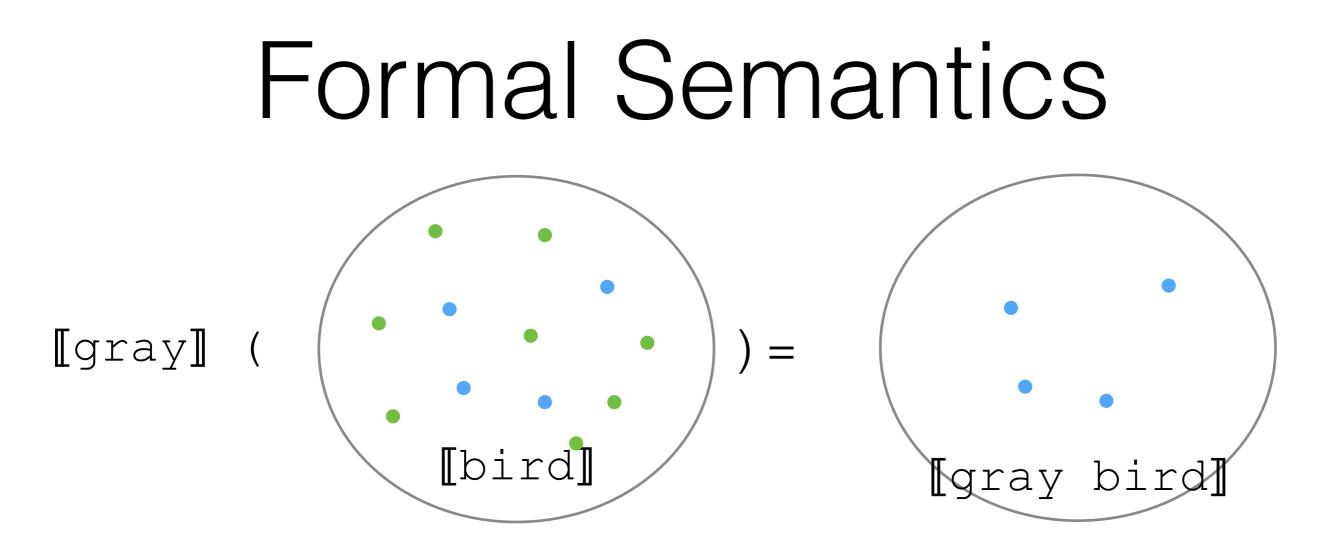


Takes set as argument. Returns true if x is an element of the set referred to by "bird".

[gray] (



[gray bird](x) \iff ([bird](x) \land [gray](x))



Broca is a gray bird entails Broca is a bird

Broca is a gray bird entails Broca is a bird

∀x ([Broca] (x) ⇒[gray bird] (x)) entails Broca is a bird

$\forall x ([Broca](x) \Rightarrow [gray bird](x))$

 \Rightarrow

 $\forall x ([Broca] (x) \Rightarrow [bird] (x))$

∀x([Broca](x)⇒ ([bird](x) ∧ [gray](x)) ⇒ ∀x([Broca](x)⇒[bird](x))

$\forall x ([Broca] (x) \Rightarrow [bird] (x))$

 \Rightarrow

 $\forall x ([Broca] (x) \Rightarrow [bird] (x))$

All gray birds are birds Broca is a gray bird Broca is a bird

All gray birds are birds Broca is a gray bird Broca is a bird

Higher-Order Relations

All gray birds are birds

 $\llbracket \texttt{all} \rrbracket (\texttt{x}) = \lambda \texttt{P} \lambda \texttt{Q} \forall \texttt{x} (\texttt{P} (\texttt{x}) \Rightarrow \texttt{Q} (\texttt{x}))$

All gray birds are birds

$\llbracket \texttt{all} \rrbracket (\texttt{x}) = \lambda \texttt{P} \lambda \texttt{Q} \forall \texttt{x} (\texttt{P} (\texttt{x}) \Rightarrow \texttt{Q} (\texttt{x}))$

Takes arbitrary predicates (P and Q) as arguments. Returns true if Q is true whenever P is true.

All gray birds are birds

[all](x) (gray_birds) (birds) =
∀x(gray_bid(x) ⇒bird(x))

Takes arbitrary predicates (P and Q) as arguments. Returns true if Q is true whenever P is true.

Formal Semantics: Takeaways

Formal Semantics: Takeaways

 Language is like logic—we can <u>ground</u> symbols to the world, but we can also <u>reason abstractly</u> using only the ungrounded symbols

Formal Semantics: Takeaways

- Language is like logic—we can <u>ground</u> symbols to the world, but we can also <u>reason abstractly</u> using only the ungrounded symbols
- The world can be represented as sets of entities

Formal Semantics: Takeaways

- Language is like logic—we can <u>ground</u> symbols to the world, but we can also <u>reason abstractly</u> using only the ungrounded symbols
- The world can be represented as sets of entities
- Word meanings are represented in terms of entities, sets, or functions which operate on entities/sets

Formal Semantics: Takeaways

- Language is like logic—we can <u>ground</u> symbols to the world, but we can also <u>reason abstractly</u> using only the ungrounded symbols
- The world can be represented as sets of entities
- Word meanings are represented in terms of entities, sets, or functions which operate on entities/sets
- Words have types (nouns, verbs, adjectives) which determine their representation (i.e. nouns refer to sets, adjectives to functions on sets)

Distributional Semantics

Distributional Semantics

The Distributional Hypothesis:

You shall know a word by the company it keeps! (Firth, 1957)

Distributional Semantics

The Distributional Hypothesis:

The meaning of a word is determined by the contexts where it is used.

The domestic cat is a small, typically furry, carnivorous mammal.

Your cat's online owners manual, featuring articles about breed information, cat selection, training, grooming and care for cats and kittens.

Wish you had a secret decoder guide to cat behavior and cat language? Here's a primer to things your cat wishes you understood.

"The cat does not offer services," William Burroughs wrote. "The cat offers itself." But it does so with unapologetic ambivalence.

Welcome to the new WebMD Cat Health Center. WebMD veterinary experts provide comprehensive information about cat health care, offer nutrition and feeding ...

The domestic **cat** is a small, typically furry, carnivorous mammal.

Your **cat's** online owners manual, featuring articles about breed information, **cat** selection, training, grooming and care for **cats** and kittens.

Wish you had a secret decoder guide to **cat** behavior and **cat** language? Here's a primer to things your **cat** wishes you understood.

"The **cat** does not offer services," William Burroughs wrote. "The **cat** offers itself." But it does so with unapologetic ambivalence.

Welcome to the new WebMD **Cat** Health Center. WebMD veterinary experts provide comprehensive information about **cat** health care, offer nutrition and feeding ...

The domestic **cat** is a small, typically furry, carnivorous mammal.

Your **cat's** online owners manual, featuring articles about breed information, **cat** selection, training, grooming and care for **cats** and kittens.

Wish you had a secret decoder guide to **cat** behavior and **cat** language? Here's a primer to things your **cat** wishes you understood.

"The **cat** does not offer services," William Burroughs wrote. "The **cat** offers itself." But it does so with unapologetic ambivalence.

Welcome to the new WebMD **Cat** Health Center. WebMD veterinary experts provide comprehensive information about **cat** health care, offer nutrition and feeding

The domestic cat is a small, typically furry, carnivorous mammal.

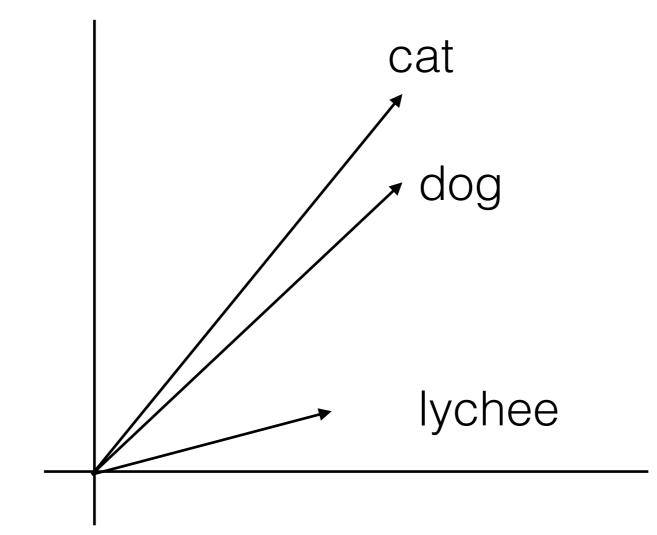
Your **cat's** online owners manual, featuring articles about breed information, **cat** selection, training, grooming and care for **cats** and kittens.

Wish you had a secret decoder guide to cat behavior and cat language? Here's a primer to things your cat wishes you understood.

"The cat does not offer services," William Burroughs wrote. "The cat offers itself." But it does so with unapologetic ambivalence.

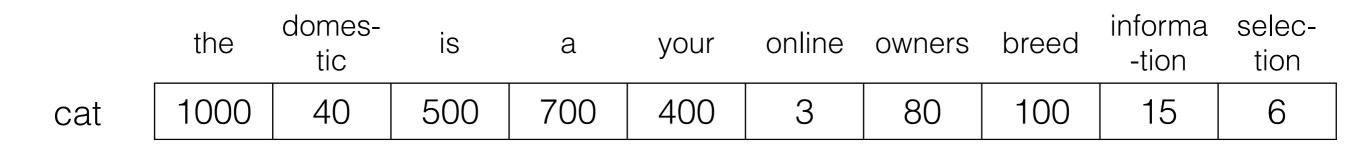
Welcome to the new WebMD Cat Health Center. WebMD veterinary experts provide comprehensive information about cat health care, offer nutrition and feeding

	the	domes- tic	is	а	your	online	owners	breed	informa -tion	selec- tion
cat	1000	40	500	700	400	3	80	100	15	6
dog	1050	50	400	950	500	1	105	160	4	2
lychee	2000	2	500	1000	25	50	2	3	45	700

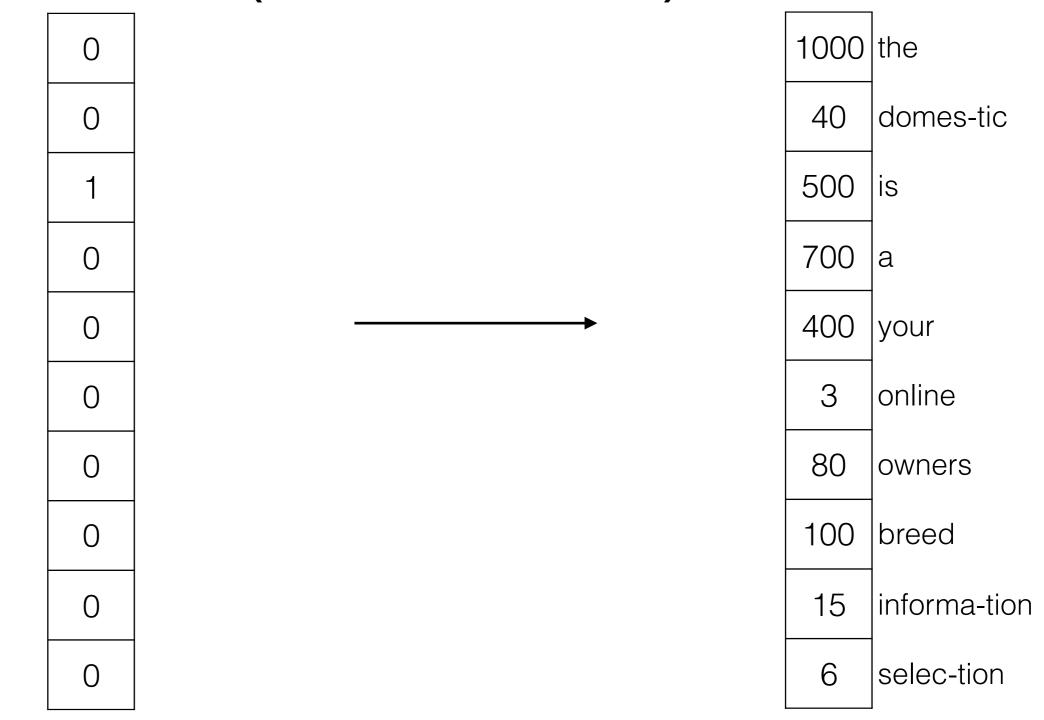


Skip-Gram Model (word2vec)

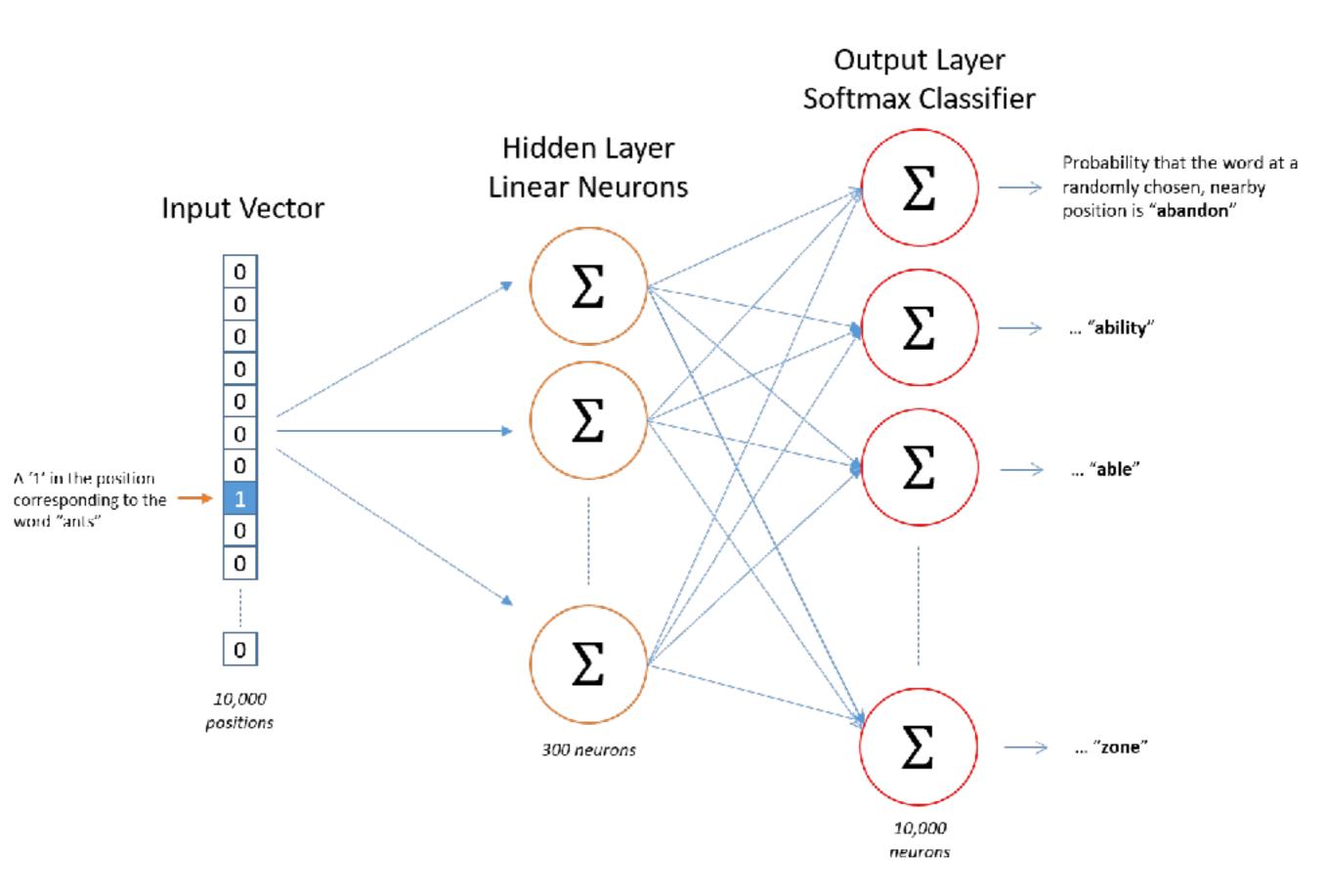
Skip-Gram Model (word2vec)



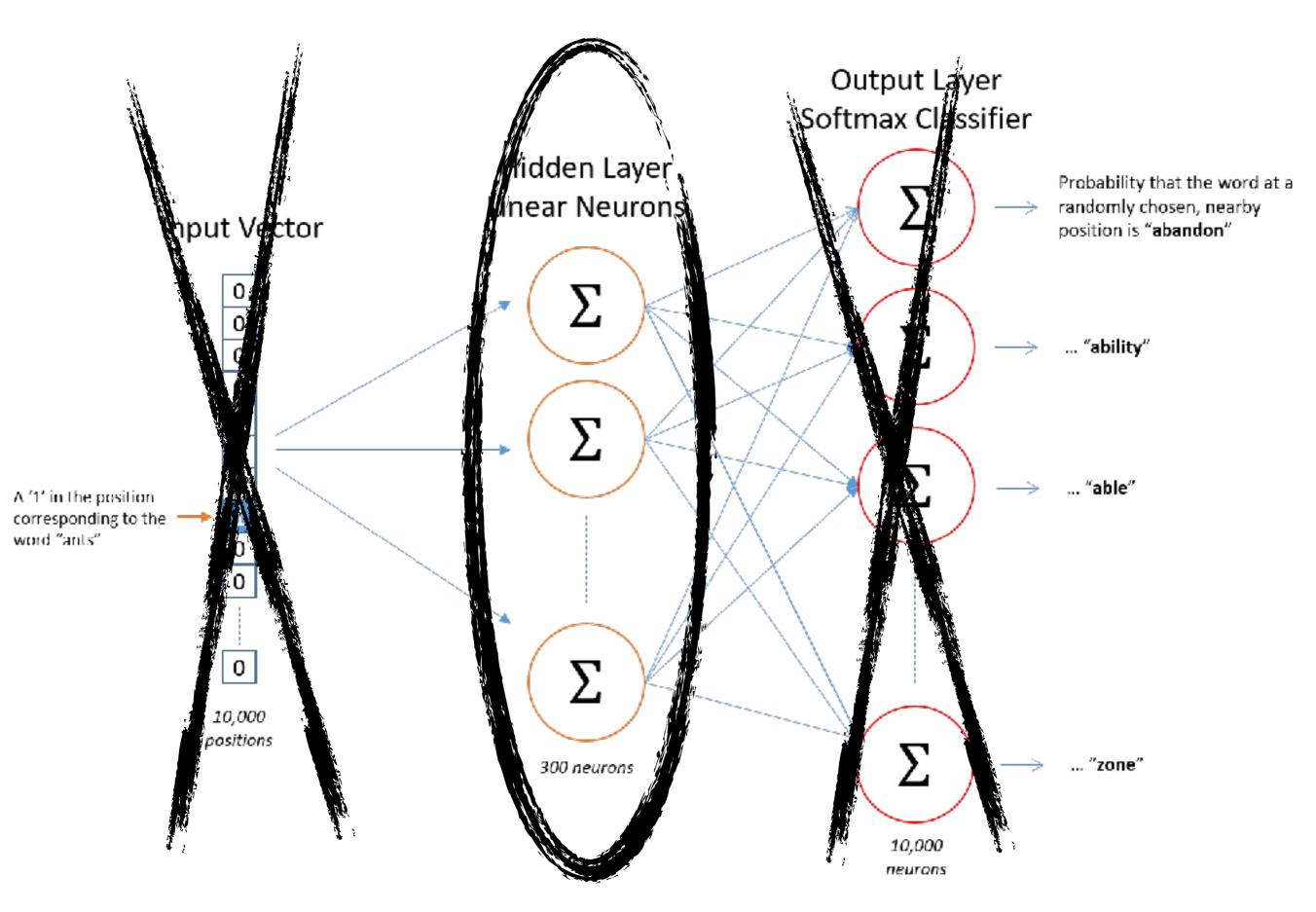
Skip-Gram Model (word2vec)



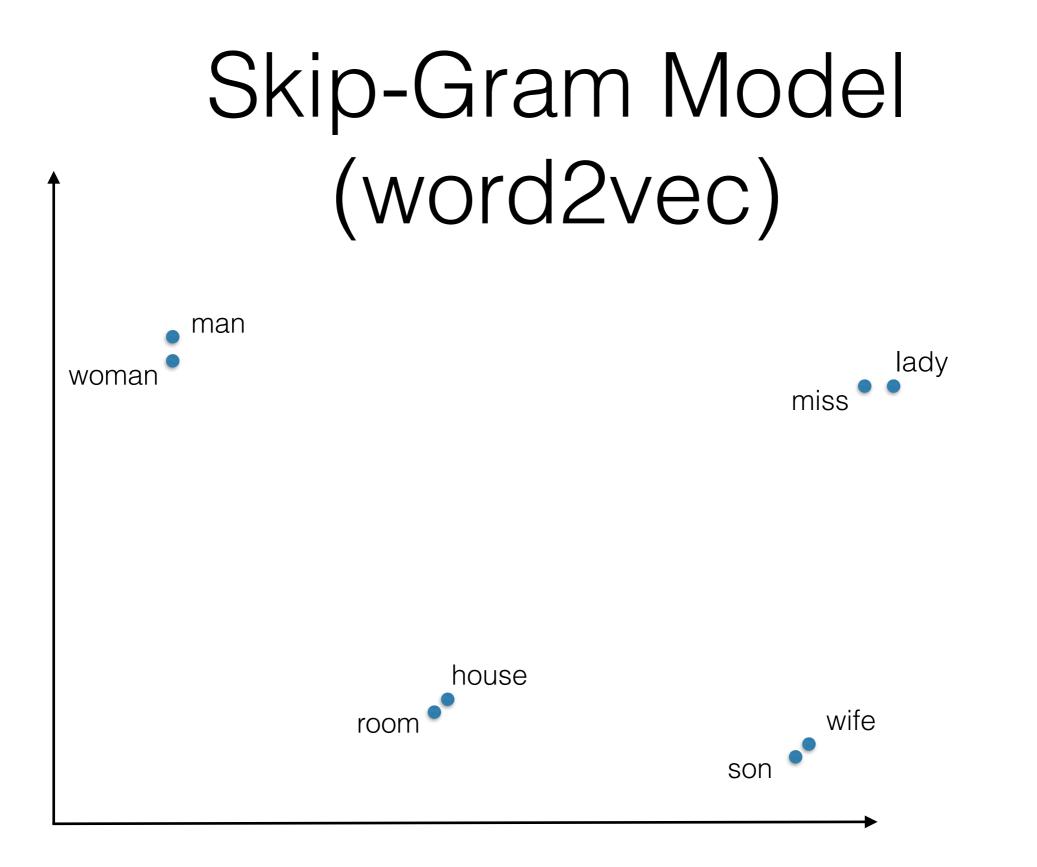
cat



https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b



https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b



2-D projection of word vectors learned from *Pride and Prejudice* (http://www.ghostweather.com/files/word2vecpride/)

The Distributional Hypothesis:

The meaning of a word is determined by the **contexts** where it is used.

The domestic cat is a small, typically furry, carnivorous mammal.

Your **cat's** online owners manual, featuring articles about breed information, **cat** selection, training, grooming and care for **cats** and kittens.

Wish you had a secret decoder guide to **cat** behavior and **cat** language? Here's a primer to things your **cat** wishes you understood.

"The cat does not offer services," William Burroughs wrote. "The cat offers itself." But it does so with unapologetic ambivalence.

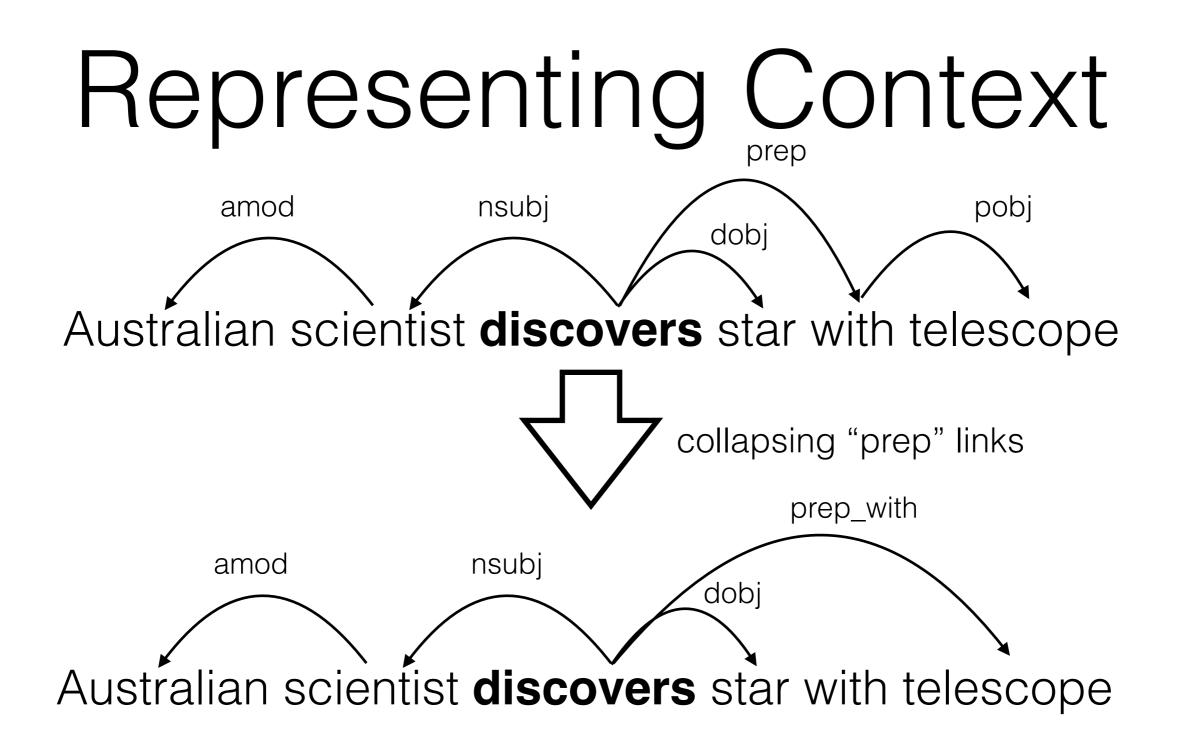
Welcome to the new WebMD Cat Health Center. WebMD veterinary experts provide comprehensive information about cat health care, offer nutrition and feeding

Australian scientist discovers star with telescope

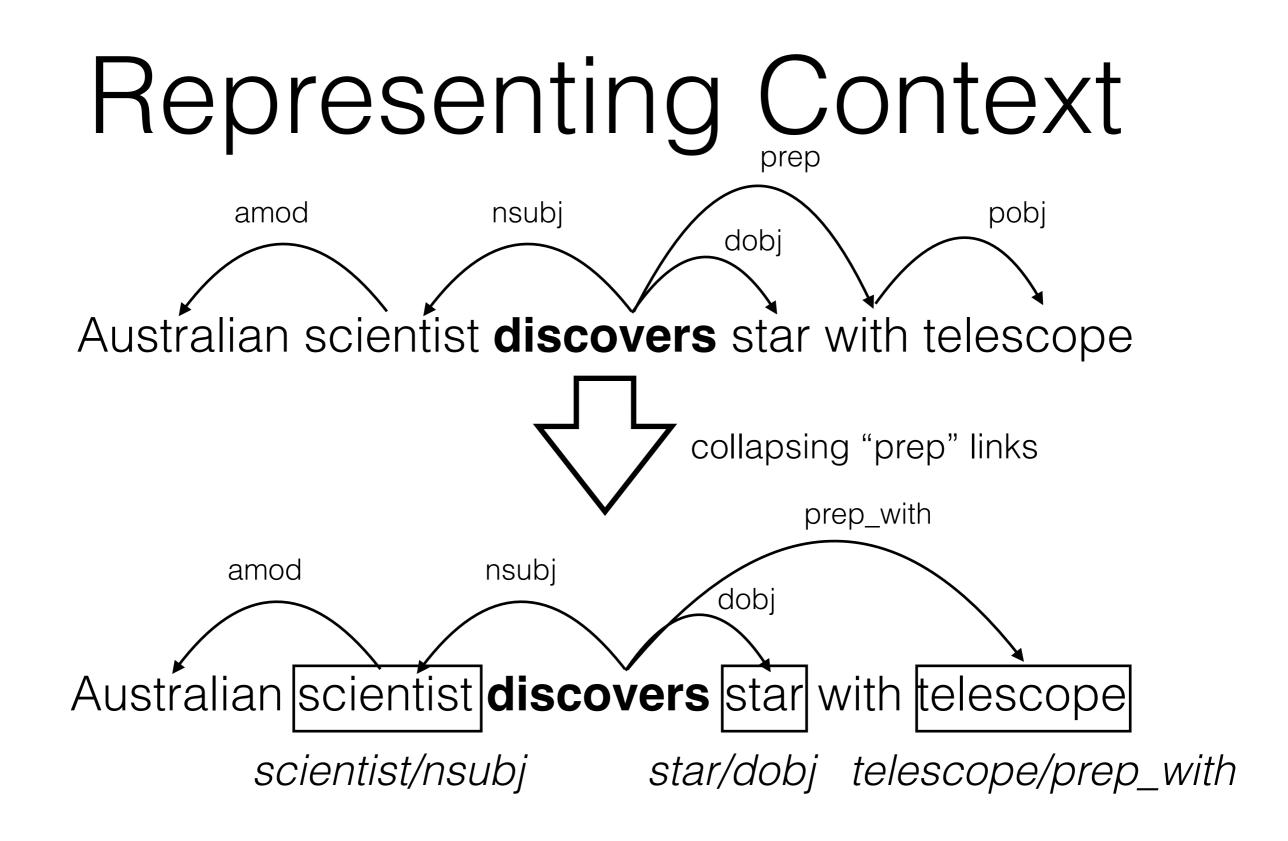
Australian scientist **discovers** star with telescope

Skip-Gram contexts with **n=2**

Levy and Goldberg, 2014

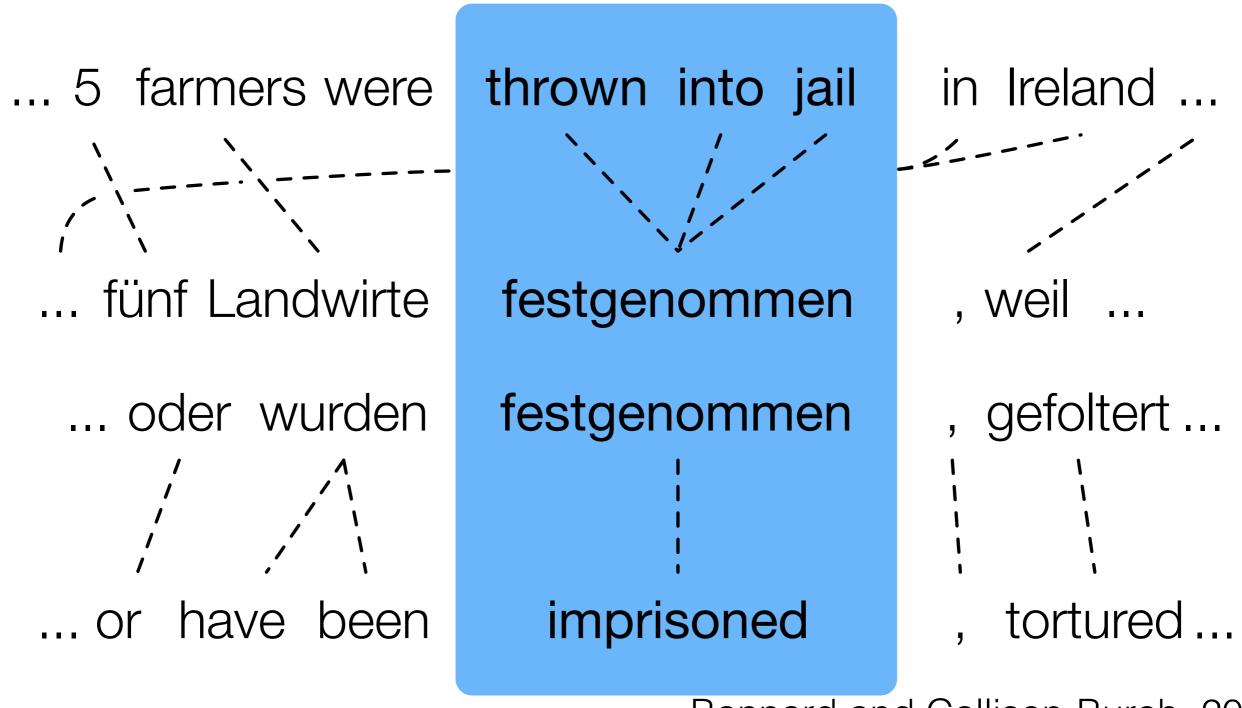


Levy and Goldberg, 2014



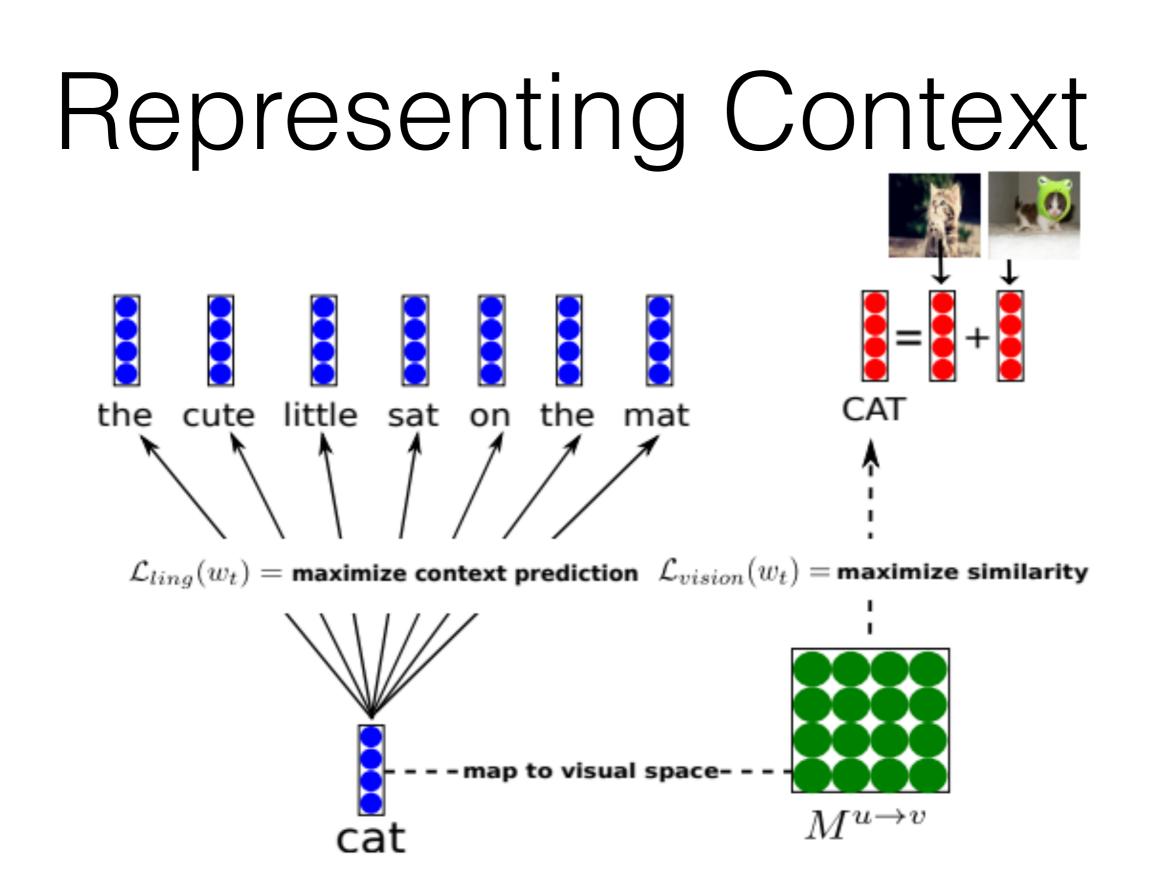
Levy and Goldberg, 2014

Target Word	BoW5	DEPS	
	nightwing	superman	
	aquaman	superboy	
batman	catwoman	supergirl	
	superman	catwoman	
	manhunter	aquaman	
	dumbledore	sunnydale	
	hallows	collinwood	
hogwarts	half-blood	calarts	
	malfoy	greendale	
	snape	millfield	
	nondeterministic	pauling	
	non-deterministic	hotelling	
turing	computability	heting	
	deterministic	lessing	
	finite-state	hamming	
	gainesville	texas	
	fla	louisiana	
florida	jacksonville	georgia	
	tampa	california	
	lauderdale	carolina	
		Levy and Gold	berg



Bannard and Callison-Burch, 2005

	Cosine Similarity		N	Monolingual (symmetric)			Bilingual		
-		shades/the shade	-	٦	large/small	≡	dad/father		
		yard/backyard	Ξ	=	few/several		some kid/child		
	#	each other/man	-	7	different/same	≡	a lot of/many		
		picture/drawing	-	7	other/same	\equiv	female/woman		
	\sim	practice/target	-	7	put/take	≡	male/man		



Lazaridou et al. (2015)

Target	SKIP-GRAM	MMSKIP-GRAM-B			
donut	fridge, diner, candy	pizza, sushi, sandwich			
owl	pheasant, woodpecker, squirrel	eagle, falcon, hawk			
mural	sculpture, painting, portrait	painting, portrait, sculpture			
tobacco	coffee, cigarette, corn	cigarette, cigar, smoking			
depth	size, bottom, meter	sea, size, underwater			
chaos	anarchy, despair, demon	demon, anarchy, shadow			

Lazaridou et al. (2015)

• The "meaning" of a word is the contexts in which that word can be used

- The "meaning" of a word is the contexts in which that word can be used
- We can represent word as a point in continuous space by using a vector to store all the contexts in which the words has been observed

- The "meaning" of a word is the contexts in which that word can be used
- We can represent word as a point in continuous space by using a vector to store all the contexts in which the words has been observed
- "Embeddings" are just a low-dimensional way of representing the contexts that used to be stored as big sparse vectors

- The "meaning" of a word is the contexts in which that word can be used
- We can represent word as a point in continuous space by using a vector to store all the contexts in which the words has been observed
- "Embeddings" are just a low-dimensional way of representing the contexts that used to be stored as big sparse vectors
- We can (and should) be as creative as we want with how we define "contexts"

More General Takeaways

- Formal Semantics
 - Represent language as logic
 - Focus is on representing compositionality: how do word meanings combine?

More General Takeaways

- Formal Semantics
 - Represent language as logic
 - Focus is on representing compositionality: how do word meanings combine?
- Distributional Semantics
 - Represent language as vectors/points in space
 - Focus is on learning meaning from context

More General Takeaways

- Formal Semantics
 - Represent language as logic
 - Focus is on representing compositionality: how do word meanings combine?
- Distributional Semantics
 - Represent language as vectors/points in space
 - Focus is on learning meaning from context

Pause: Questions!

Natural Language Inference	Logical Forms

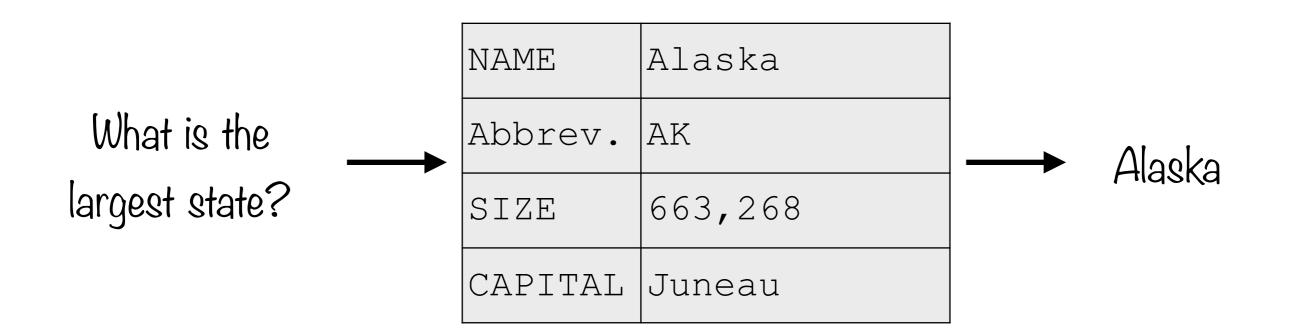
Natural Language Inference	Logical Forms
given a premise <i>p</i> and a hypothesis <i>h</i> , predict whether <i>p</i> entails <i>h</i>	given a sentence <i>s</i> return an executable representation (e.g. mathematical formula, SQL query)

Natural Language Inference	Logical Forms
ungrounded—relate text to other text	grounded—relate text to tables in a database, or actions on a robot

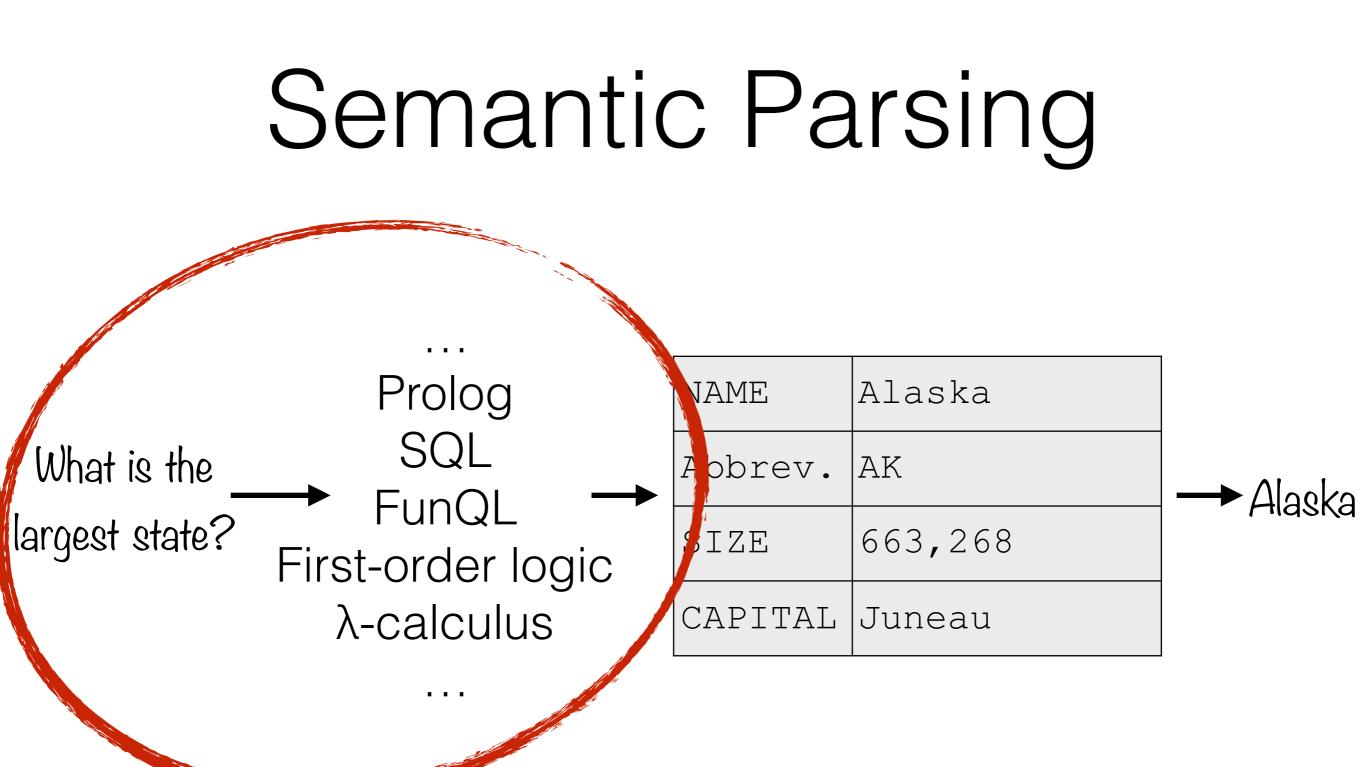
Natural Language Inference	Logical Forms
ungrounded—relate text to other text	grounded—relate text to tables in a database, or actions on a robot

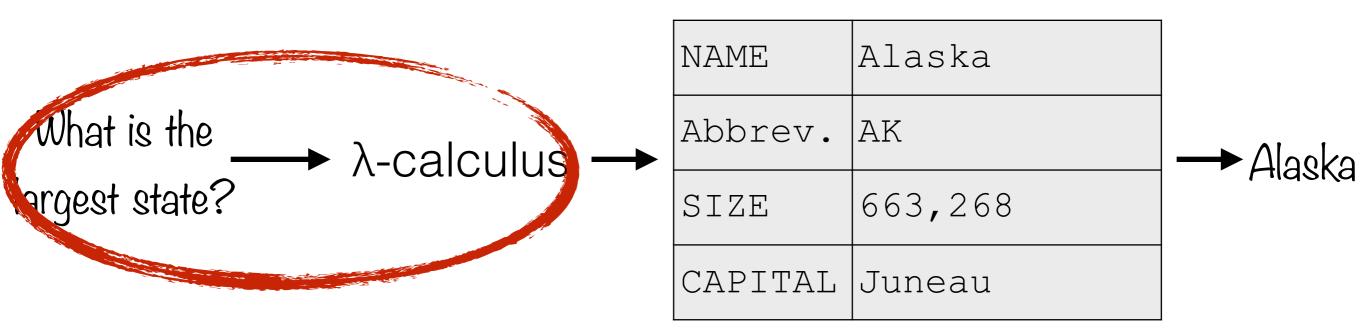
Semantic Parsing

Semantic Parsing



Semantic Parsing





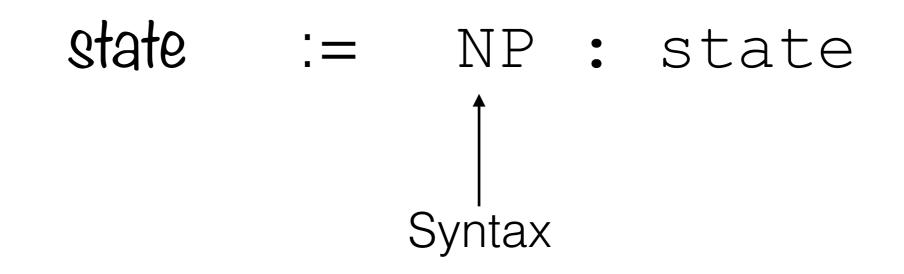
What is the largest state?

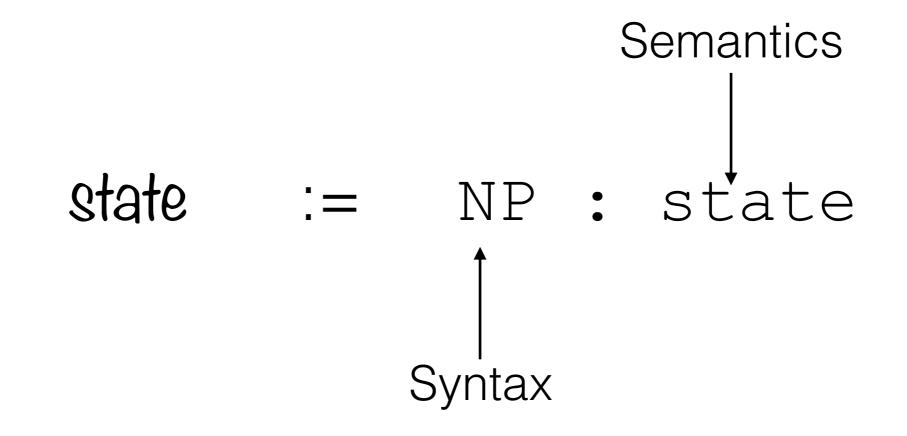
argmax(λx .state(x), λx .size(x))

What is the largest state?

argmax(λx .state(x), λx .size(x))

state := NP : state





borders := (S\NP)/NP : \lambda x.lorders(y,x)

borders := (S\NP)/NP : $\lambda x . \lambda y . borders(y, x)$

utahbordersidahoNP(S\NP) / NPNP

borders := (S\NP)/NP : $\lambda x \cdot \lambda y \cdot borders(y, x)$

borders(utah, idaho)

utah	borders	idaho
NP	(S\NP)/NP	NP
utah	λx.λy.borders(y,x)	idaho

utah	borders	idaho
NP	(S\NP)/ NP	NP
utah	λx.λy.borders(y,x)	idaho

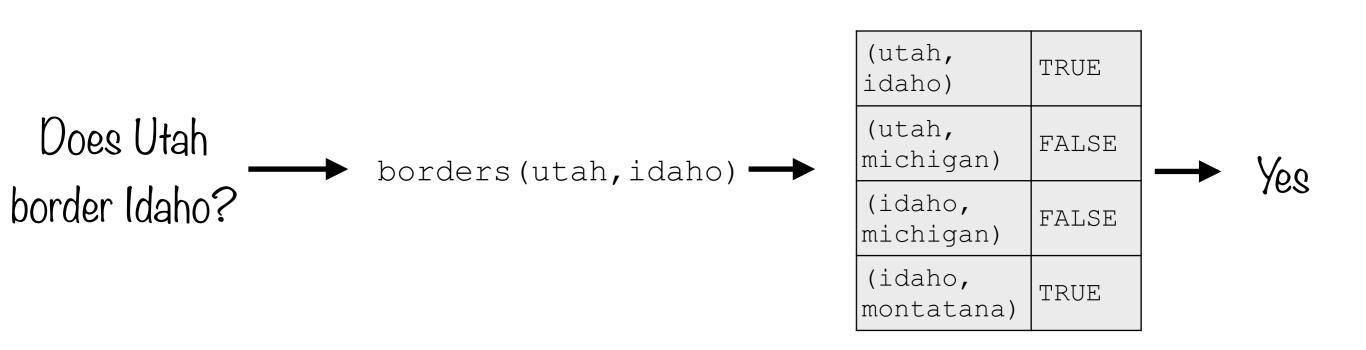
utah	borders idaho	
NP	(S\NP)	
utah	λy.borders(y,idaho)	

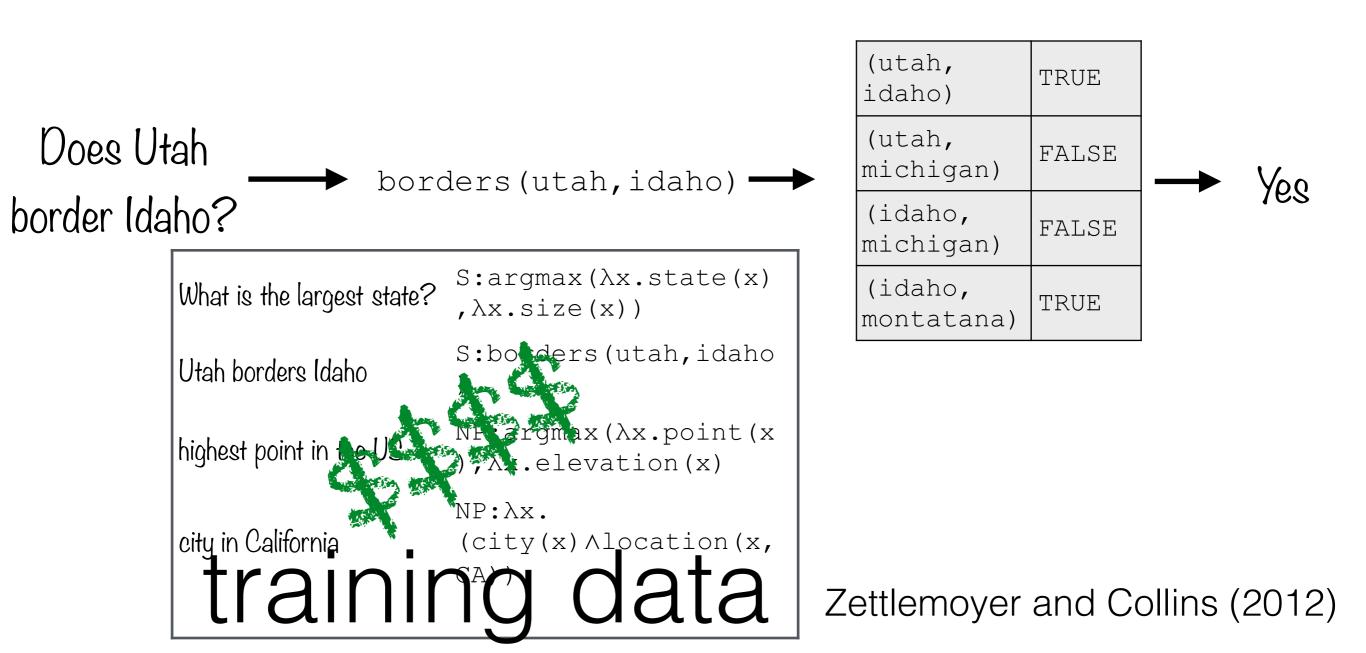
utah	borders idaho	
NP	(S\NP)	
utah	λy.borders(y,idaho)	

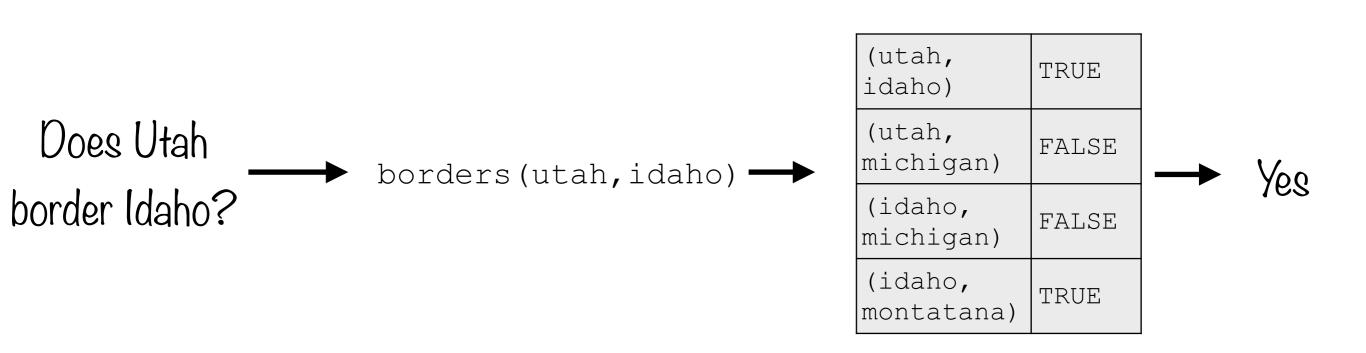
utah borders idaho

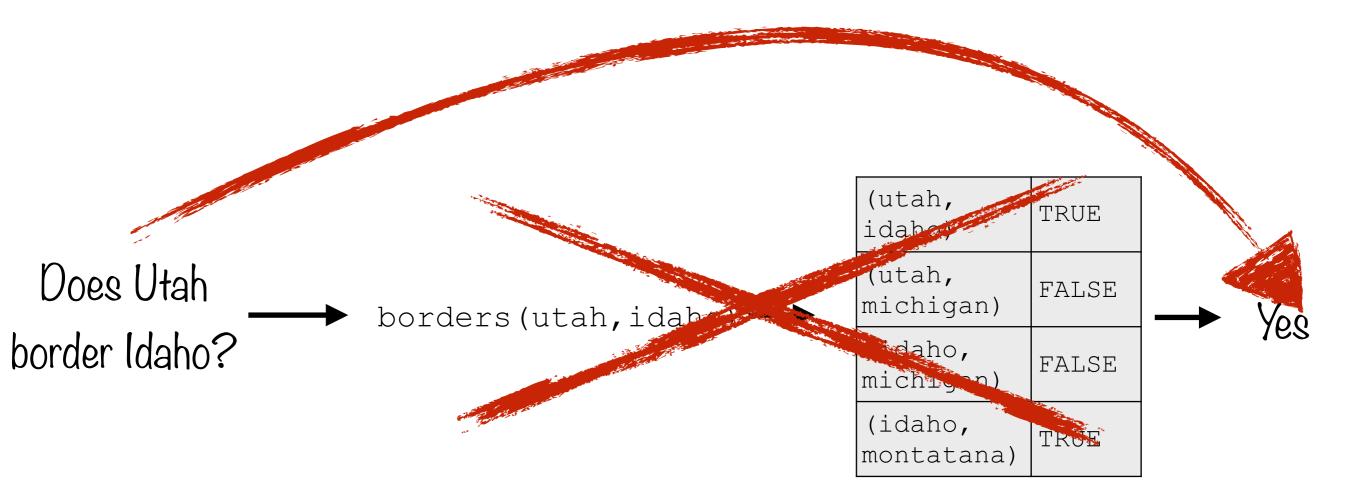
S

borders(utah, idaho)



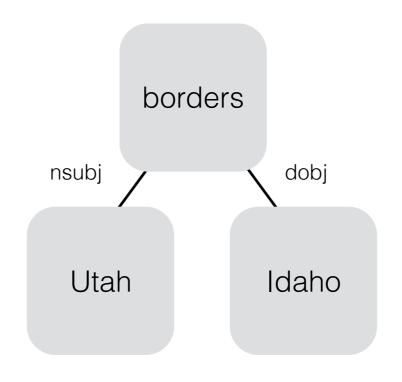




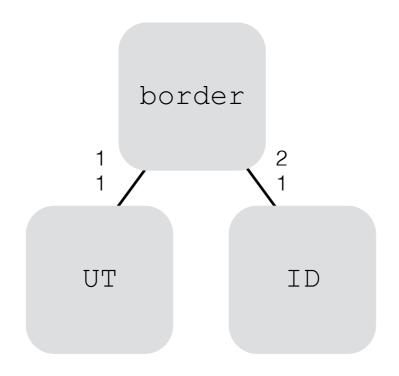


Does Ut border Ida	\rightarrow	LATE	Ner Contraction	- Yes
	What is the largest state?	Alaska		
	Utah borders Idaho	TRUE		
	highest point in the US	Mt. McKinley		
	city in California trainir	Los Angeles, San Fransisco Ng data		Liang et al. (2012)

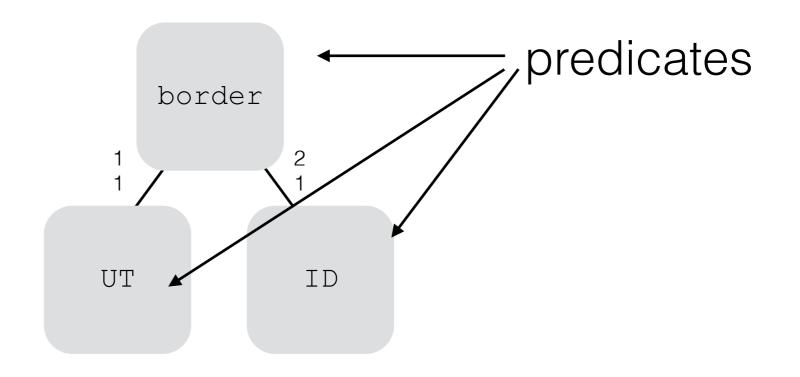
Utah borders Idaho



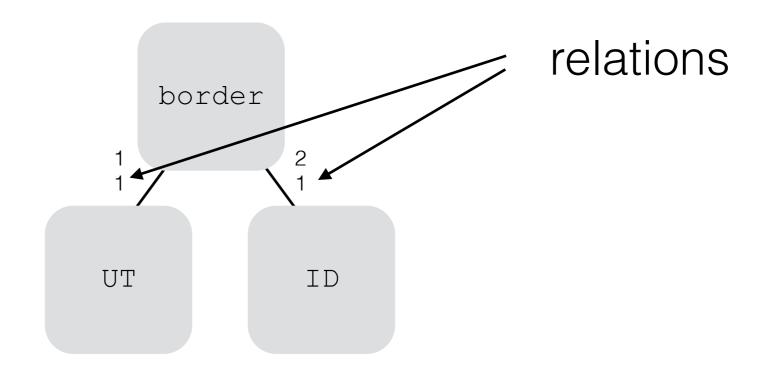
Utah borders Idaho

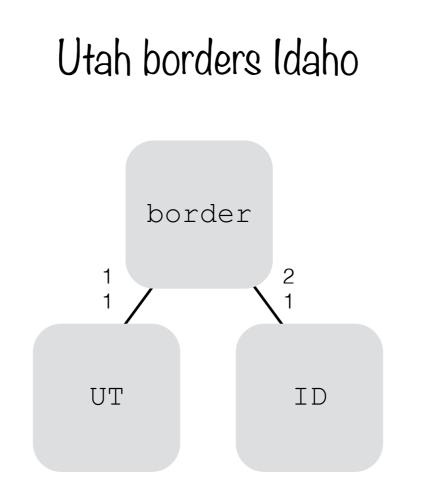


Utah borders Idaho

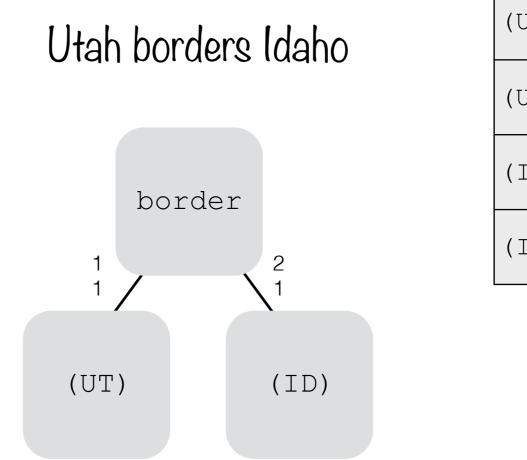


Utah borders Idaho



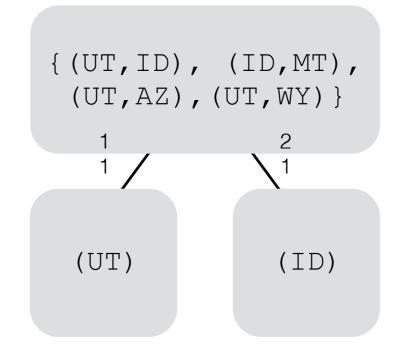


(UT,ID)	TRUE
(UT,MI)	FALSE
(ID,MI)	FALSE
(ID,MT)	TRUE



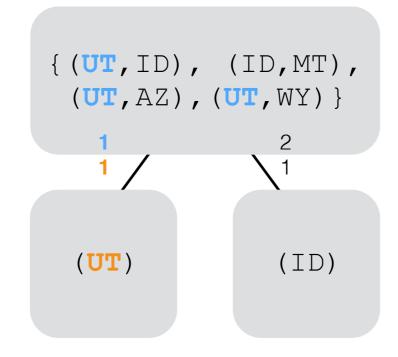
(UT,ID)	TRUE
(UT,MI)	FALSE
(ID,MI)	FALSE
(ID,MT)	TRUE

Utah borders Idaho

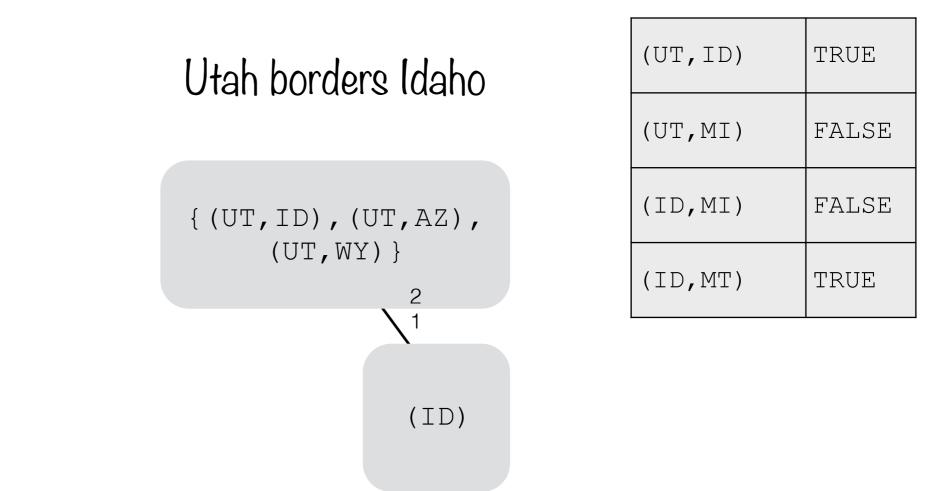


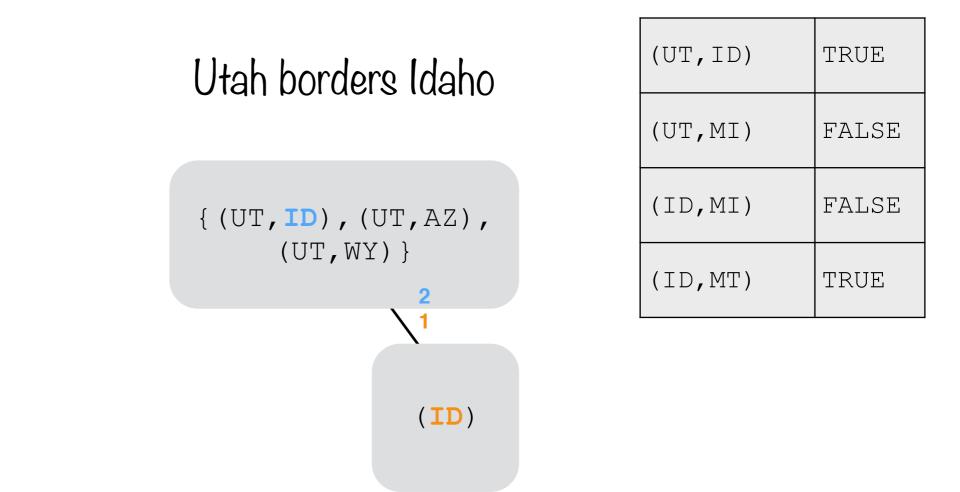
(UT,ID)	TRUE
(UT,MI)	FALSE
(ID,MI)	FALSE
(ID,MT)	TRUE

Utah borders Idaho



(UT,ID)	TRUE
(UT,MI)	FALSE
(ID,MI)	FALSE
(ID,MT)	TRUE





Utah borders Idaho

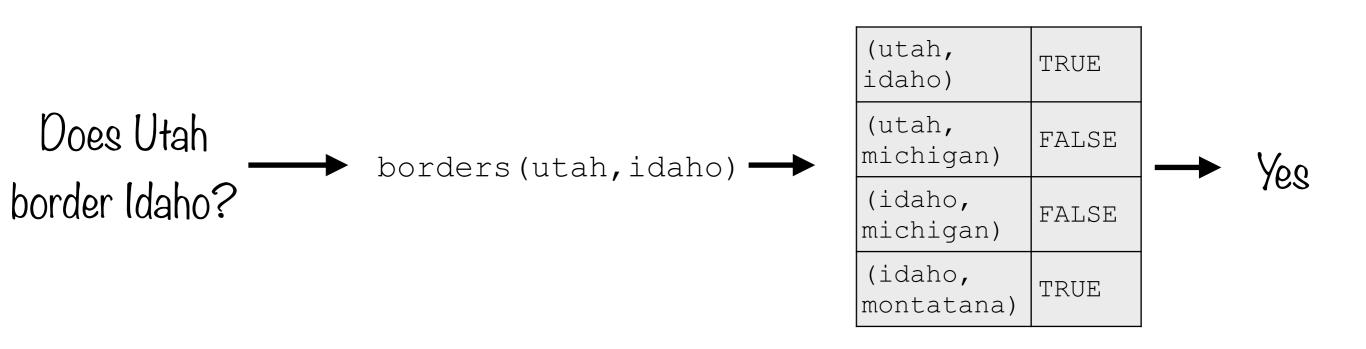
{(UT,ID)}

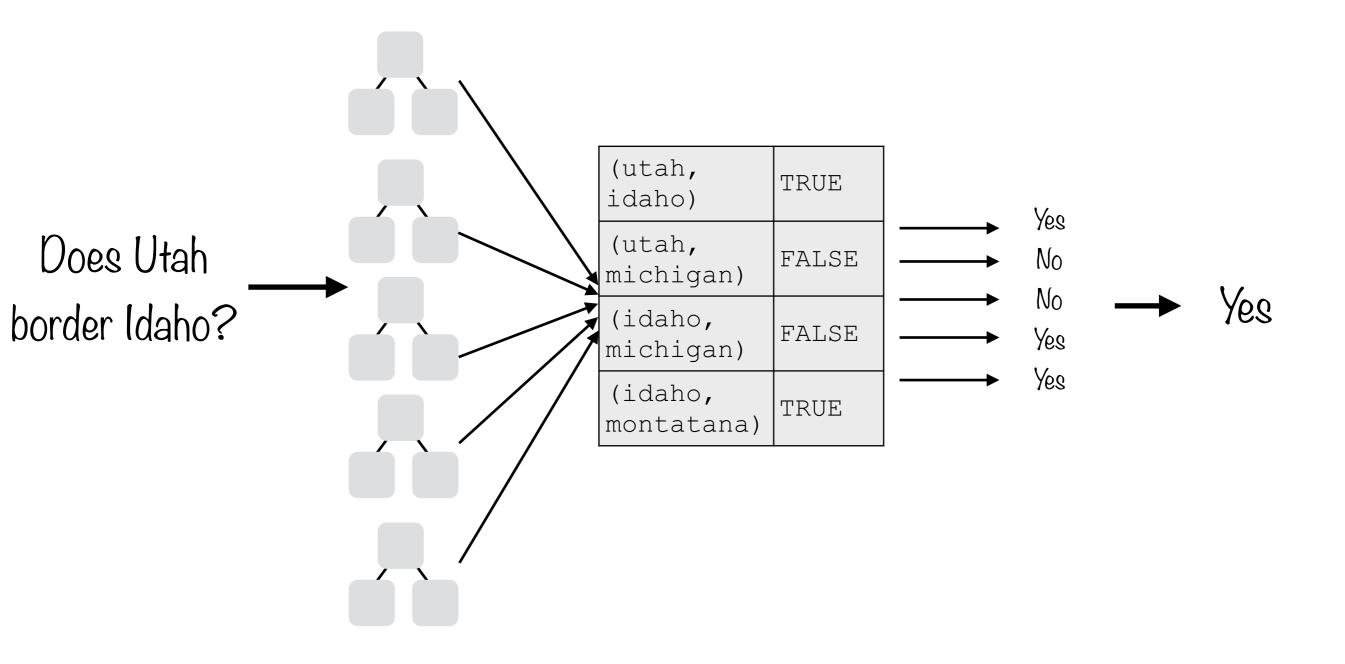
(UT,ID)	TRUE
(UT,MI)	FALSE
(ID,MI)	FALSE
(ID,MT)	TRUE

Utah borders Idaho

TRUE!

(UT,ID)	TRUE
(UT,MI)	FALSE
(ID,MI)	FALSE
(ID,MT)	TRUE

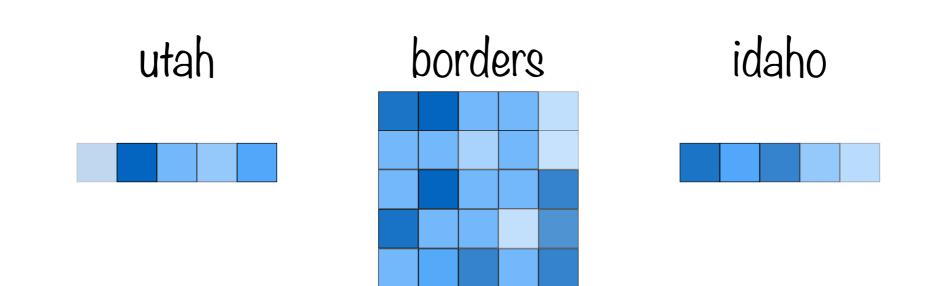


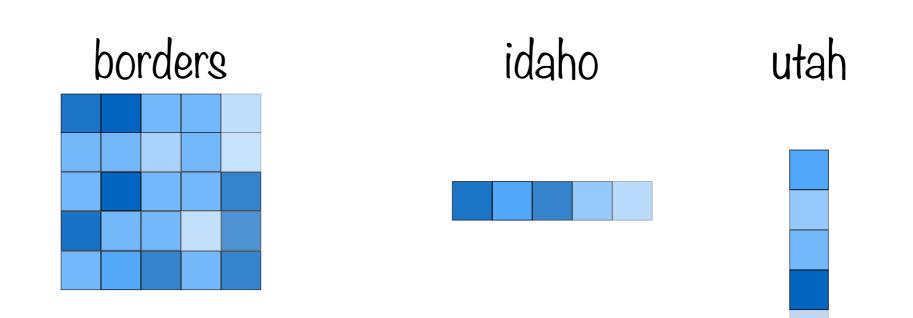


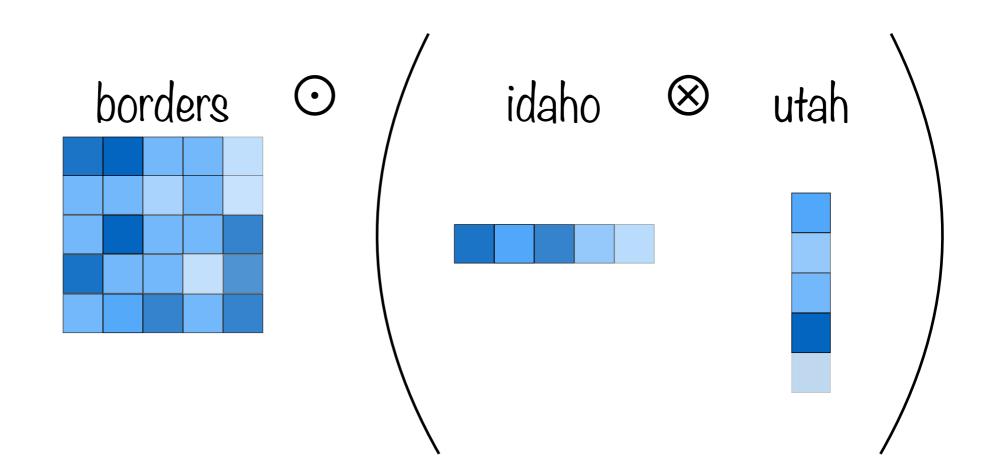
Sentence-Level Semantics

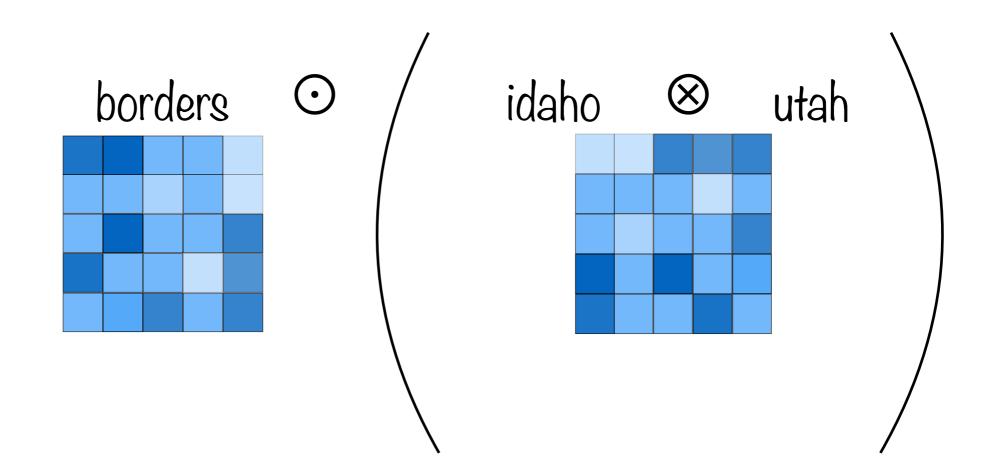
Natural Language Inference	Logical Forms
ungrounded—relate text to other text	grounded—relate text to tables in a database, or actions on a robot

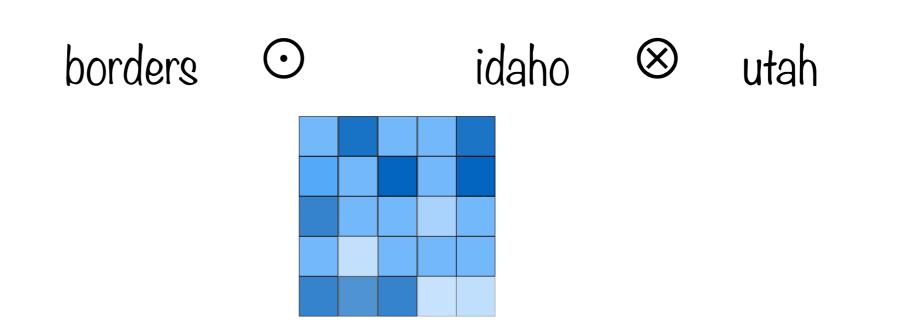
utah	borders	idaho
NP	(S\NP)/NP	NP

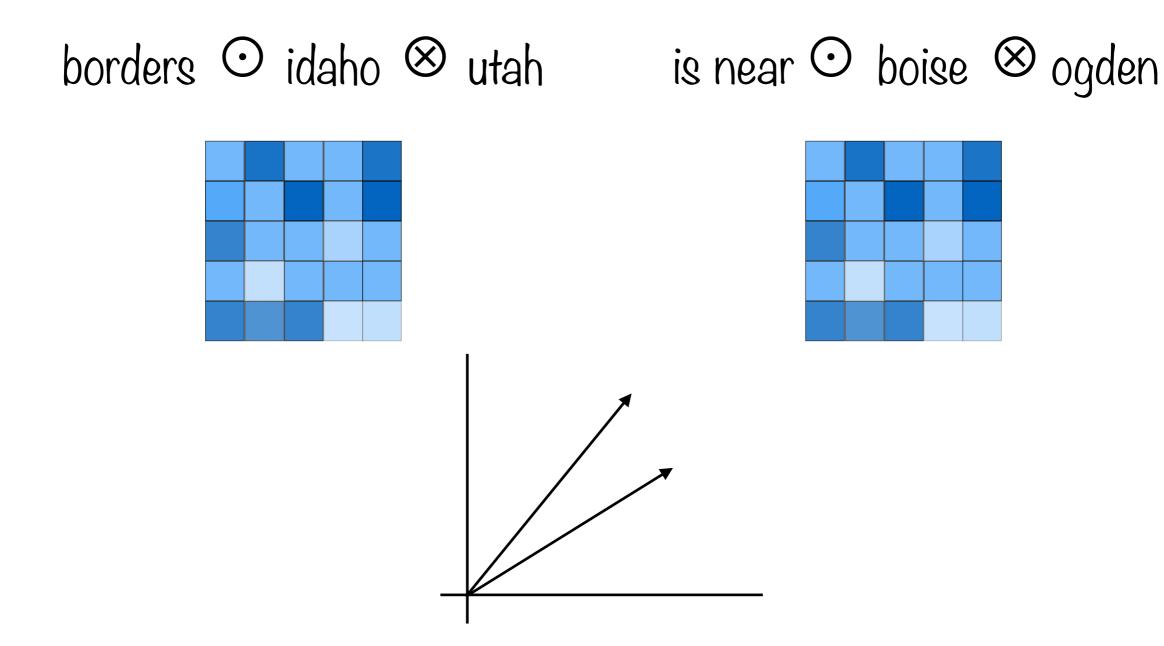










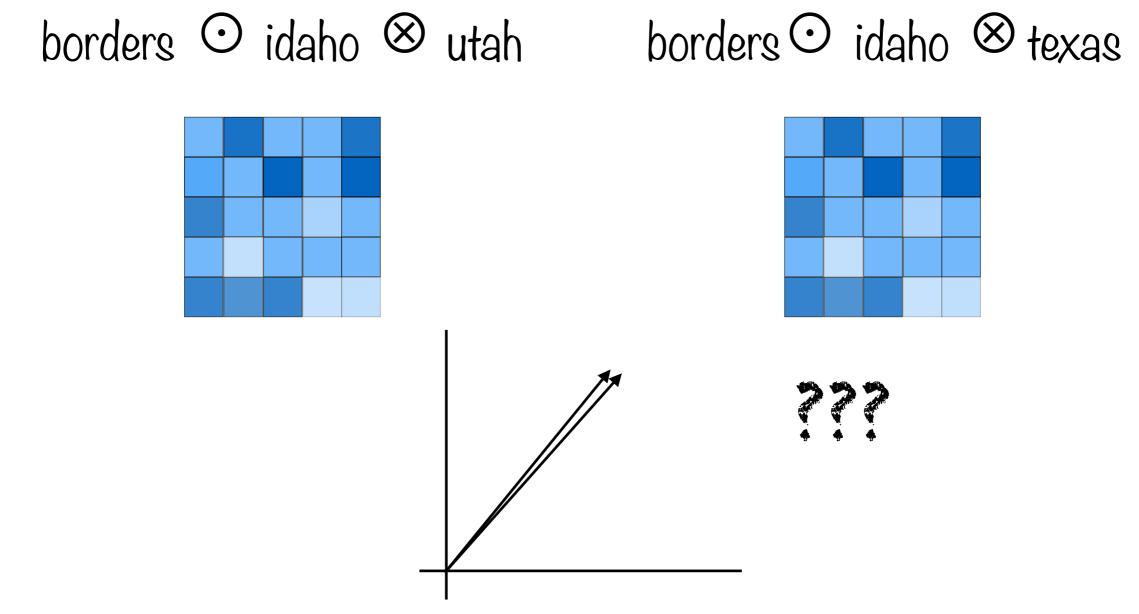


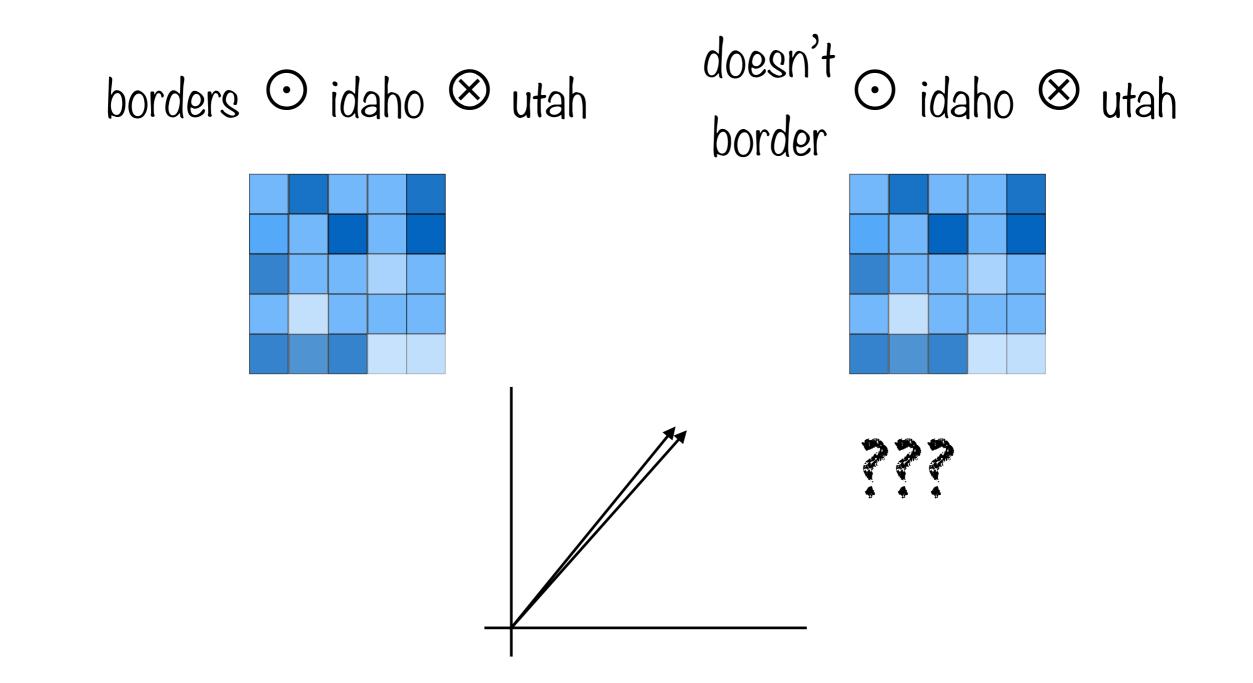
bad	electronic	historical
luck	communication	тар
bad	elec. storage	topographical
bad weekend	elec. transmission	atlas
good spirit	purpose	hist. material
important route	nice girl	little war
important transport	good girl	great war
important road	big girl	major war
major road	guy	small war
red cover	special collection	young husband
black cover	general collection	small son
hardback	small collection	small daughter
red label	archives	mistress

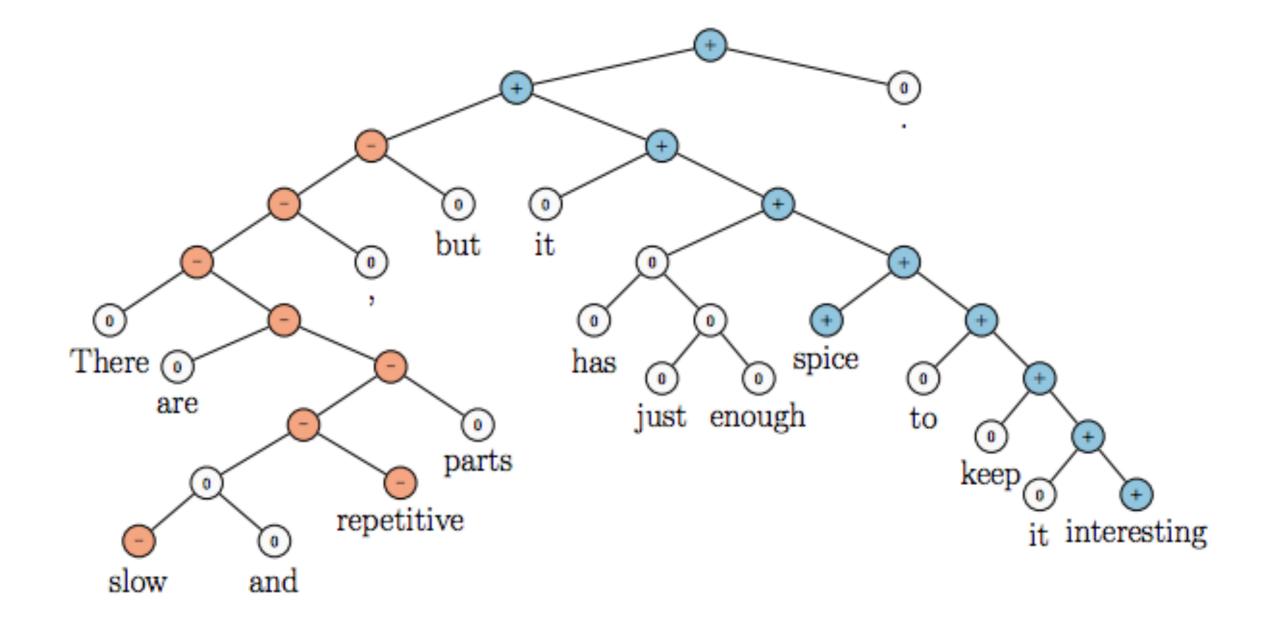
Table 2: Nearest 3 neighbors of specific ANs.

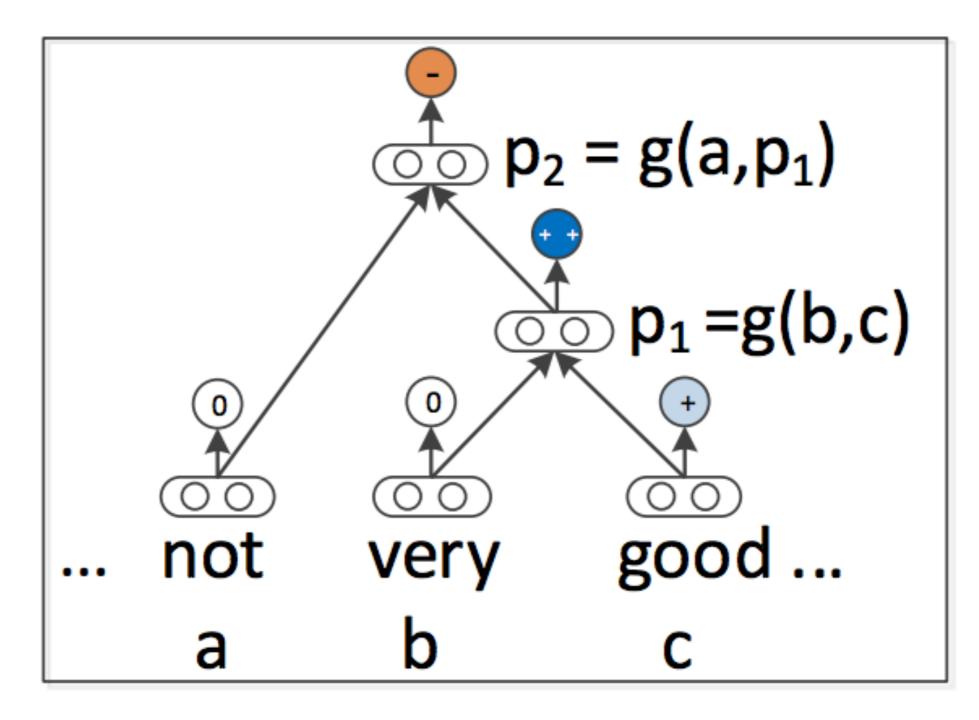
bad	electronic	historical
luck	communication	тар
bad	elec. storage	topographical
bad weekend	elec. transmission	atlas
good spirit	purpose	hist. material
important route	nice girl	little war
important transport	good girl	great war
important road	big girl	major war
major road	guy	small war
red cover	special collection	young husband
black cover	general collection	small son
hardback	small collection	small daughter
red label	archives	mistress

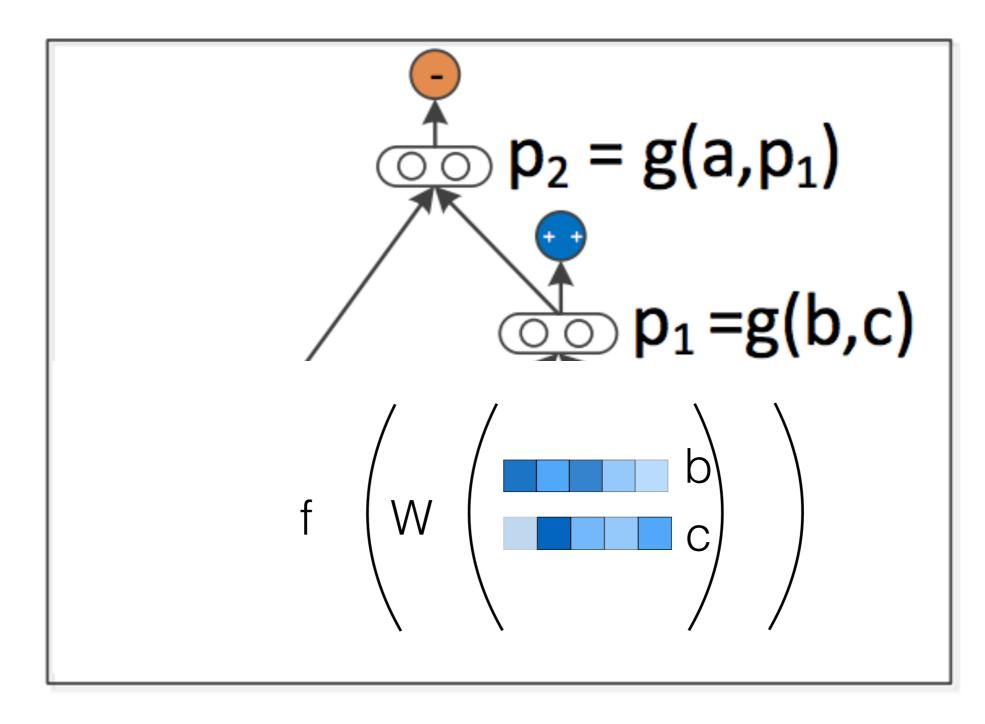
Table 2: Nearest 3 neighbors of specific ANs.



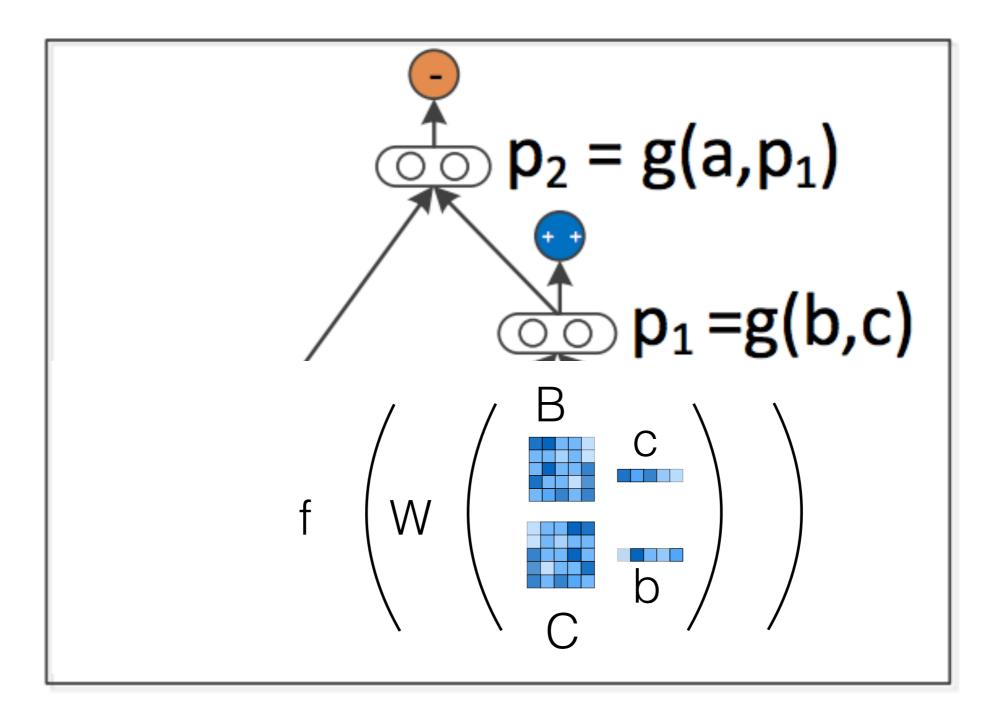




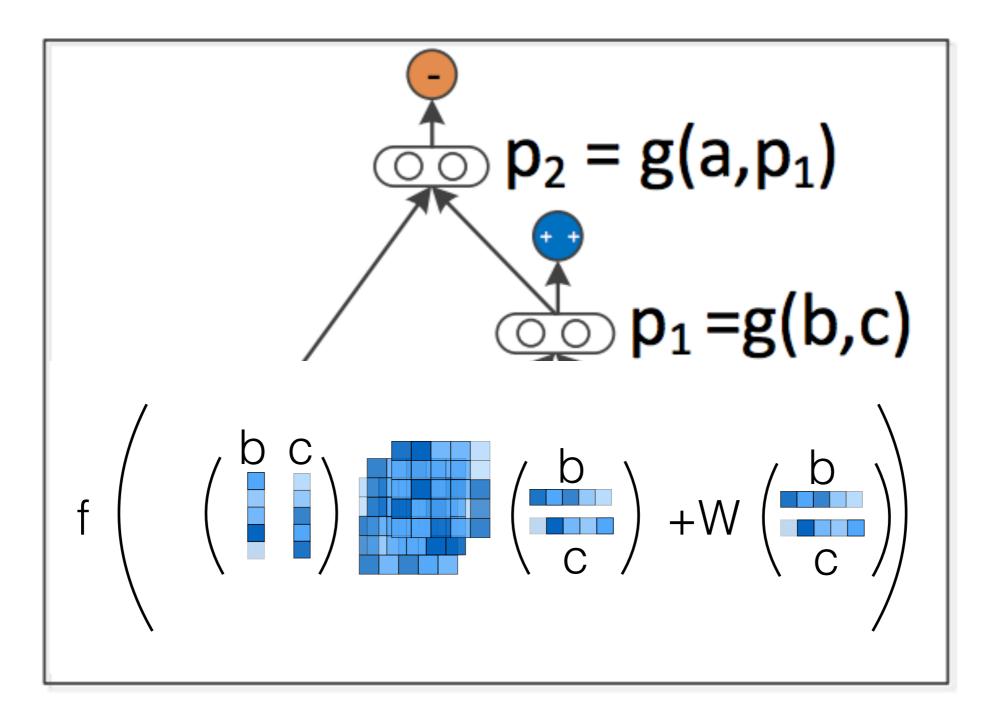




Basic RNN

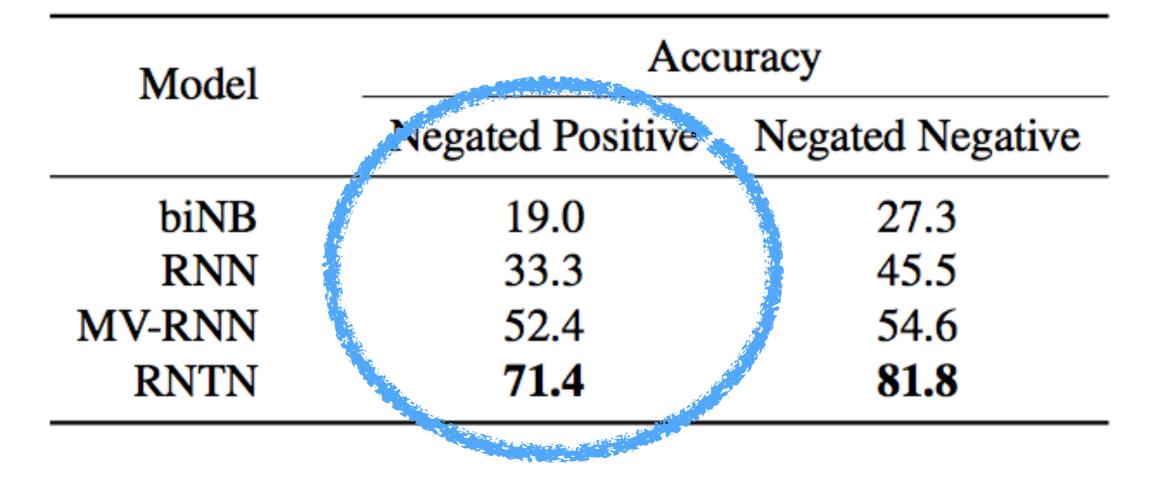


Matrix-Vector RNN Socher et al (2013)



Recursive Neural Tensor Network (2013)

Model	Accuracy	
	Negated Positive	Negated Negative
biNB	19.0	27.3
RNN	33.3	45.5
MV-RNN	52.4	54.6
RNTN	71.4	81.8



It is one of the most/ least compelling variations of these theme

Model	Accuracy	
mouer	Negated Positive	Negated Negative
biNB	19.0	27.3
RNN	33.3	45.5
MV-RNN	52.4	54.6
RNTN	71.4	81.8

The movie was [not] terrible.

Every person danced.

Every young woman danced.

Every person danced. $\forall x (person(x) \rightarrow danced(x))$

 $\forall x ((woman(x) \land young(x)) \rightarrow danced(x))$ Every young woman danced.

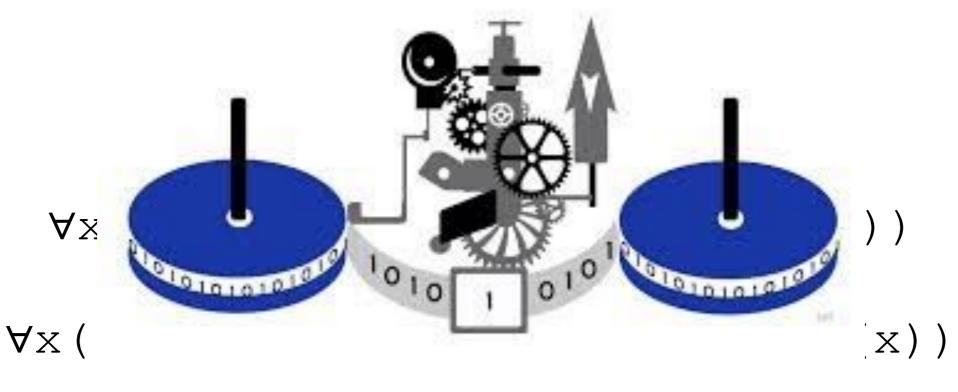
Every person danced. $\forall x (person(x) \rightarrow danced(x))$

 $\forall x (woman(x) \rightarrow person(x))$

 $\forall x (\forall P ((P(x) \land young(x)) \rightarrow P(x)))$

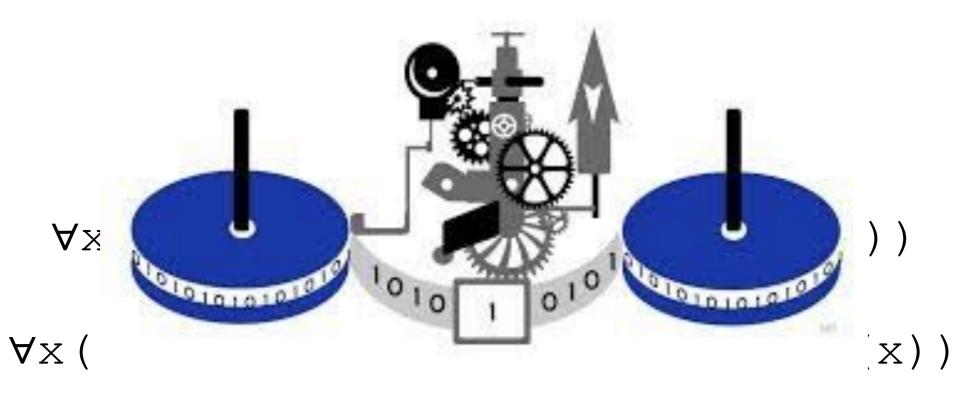
 $\forall x ((woman(x) \land young(x)) \rightarrow danced(x))$ Every young woman danced.

Every person danced.



Every young woman danced.

Every person danced.



Every young woman danced.

Every person danced. $\forall x (person(x) \rightarrow danced(x))$

 $\forall x (woman(x) \rightarrow person(x))$

 $\forall x (\forall P ((P(x) \land young(x)) \rightarrow P(x)))$

 $\forall x ((woman(x) \land young(x)) \rightarrow danced(x))$ Every young woman danced.

Every person danced. $\forall x (person(x) \rightarrow danced(x))$

 $\forall x (woman (x) \rightarrow person (x))$

 $\forall x (\forall P ((P(x) \land young(x)) \rightarrow P(x)))$

 $\forall x ((woman(x) \land young(x)) \rightarrow danced(x))$ Every young woman danced.

Every person danced.

Every young woman danced.

Every person danced.

Every young woman danced.

semantic inclusion

Every person danced.

Every young woman danced.

downward monotone

Every person danced.

person ⊐ young woman every person ⊏ every young woman

Every young woman danced.

downward monotone

Every person danced.

Every young woman danced.

downward monotone

Every person danced.

Every young woman moved.

Alignment

Every person danced.

Every young woman moved.

Alignment

Every person danced.

SUB (person, woman) Every woman danced.

INS (young) Every young woman danced.

SUB (danced, moved) Every young woman moved.

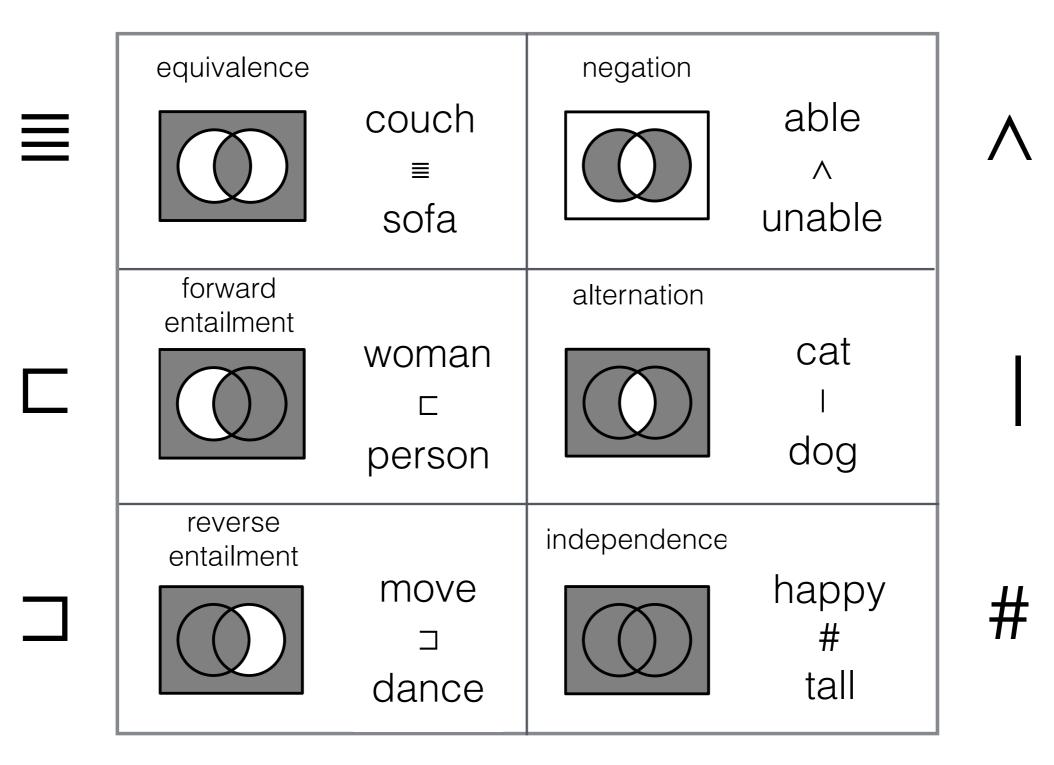
Entailment Classification

Every person danced.

SUB (person, woman) Every woman danced.

INS (young) Every young woman danced.

SUB (danced, moved) Every young woman moved.



Entailment Classification

Every person danced.

SUB (person, woman) Every woman danced.

INS (young) Every young woman danced.

SUB (danced, moved) Every young woman moved.

The NatLog System	٦
-------------------	---

Entailment Classification

Every person danced.

reverse entailment

SUB (person, woman) Every woman danced.

INS (young) Every young woman danced.

SUB (danced, moved) Every young woman moved.

Entailment Classification

Every person danced.

SUB (person, woman) Every woman danced.

reverse entailment

INS(young)

Every young woman danced.

SUB (danced, moved) Every young woman moved.

Entailment Classification

Every person danced.

SUB (person, woman) Every woman danced.

INS (young) Every young woman danced.

forward entailment

SUB (danced, moved) Every young woman moved.

Entailment Classification

Every person danced.

SUB (person, woman) Every woman danced.

INS (young) Every young woman danced.

SUB (danced, moved) Every young woman moved.

Projectivity Marking

Every person danced.

Projectivity Marking

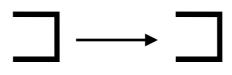
Every person danced.

upward monotone

Projectivity Marking

Every person moved.

upward monotone



danced ⊏ moved every person danced ⊏ every person moved

Projectivity Marking

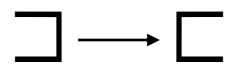
Every person danced.

downward monotone

Projectivity Marking

Every woman danced.

downward monotone



person ⊐ young woman every person ⊏ every young woman

Projectivity Marking

Every person danced.

SUB (person, woman) Every woman danced.

INS (young) Every young woman danced.

SUB (danced, moved) Every young woman moved.

Projectivity Marking

Every person danced.

SUB (person, woman) Every woman danced.

INS (young) Every young woman danced.

SUB (danced, moved) Every young woman moved.

Projectivity Marking

Every person danced.

SUB (person, woman) Every woman danced.

INS (young) Every young woman danced.

SUB (danced, moved) Every young woman moved.

Joining Entailment Relations

Every person danced.

SUB (person, woman) Every woman danced.

INS (young) Every young woman danced.

SUB (danced, moved) Every young woman moved.

Joining Entailment Relations

Every person danced.

SUB (person, woman) Every woman danced.

Every young woman danced. 🔛

INS (young)

SUB (danced, moved) Every young woman moved.

Joining Entailment Relations

Every person danced.

SUB (person, woman) Every woman danced.

Every young woman danced.

INS (young)

SUB (danced, moved) Every young woman moved.

Joining Entailment Relations

No person danced.

SUB (person, woman) No woman danced.

INS (young)

No young woman danced.

SUB (danced, moved) No young woman moved.

Sentence-Level Semantics

Natural Language Inference	Logical Forms	
ungrounded—relate text to other text	grounded—relate text to tables in a database, or actions on a robot	

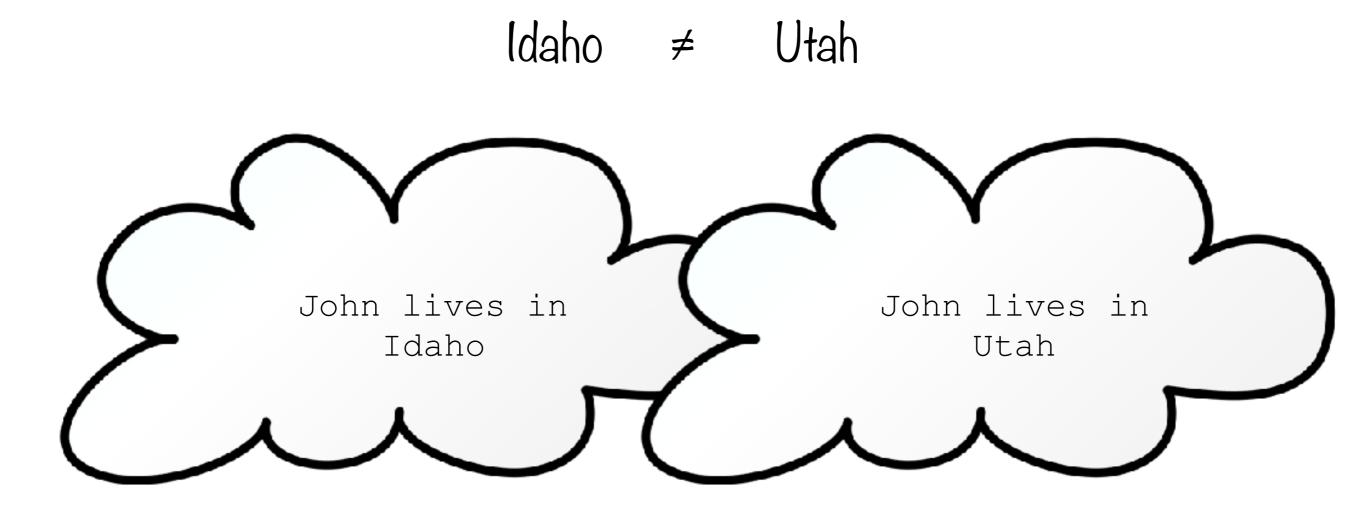
Denotational semantics

Idaho ≈ Utah

Denotational semantics

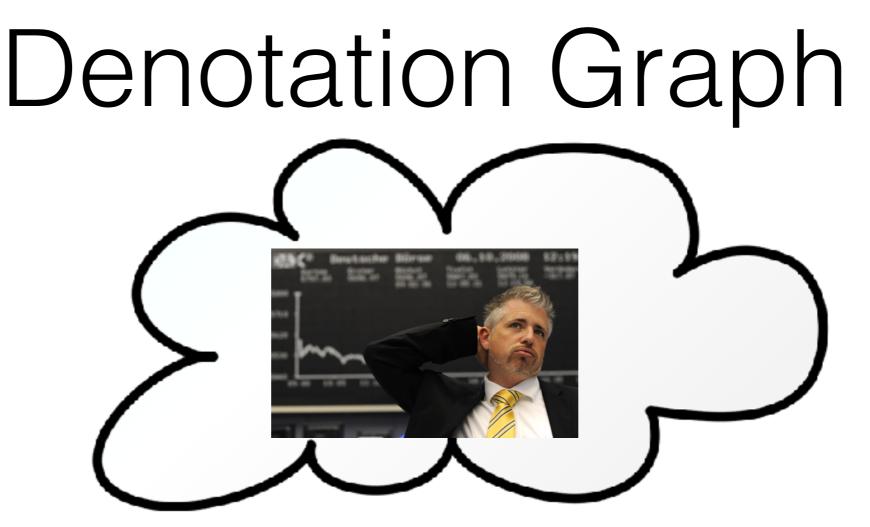
Idaho ≠ Utah

Denotational semantics



Denotation Graph

Young et al. (2014)



Gray haired man in black suit and yellow tie working in a financial environment. A graying man in a suit is perplexed at a business meeting. A businessman in a yellow tie gives a frustrated look. A man in a yellow tie is rubbing the back of his neck. A man with a yellow tie looks concerned.

Young et al. (2014)

Denotation Graph

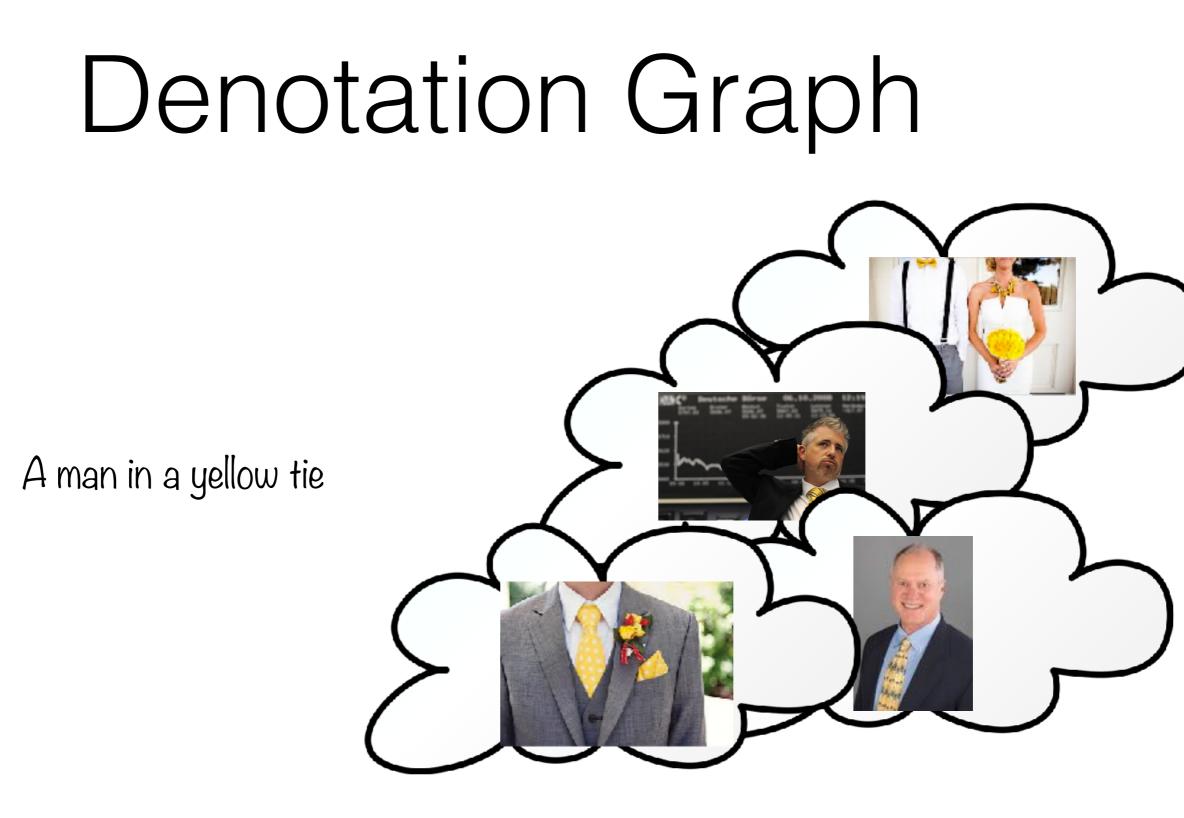
A businessman in a yellow tie gives a frustrated look.

Young et al. (2014)

Denotation Graph

A businessman in a yellow tie

Young et al. (2014)



Young et al. (2014)

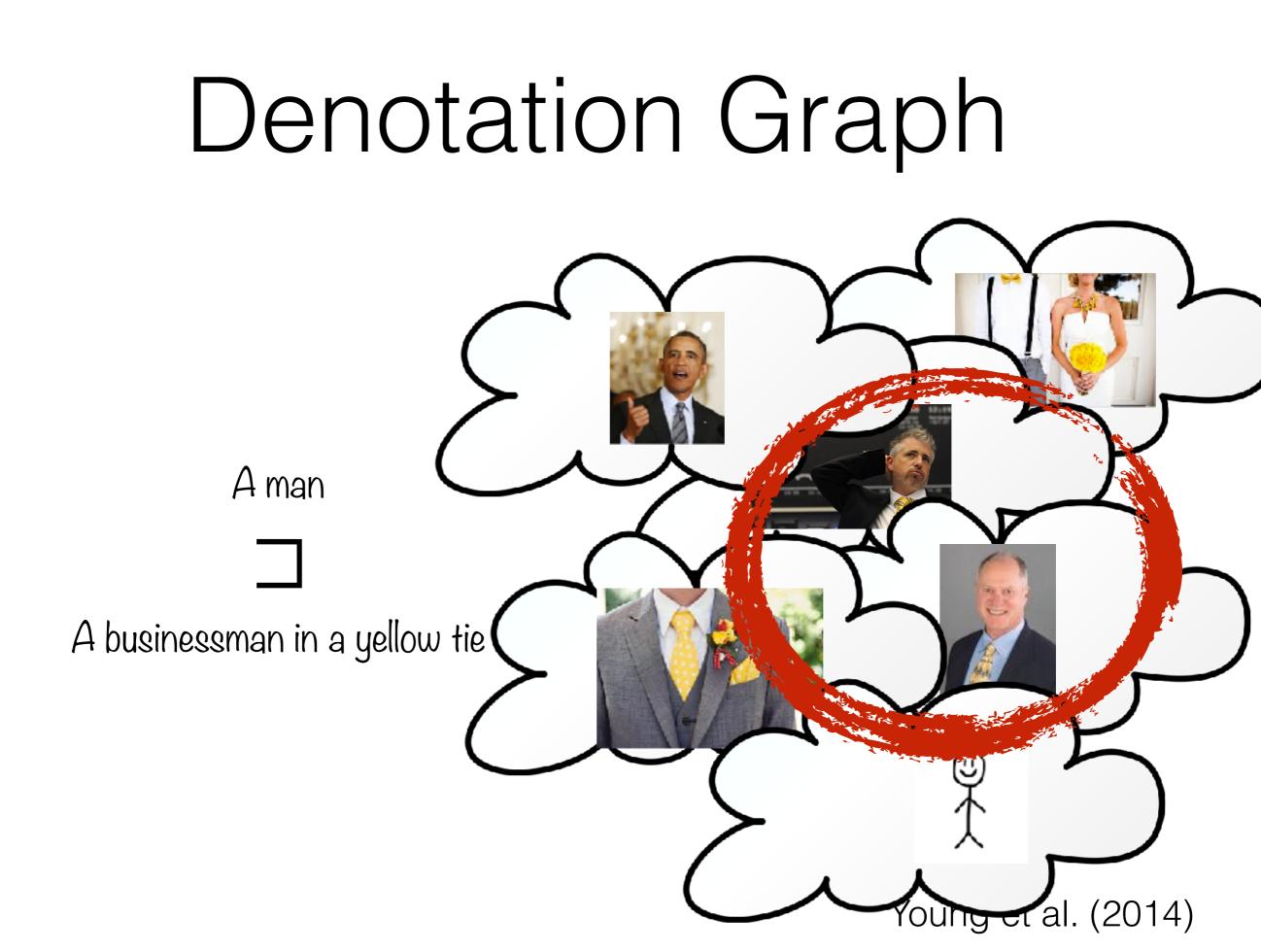
Denotation Graph

A man in a tie

Young et al. (2014)

Denotation Graph

A man



Distributional Similarity

Denotational Similarity

play game play rugby play soccer play on field play ball

tackle person hold football run down field wear white jersey avoid

Denotation Graph

yellow tie

red tie

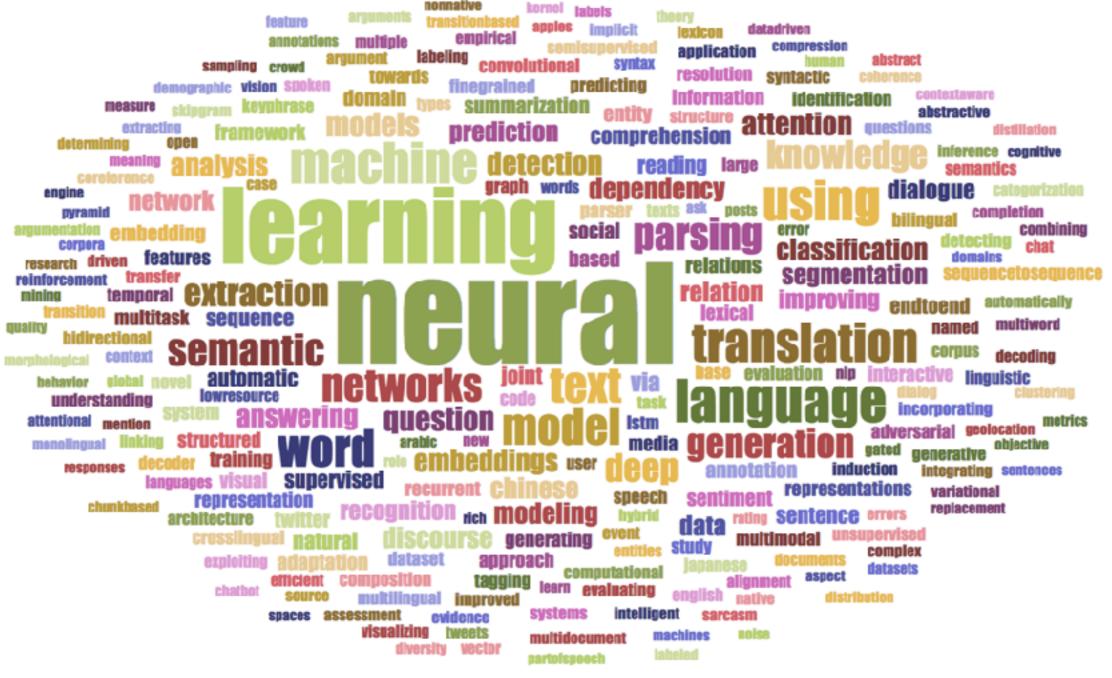
<u>\$</u>\$\$

yellow dress

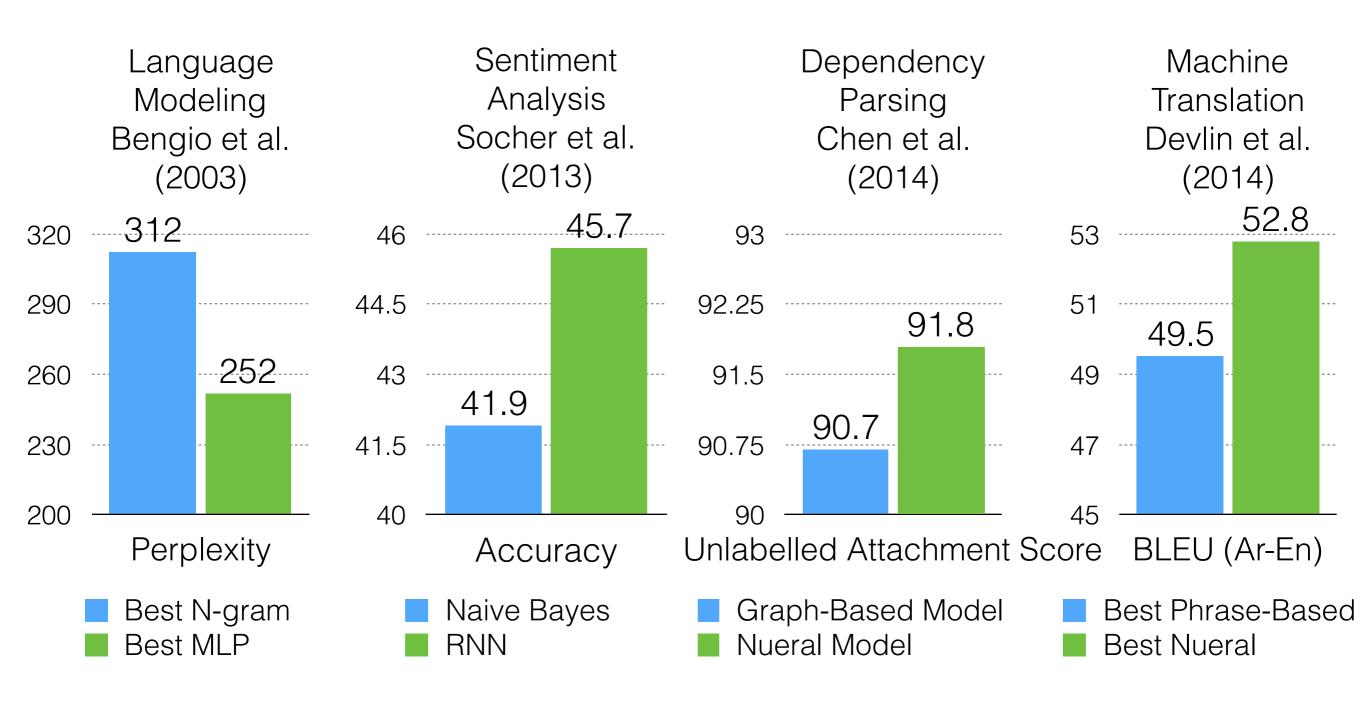
Pause: Questions!

So....uh...does this really matter?

Deep Learning is Taking Over NLP!



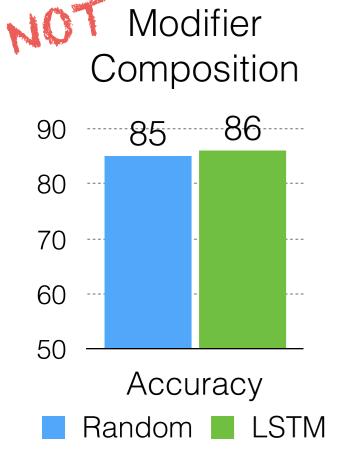
Titles of ACL Papers, 2017



SOTA on all the benchmark tasks

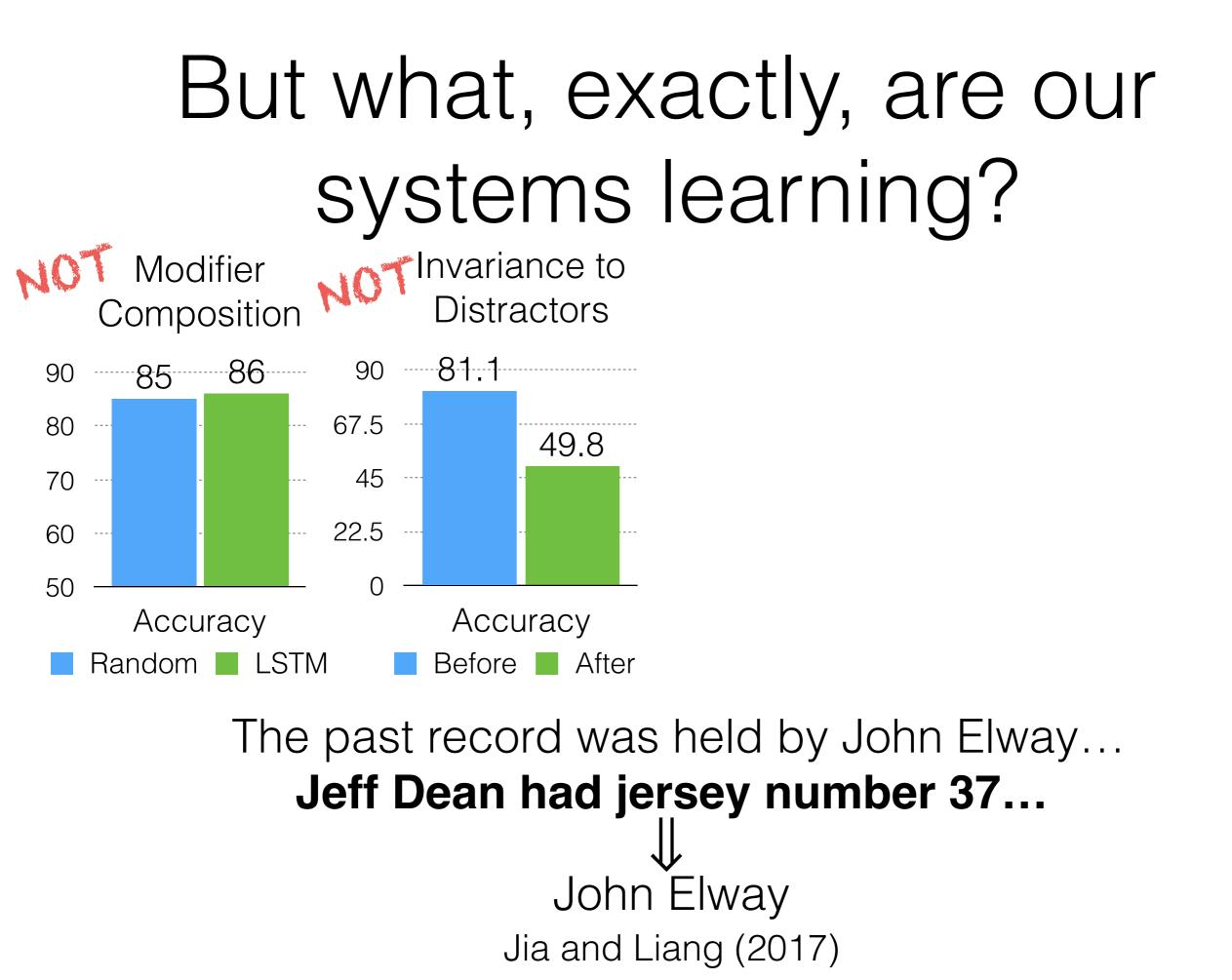
But what, exactly, are our systems learning?

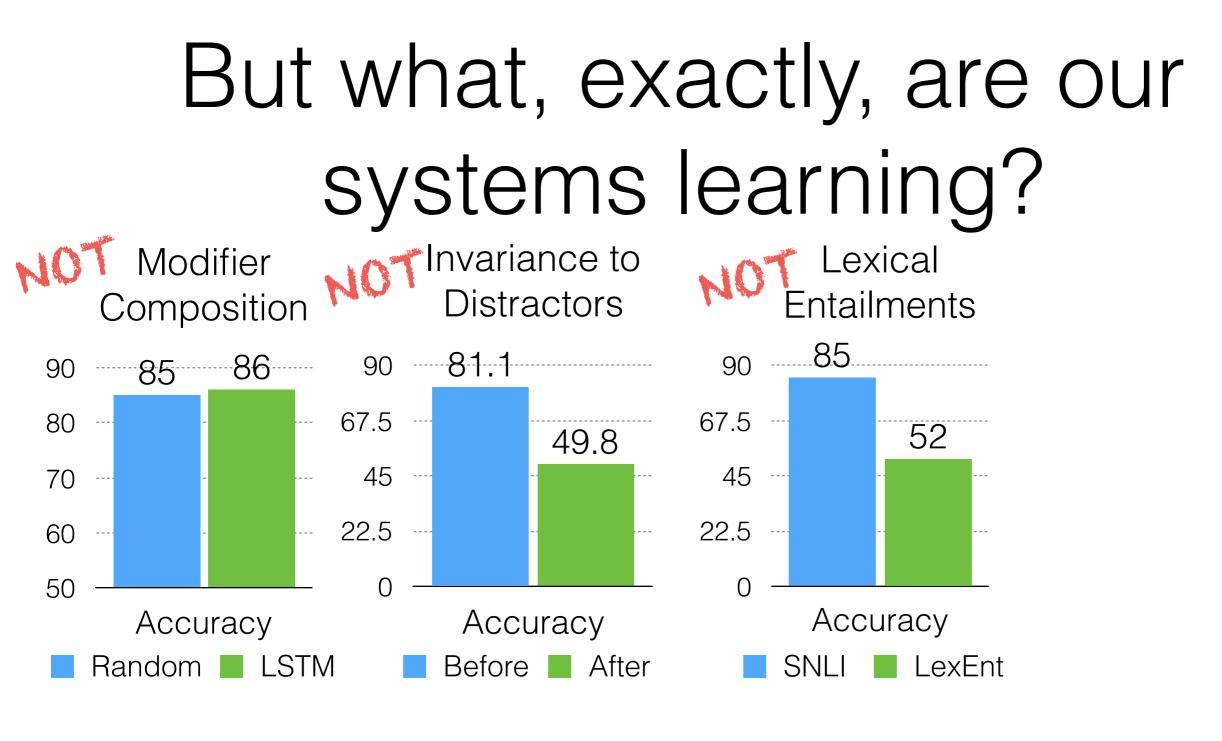
But what, exactly, are our systems learning?



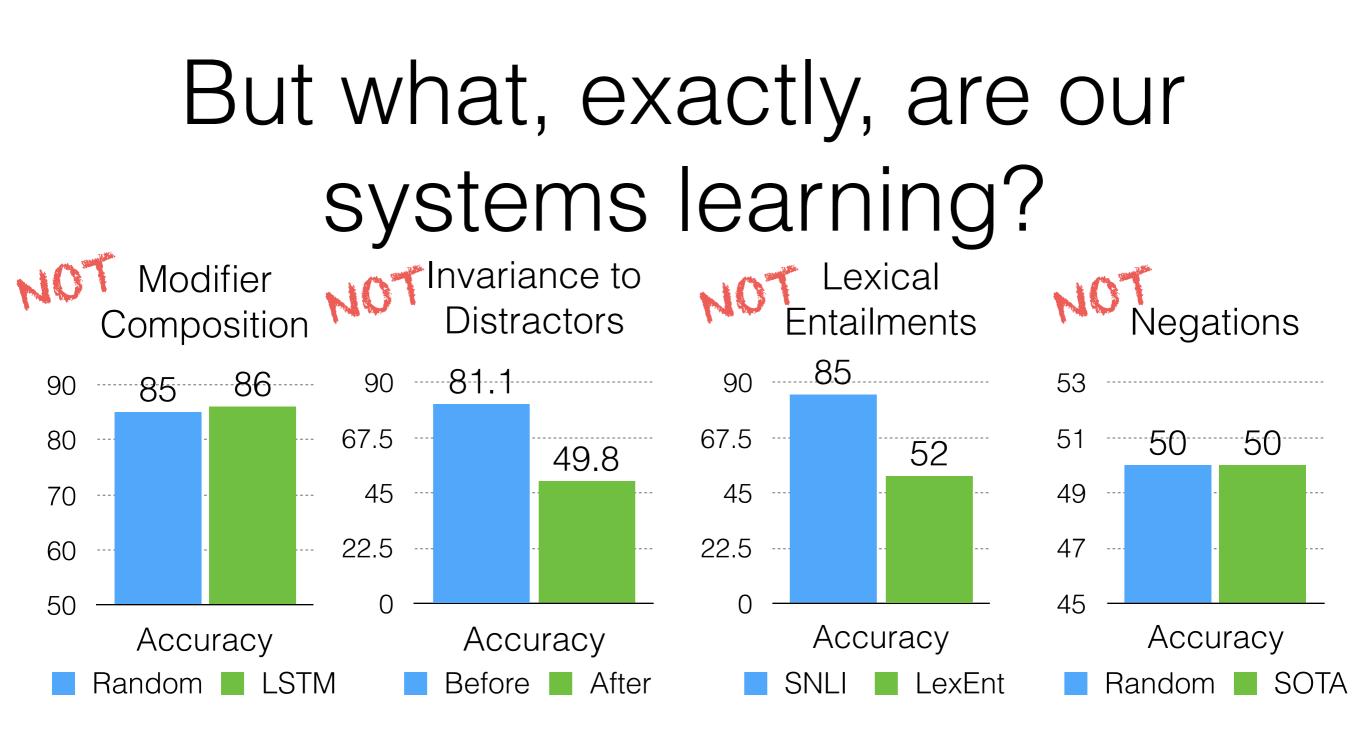
The **attack** killed at least 12 civilians. ↓ The **deadly attack** killed at least 12 civilians.

Pavlick and Callison-Burch (2016)

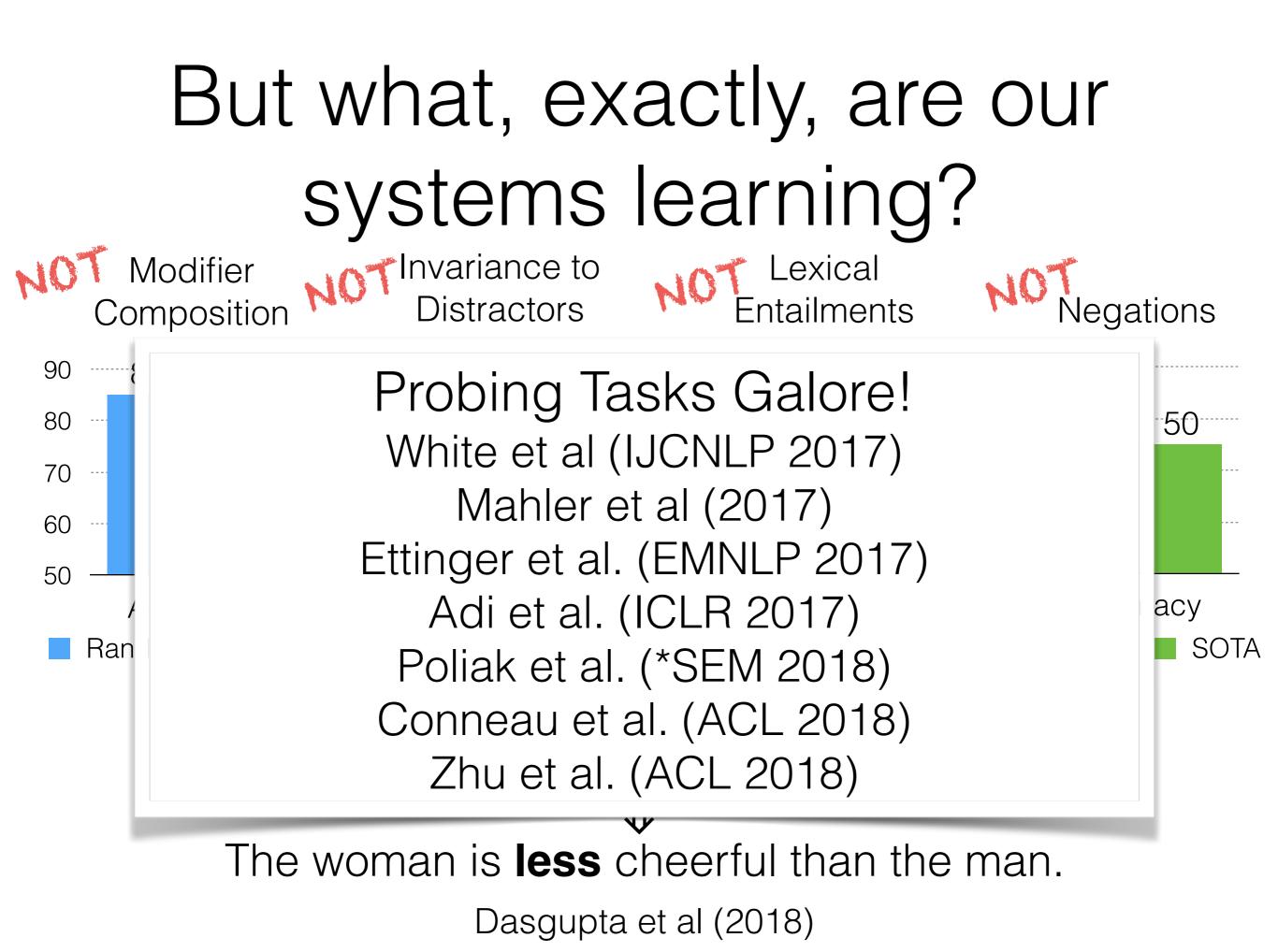


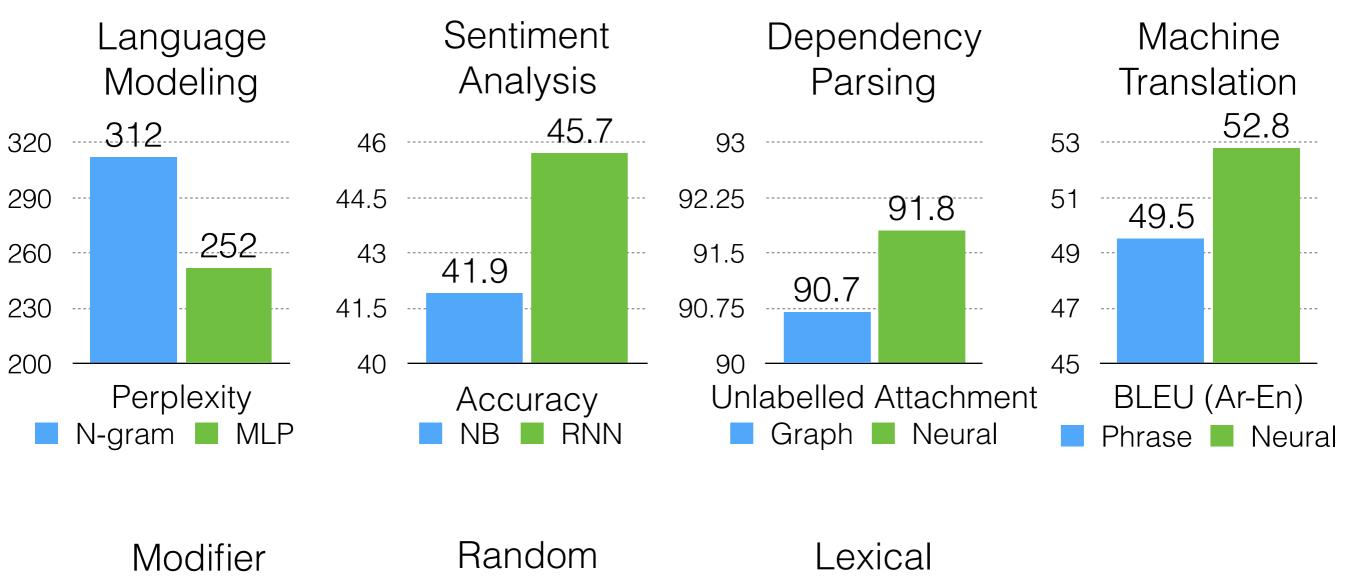


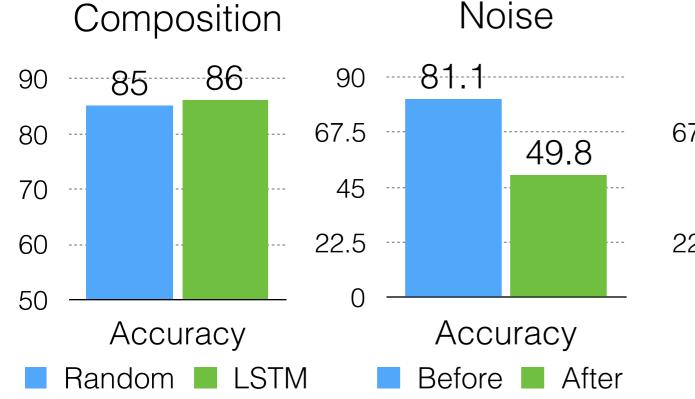
The man is holding a **saxophone.** ↓ The man is holding an **electric guitar**. Glockner et al (ACL 2018)

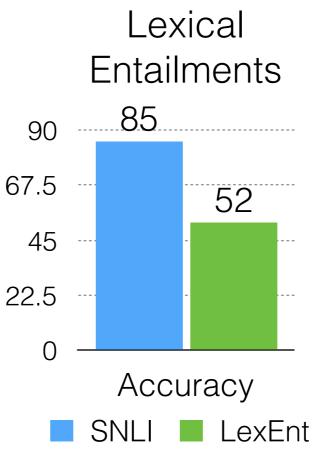


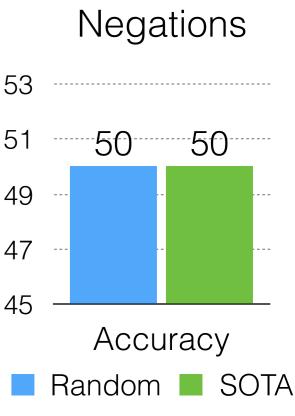
The woman is **more** cheerful than the man. \downarrow The woman is **less** cheerful than the man. Dasgupta et al (2018)

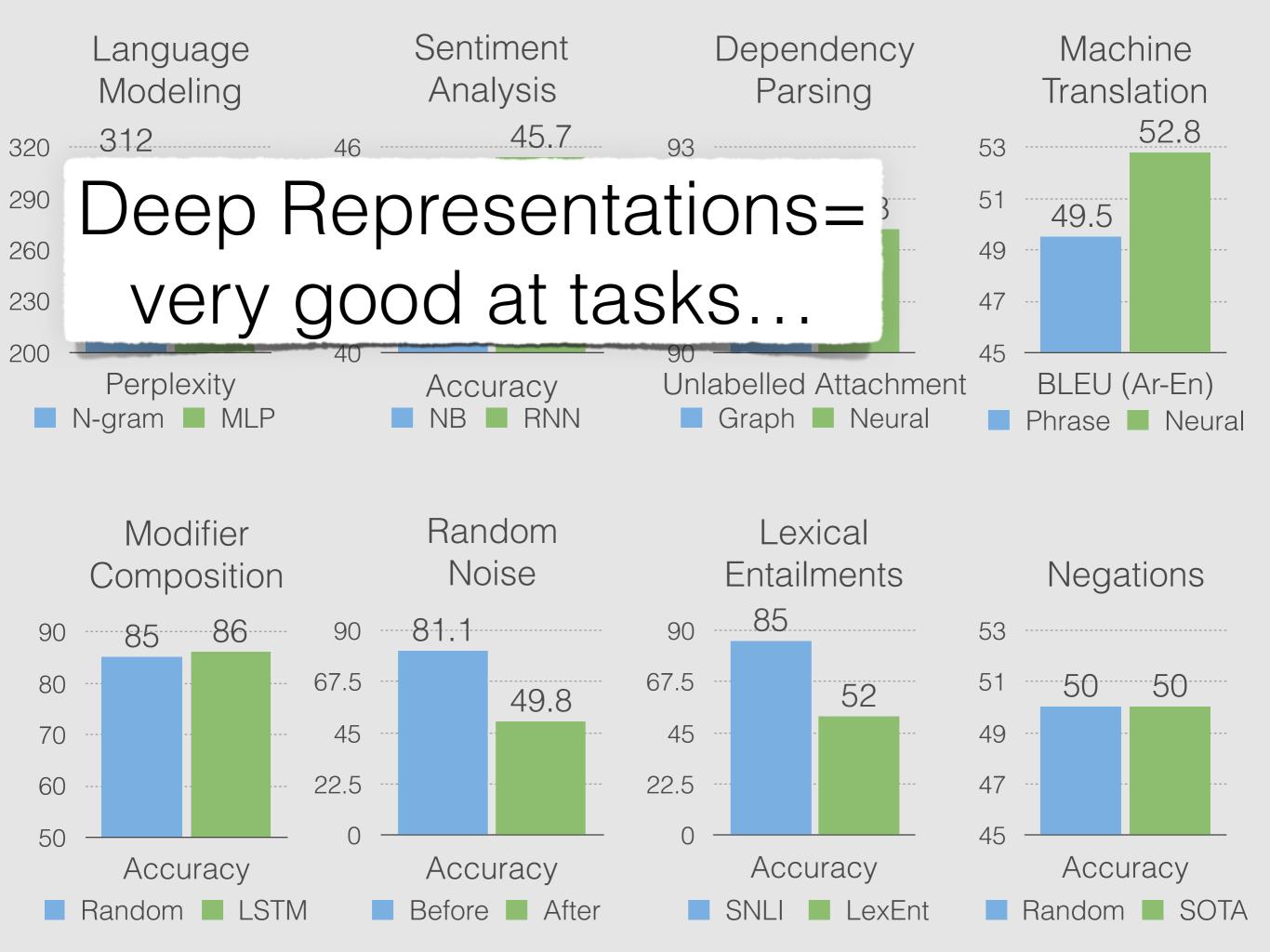


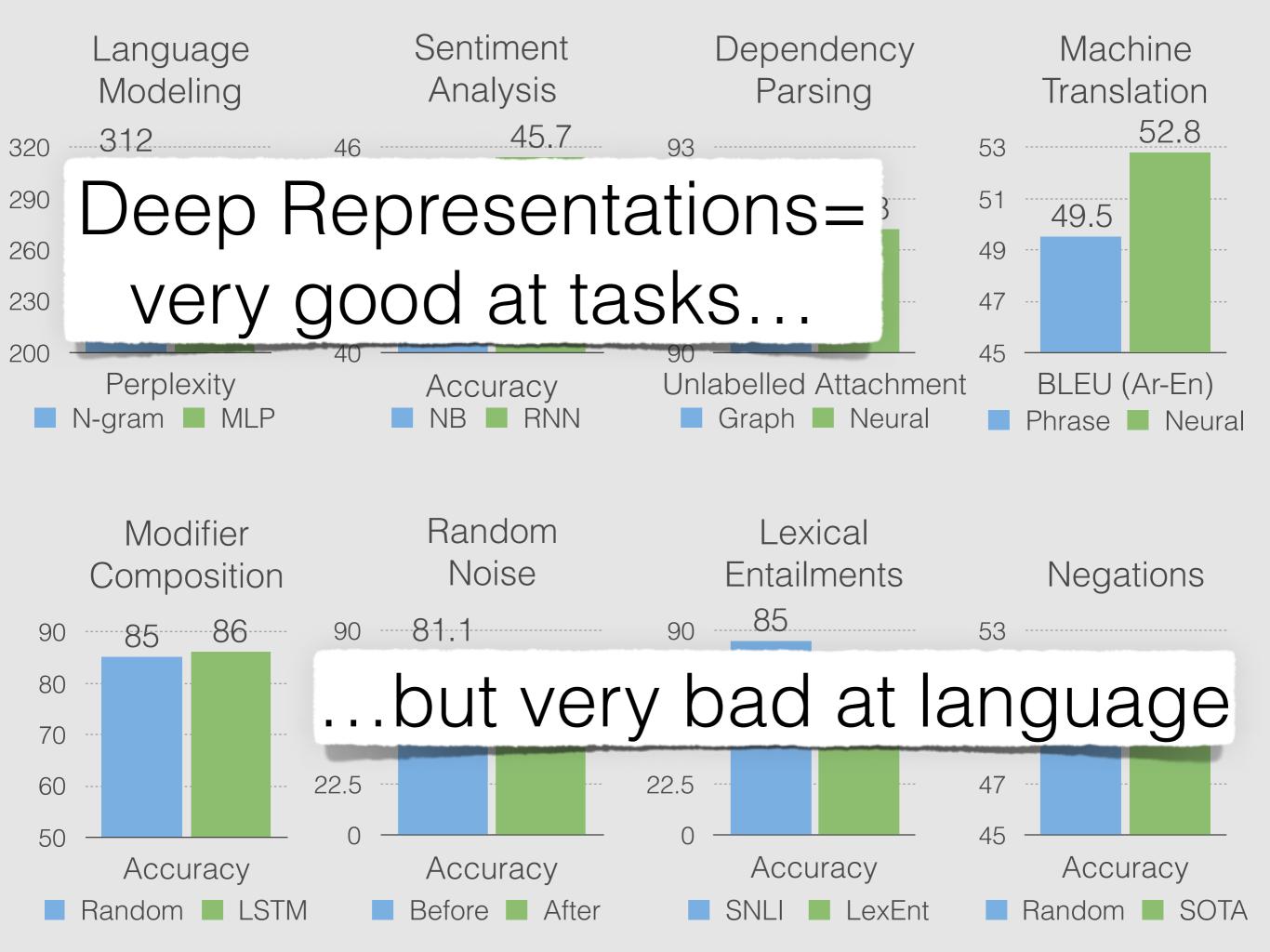












What do we want our systems to learn?

This workshop deals with the evaluation of general-purpose vector representations for linguistic units (morphemes, words, phrases, sentences, etc). What distinguishes these representations (or embeddings) is that they are not trained with a specific application in mind, but rather to capture broadly useful features of the represented units. Another way to view their usage is through the lens of transfer learning: The embeddings are trained with one objective, but applied on others.

Evaluating general-purpose representation learning systems is fundamentally difficult. They can be trained on a variety of objectives, making simple intrinsic evaluations useless as a means of comparing methods. They are also meant to be applied to a variety of downstream tasks, which will place different demands on them...

RepEval 2017 (Bowman, Goldberg, Hill, Lazaridou, Levy, Reichart, and Søgaard)

This workshop deals with the evaluation of general-purpose

vector representations for Linguistic units (morphemes, words, phrases, sentences, etc). What distinguishes these representations (or embeddings) is that they are not trained with a specific application in mind, but rather to capture broadly useful features of the represented units. Another way to view their usage is through the lens of transfer learning: The embeddings are trained with one objective, but applied on others.

Evaluating general-purpose representation learning systems is fundamentally difficult. They can be trained on a variety of objectives, making simple intrinsic evaluations useless as a means of comparing methods. They are also meant to be applied to a variety of downstream tasks...

> RepEval 2017 (Bowman, Goldberg, Hill, Lazaridou, Levy, Reichart, and Søgaard)

This workshop deals with the evaluation of general-purpose vector representations for linguistic units (morphemes, words, phrases, sentences, etc). What distinguishes these representations (or embeddings) is that they are not trained with a specific application in mind, but rather to **capture broadly useful features** of the represented units. Another way to view their usage is through the lens of transfer learning: The embeddings are trained with one objective, but applied on others.

Evaluating general-purpose representation learning systems is fundamentally difficult. They can be trained on a variety of objectives, making simple intrinsic evaluations useless as a means of comparing methods. They are also meant to be applied to a variety of downstream tasks, which will place different demands on them...

RepEval 2017

(Bowman, Goldberg, Hill, Lazaridou, Levy, Reichart, and Søgaard)

This workshop deals with the evaluation of general-purpose vector representations for linguistic units (morphemes, words, phrases, sentences, etc). What distinguishes these representations (or embeddings) is that they are not trained with a specific application in mind, but rather to capture broadly useful features of the represented units. Another way to view their usage is through the lens of transfer learning: The embeddings are trained with one objective, but applied on others.

Evaluating general-purpose representation learning systems is fundamentally difficult. They can be trained on a variety of objectives, making simple intrinsic evaluations useless as a means of comparing methods. They are also meant to be applied to a variety of downstream tasks, which will place different demands on them...

> RepEval 2017 (Bowman, Goldberg, Hill, Lazaridou, Levy, Reichart, and Søgaard)

"There is in my opinion no important theoretical difference between natural languages and the artificial languages of logicians; indeed I consider it possible to comprehend the syntax and semantics of both kinds of languages with a single natural and mathematically precise theory."

"There is in my opinion no important theoretical difference between natural languages and the artificial languages of logicians; indeed I consider it possible to comprehend the syntax and semantics of both kinds of languages with a single natural and mathematically precise theory."

-Richard Montague

"There is in my opinion no important theoretical difference between natural languages and the artificial languages of logicians; indeed I consider it possible to comprehend the syntax and semantics of both kinds of languages with a single natural and mathematically precise theory."

-Richard Montague

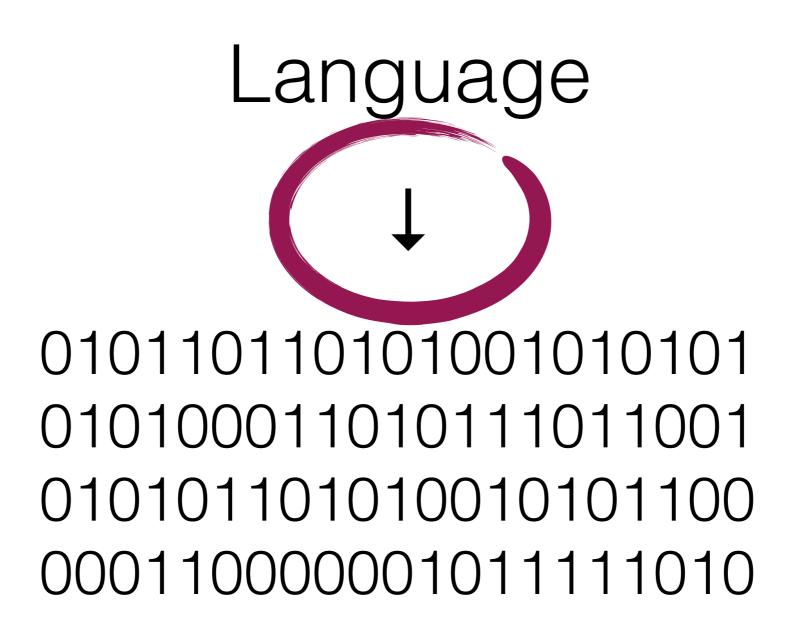
Language

Language \downarrow $\forall x \forall y (P(f(x)) \rightarrow \neg(Q(f(y), x))$

$\begin{array}{c} \text{Language} \\ \downarrow \\ \lambda x.f(y,g(x)) \land h(y) \end{array}$

Language \downarrow $o_t = \sigma_g (W_o x_t + U_o h_{t-1} + b_o)$

Language



Questions!