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Chapter 1

Introduction

1.1 Planned work

1.1.1 Introduction

Modern automatic speech recognition (ASR) systems consist of two major statistical models: the
Language Model (LM) and the Acoustic Model (AM). The LM models probabilities of word sequences
and the AM describes distributions of acoustic features for individual phones (or senones). Typically,
the two statistical models are independently trained from large volumes of text data and annotated
speech data, respectively. The component connecting these two models is the pronunciation lexicon
mapping words into phone sequences. The pronunciation lexicon is typically manually designed by an
expert familiar with the language of interest. Recently, there has been an increased interest (e.g. in
IARPA Babel and DARPA LORELEI programs) in rapidly developing ASR systems for new “exotic”
low-resource languages, where such expert-level linguistic input and manual speech transcription are
too expensive, too time consuming, or simply impossible to obtain.

Figure 1.1: Overall scheme of the work planned.

As illustrated in Figure 1.1, we propose to develop models and techniques that will allow us to
train an ASR system for a new low-resource target language, where only text data and “unrelated”
untranscribed speech recordings are available. During the training, the proposed models must be able
to reveal and match the patterns seen in text data (i.e. the regularities seen in the word sequences)
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with similar patterns observed in speech signal. To accomplish this task reliably, we propose to
leverage data from other high-resource languages, for which transcribed data and expert knowledge
are available. For example, to discover patterns of phone-like units in speech, it is important to
discriminate between the phonetic variability in the speech signal and the variability attributed to
other causes (speaker, channel, noise, etc.). To a large extent, this knowledge can be learned from the
transcribed speech of the high-resource languages and used for building the target ASR system.

1.1.2 Research

Recently, discriminatively trained Deep Neural Networks (DNNs) have been very successful in ASR and
have largely superseded the more traditional generative models. We also plan to use DNNs to facilitate
knowledge transfer from the high-resource languages as will be described later. However, this project
mainly focuses on Bayesian generative models, which are more suitable for the unsupervised discovery
of latent patterns in untranscribed data. As illustrated in Figure 1.2, the envisioned generative model
consists of the same components as the traditional model for ASR. A sequence of words is assumed to
be generated from a “known” statistical language model, which can be estimated from the available
text data. The word (or corresponding letter) sequence is converted into a sequence of acoustic (phone-
like) units using the lexicon model. Finally, the corresponding sequence of observed speech features
is assumed to be generated from the acoustic model. However, unlike in the case of the traditional
ASR system with a handcrafted lexicon and supervised acoustic model training, a proper Bayesian
non-parametric model will be used to represent the lexicon and acoustic model in order to jointly solve
the following problems arising during the unsupervised training:

1. dividing speech into phone-like segments,

2. clustering the segments to obtain a repository of acoustic phone-like units

3. learning the corresponding acoustic model (i.e. acoustic unit feature distributions)

4. learning the lexicon as a statistical model for translating letter sequence into a sequence of the
discovered (possibly context-dependent) acoustic units, and

5. discovering sequences of acoustic units and words that are in agreement with the language model.

Figure 1.2: Envisioned generative model.

The important and novel feature of our model will be the possibility to learn from the high-resource
languages. In the framework of Bayesian generative models, we can design a model where some of
the parameters and latent variables are shared across languages. In other words, we can assume that
speech from all languages is generated from a single properly defined generative model. Some of the
variables can be considered as observed for the supervised languages and hidden for the target low-
resource language. Posterior distributions over some latent variables estimated from the high-resource
languages can be used as priors in the inference for the low-resource language.

7



1.1.3 Related Work

To give a more concrete idea of our envisioned model, we now review several previously proposed
models, each focusing on some part of our problem. During the workshop, we would like to adapt
these models to our needs and use them as the building blocks to solve the whole problem of training
from untranscribed data. Note that the potential workshop participants are often the authors of the
reviewed models or people with the appropriate expertise.

In [6], a Bayesian non-parametric model for acoustic unit discovery was proposed, based on a
Dirichlet Process Mixture of HMMs. This model jointly solved the problem of 1) discovering acoustic
units in speech signal, 2) segmenting speech into such units, and 3) learning their HMM models. In
[50], the model was further extended with a pronunciation lexicon component based on Hierarchical
Dirichlet distribution model. This model allowed the acoustic model to be trained from orthographi-
cally transcribed speech without any need for a handcrafted lexicon or definition of phonetic units by
an expert. In these works, Gibbs sampling was used for inference, which made the training slow and
impractical for application to larger data sets. Variational Bayesian inference is proposed to train a
similar acoustic unit discovery model in [7], where improvements in both scalability and quality of the
discovered acoustic units were reported. None of the models, however, made any attempt to lever-
age the data from the high-resource languages to improve the acoustic unit discovery for the target
language.

One simple way of using the data from the high-resource languages, which we also plan to inves-
tigate, is to use DNN based multilingual bottle-neck (BN) speech features for training the acoustic
unit discovery model. The BN features, which are discriminatively trained on multiple languages to
suppress information irrelevant for phone discrimination, have already proved to provide excellent
performance when building ASR systems for languages with limited amount of transcribed data [3].

The problem of acoustic unit discovery is very similar to speaker diarization. It was shown that
a fully Bayesian model for speaker diarization can greatly benefit from Joint Factor Analysis inspired
priors describing across-speaker variability in the space of speaker model parameters [2]1. Similar
priors describing within- and across-phone variabilities can be robustly trained from the high-resource
languages and incorporated into our model for acoustic unit discovery. This concept is also similar to
the Subspace GMM model, which was successfully used for multilingual acoustic modeling [1].

Non-parametric Bayesian models based on Hierarchical Pitman-Yor Processes were successfully
used to learn language models over word-like units automatically discovered (using the same model)
in phone sequences or lattices [54, 4]. These models, however, assume known acoustic units (phones),
which can be obtained from continuous speech using an (error-free) phone recognizer. Heymann et al.
extended this to a real (error-prone) phone recognizer and showed how, through alternating between
language model learning and phone recognition, both improved phone error rates and improved word
discovery F-scores could be obtained [124].

1.1.4 Expected Outcomes

We expect to develop a framework for training ASR systems from untranscribed speech applicable to
data sets of non-trivial size. Also, there will be no need for costly and time consuming construction
of a pronunciation dictionary by an expert linguist. This framework should allow for a speech repre-
sentation that is flexible enough to integrate knowledge from existing languages but also independent
enough to discover new patterns in an unsupervised way. To achieve this goal, we will develop nontriv-
ial extensions to the aforementioned models and combine them into a single functioning framework.
Meta-heuristic optimization [5] will be used to aid the search for the optimal model configuration and
parameter settings.

The important part of our problem is the model for acoustic unit discovery, which will allow us to

1http://speech.fit.vutbr.cz/software/vb-diarization-eigenvoice-and-hmm-priors
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convert speech into discrete high-quality phone-like units. Besides the ASR task, this model might be
also useful for a range of other speech applications, where reliable tokenization is requested (speaker
recognition, language identification, query-by-example keyword spotting, etc). Therefore, we also plan
to evaluate the quality of the discovered acoustic unit sequences by

1. their direct comparison with the true phone sequences (e.g. using the normalized cross-entropy
measure), as well as

2. testing their performance in some of the aforementioned speech applications.

As this is the first attempt to solve the whole problem of training ASR from untranscribed speech,
we believe that the outcomes from the workshop will serve as a starting point for new research in
these directions. Different models and approaches providing much better performance will certainly
emerge soon.

1.2 Summary of work done and scope of chapters

The research performed during the workshop did not lead to the definition of a complete system, but
made people from different disciplines work together and sparkled many ideas that have the potential
to converge to the ultimate goal of building ASR from untranscribed data in the coming years. The
work led to several collaborative papers, mainly for the forthcoming ICASSP 2017 conference in New
Orleans — the following chapters mostly re-use the material from these submissions.

One of the main research avenues at the workshop was the automatic discovery of acoustic units
(AUD). Chapter 2 covers Bayesian acoustic unit discovery with phonotactic language model and is
actually an extension of Ondel’s paper [7] that was the basis of significant amount of work at JHU.
During the workshop, we have investigated into a non-parametric Bayesian phone-loop model where
the prior over the probability of the phone-like units is assumed to be sampled from a Dirichlet Process
(DP). The model is improved by incorporating a Hierarchical Pitman-Yor based bigram Language
Model.

Chapter 3 investigates into alternative inference methods for AUD model training, particularly the
collapsed Gibbs sampling and collapsed variational inference for finite Gaussian mixture models.

While the baseline approaches work with AUD in each language, we have also tried to improve
the AUD performance in a resource-less language by transferring knowledge from other languages
(Chapter 4). We present methods that either use the posterior estimates of the parameters in AUD
models trained on different languages as the prior in the target language AUD training procedure or
utilize information contained in multiple languages while extracting features of the target data for
AUD training.

The workshop also generated a need to evaluate the quality of AUD without having the complete
ASR system. Therefore, Chapter 5 investigates into three empirical strategies of AUD evaluation: (1)
normalized mutual information (NMI) against orthographic phoneme transcripts, (2) same-different
evaluation of word-pairs and (3) spoken document classification and clustering. Furthermore, Chap-
ter 6 deals with assessing the quality of acoustic unit discovery on the task of topic identification
of spoken documents. This is highly relevant for example for the ongoing DARPA Lorelei program,
where the type of incidents need to be detected without a-priori knowledge of the target language.

Chapter 7 targets combining acoustic and lexical unit discovery towards complete unsupervised
LVCSR. Sitting at the “core” of the proposed system, this chapter suggests a feedback from the word
discovery to the acoustic model discovery unit to improve the latter by exploiting the language model
information learned in the former.

Chapter 8 presents fully Bayesian grapheme-to-phoneme (G2P) conversion by joint-sequence mod-
els, improving over the traditional scheme defined by [62] and implemented in the popular Sequitur
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tool2. The proposed scheme is fully transducer-based and combines well with other blocks necessary
for the whole scheme.

The last block, producing human-readable words (as expected at the output of ASR), is addressed
by Chapter 9 dealing with unsupervised learning of pronunciation dictionary from unaligned phone
and word data. Although this task is very challenging and we are at the initial stage, we demonstrate
that a model based on Bayesian learning of Dirichlet processes can acquire word pronunciations from
phone transcripts and text.

Finally, Chapter 10 describes graphemic knowledge transfer. The assumption is that most low-
resource languages are written using a phonemic orthography shared by a high-resource language and
that furthermore, shared graphemes in these orthographies have similar acoustic realizations. We
describe two methods of cross-lingual knowledge transfer by exploiting such shared orthographies.

As it is usual for JHU workshops, we expect a significant portion of new results with origins in hot
Baltimore summer 2016 to appear in the forthcoming years and are looking forward to see the area
of low- and zero-resource ASR flourishing.

2https://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html
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Chapter 2

Bayesian Acoustic Unit Discovery with
Phonotactic Language Model

Lucas Ondel, Lukas Burget, Jan Cernocky, and Santosh Kesiraju

Recent work on Acoustic Unit Discovery (AUD) as led to the development of an non-parametric
Bayesian phone-loop model where the prior over the probability of the phone-like units is assumed
to be sampled from a Dirichlet Process (DP). In this work, we propose to improve this model by
incorporating a Hierarchical Pitman-Yor based bigram Language Model on top of the units’ transitions.
This new model makes use of the phonotactic context information but assumes a fixed number of units.
To remedy this limitation we first train a DP phone-loop model to infer the number of units, then,
the bigram phone-loop is initialized from the DP phone-loop and trained until convergence of its
parameters. Results show an absolute improvement of 1-2 % on the Normalized Mutual Information
(NMI) metric. Furthermore, we show that, combined with Multilingual Bottleneck (MBN) features
the model yields a same or higher NMI as an English phone recogniser trained on TIMIT.

2.1 Introduction

Whereas Automatic Speech Recognition (ASR) systems are more and more frequently used in daily life
applications, the need for labeled data has never been so high. With the ever-growing use of Internet a
huge amount of unlabeled audio data coming from many different countries is now available. However,
because the labeling process by human expert is expensive this data has still been unexploited. In [6], a
nonparametric Bayesian model that automatically segments and labels audio data has been proposed.
The model was later refined in [7] in order to be trained using the Variational Bayes (VB) method.
An attempt to tackle the problem by means of neural networks has also been investigated in [8]. In
[7], the Acoustic Unit Discovery (AUD) is done by clustering temporal sequences with a Dirichlet
Process (DP) based mixture model where, following the Variational treatment of the DP mixture
model [9], the probability of the weights is approximated by a finite Categorical distribution. This
distribution functions as a unigram Language Model (LM) over the units. This generative process is
quite inaccurate as the probability of a phone (and by extension any phone-like unit) strongly depends
on the previous phones. In the present work, we extend the AUD model described in [7] by replacing
the naive Categorical distribution by a non-parametric Bayesian bigram LM. The chapter is organized
as follows: Section 2.2 and 2.3 describes the original model and its extension respectively, Section 2.4
details the training of the extended model, Section 2.5 details how we evaluate the AUD task and
finally, results are presented in Section 2.6.
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2.2 Infinite Phone-Loop Model

Our model aims at segmenting and clustering unlabeled speech data into phone-like categories. It is
similar to a phone-loop model in which each phone-like unit is modeled by an HMM 1. This phone-loop
model is fully Bayesian in the sense that:

• it incorporates a prior distribution over the parameters of the HMMs

• it has a prior distribution over the units modeled by a Dirichlet process [10].

Informally, the Dirichlet process prior can be seen as a standard Dirichlet distribution prior for a
Bayesian mixture with an infinite number of components. However, we assume that our N data
samples have been generated with only M components (M ≤ N) from the infinite mixture. Hence,
the model is no longer restricted to have a fixed number of components but instead can learn its
complexity (i.e. number of components used M) according to the training data. The generation of a
data set with M speech units can be summarized as follows:

1. sample the vector v = v1, ..., vM with

vi ∼ Beta(1, γ)

where γ is the concentration parameters of the Dirichlet process

2. sample M HMM parameters θ1,...,θM from the base distribution of the Dirichlet process

θi ∼ H

3. sample each segment as follows:

(a) choose a HMM parameters with probability πi(v) defined as:

πi(v) = vi

i−1∏
j=1

(1− vj)

(b) sample a path s = s1, ..., sn from the HMM transition probability distribution

(c) for each si in s:

i. choose a Gaussian component from the mixture model

ii. sample a data point from the Gaussian density function

The graphical representation of this model is shown in Figure 2.1a. The priors over the GMM weights,
Gaussian mean and (diagonal) covariance matrix are a Dirichlet and a Normal-Gamma density re-
spectively. A similar model has been applied in [6], however, two major differences should be noted:
first, we have chosen to consider the stick-breaking construction [9] of the Dirichlet process (step 1 and
2 of the generation) rather than the Chinese Restaurant Process (CRP). See [11] and [6] for training
Bayesian models with the CRP. This allows us to use variational methods to infer the distribution
over the parameters rather than sampling methods. Secondly, our model does not have any boundary
variable. The segmentation of the data is carried out by seeing this mixture of HMMs as a single
HMM and using the standard Viterbi algorithm. See [7] for the Variational Bayesian treatment of
this model.

1By abuse of notation we write HMM for the complete HMM/GMM model.
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Figure 2.1: Two different AUD models

(a) Phone-Loop model with a Dirichlet Process prior
(b) Phone-Loop model with a bigram phonotactic
HPYLM

2.3 Bigram Phone-Loop Model

The model previously described is able to learn the appropriate number of units for a given data set
thanks to the Dirichlet Process prior. The learnt probabilities of each unit to occur can be seen as
a simple unigram phonotactic language model. It is well known however, that each language has a
specific phone distribution and moreover a specific n-gram phone sequence distribution. Hence, the
simple phone-loop model is limited in the sense that it does not make use of the phonotatic context
information. To remedy this problem, we can replace the Dirichlet Process prior by a a Hierarchical
Pitman-Yor process based Language Model (HPYLM) [12]. The HPYLM prior guarantees that the
probability of each unit to occur depends on the previous O units, where O is the order of the hierarchy
of the HPY. The data generation with a bigram based HPYLM is summarized as follows:

1. sample the HMM parameter sets θ1, ..., θK from the prior distribution:

θi ∼ φ

2. sample a Categorical distribution from the top level Pitman-Yor process (PY)

G1 ∼ PY (G0, γ0, d0)

where G0, γ0 and d0 are the base distribution, the concentration and the discount parameters of
the PY respectively. In our case, we assumed G0 to be a uniform Categorical distribution

3. sample K context-dependent distributions over the units G2,1, ..., G2,K :

G2,i ∼ PY (G1, γ1, d1)

where G1, γ1 and d1 are the base distribution, the concentration and the discount parameters of
the second-level PY respectively

4. sample each segment as follows:

(a) sample the unit index for the ct:

ct ∼ G2,ct−1

(b) sample a sequence of features from the HMM with parameters θct as described in section
2.2
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The graphical model corresponding to this generation process is depicted in Figure 2.1b. We draw the
reader’s attention to the fact that, contrary to the model presented in Section 2.2, we assume here a
finite number of units. Hence, while the HPY based phone-loop can model context-dependent unit
transitions, it is not suitable to infer the number of units. Eventually, this limitation could be resolved
by assuming the HMM parameters θ to be sampled from the top level base distribution G0 of the
HPY. However, because there is no known analytic form for the stick-breaking representation of the
HPY [13], and therefore no simple VB inference algorithm adapted to this model, it would require
Gibbs sampling to train the HMM parameters, losing the benefits of the VB inference, as discussed
in [7].

2.4 Training

In section 2.2 and 2.3 we presented two phone-loop models, the first one learning the complexity (i.e.
the number of units) needed to model the data whereas the latter one makes use of the phonotactic
context information. Figure 2.2 shows the evolution of the number of units during the VB training
of the DP based phone-loop model. As we can see, the number of units stabilizes very quickly at
the beginning of the training. This suggests that we can proceed in two stages: first learning the
number of units with the DP based phone-loop model and then refining the HMMs’ parameters using
the bigram phone-loop model. The DP phone-loop model is trained using VB inference as described
in [7]. Once the training of the DP phone-loop model has converged we switch to a 3-steps training
procedure that we repeat until convergence:

1. label the data with Viterbi algorithm using the current phone-loop model

2. train the HPY based language model on the labeled data using the Chinese Restaurant Franchise
(CRF) [12]

3. set the unit-to-unit transitions according to the trained phonotactic LM and retrain the HMMs’
parameters while keeping fixed the aforementioned transitions.

Figure 2.2: Evolution of the number of units during the training of the DP model

While this algorithm was experimentally proven to be efficient (see Section 2.6) it is worth men-
tioning a couple of possible variations. First of all, training the HPYLM on the Viterbi path can be
seen as an approximation of the VB training. This approximation could be refined by sampling paths
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instead of using the most likely one. Sampling several paths for an utterance would account for the
uncertainty of the sequence unit. It was found experimentally that doing so considerably slows down
the training and yields the same results as the method proposed above. Another important point is
that we retrained from scratch the full HPYLM each time we update the HMMs’ parameters. Indeed,
the CRF assumes a fixed training data whereas in our case the sequences of units possibly change each
time we update the acoustic model. This limitation could be tackled by removing all the customers of
one utterance and then re-sampling a new sitting arrangement for this utterance. This approximation
of the CRF is slightly inaccurate for very small data set but works well for any reasonable size data set.
The possible speed up of this approximation is however counterbalanced by some memory overhead as
we have to store the utterance corresponding to each customer in the CRF. No performance difference
between the two approaches was found experimentally.

2.5 Evaluation

The evaluation of the discovered acoustic unit is not as straightforward as it may seem since the
usefulness of the discovered units is highly task dependent. In this work, we use the mutual information
between the human expert labeling and the discovered units. The mutual information between two
random variables X and Y is defined as

I(X;Y ) = H(X)−H(X|Y ) (2.1)

where H(X) is the entropy of X and H(X|Y ) is the entropy of X given Y . Note that it is a symmetric
measure. Informally, this metric can be understood as a ”correlation” measure between the the
discovered untis and the true phones. The mutual information gives a result in bits, however, since
the maximum amount of bits to learn depends on the data and the task, we divide by the entropy of
the true labels:

NMI =
I(X;Y )

H(X)
(2.2)

where NMI stands for Normalized Mutual Information. This quantity is also known as the uncertainty
coefficient. Note that the NMI version is not symmetric anymore and ranges from 0 to 1. Practically,
we generate a sequence of units for each utterance of some test data using the Viterbi algorithm and
then, we map each unit to its closest label in time. Using this one-to-one mapping the computation
of the NMI is straightforward.

2.6 Results

The experiments were conducted on the TIMIT database [14]. We used two different sets of features:
the mean normalized MFCC + ∆ + ∆∆ generated by HTK [15] and the Multilingual BottleNeck
(MBN) features [16] trained on the Czech, German, Portuguese, Russian, Spanish, Turkish and Viet-
namese data of the Global Phone database. As shown in Table 2.1, the bigram phone-loop model
improves the NMI for both set of features. The improvement is relatively smaller with the MBN
features. This is to be expected as the MBN features are trained and computed using some temporal
context which reduces the influence of the bigram LM. Note that the results of the DP phone-loop
model are slightly worse than the ones reported in [7] as we have used a separate test set rather than
evaluating the NMI on the training data.

In standard ASR system, it is common practice to scale down the acoustic scores to alleviate the
influence of the wrong assumptions of the HMM. Scaling down the acoustic score (in our case, this
corresponds to multiplying Equation 5 in [7] by some scaling factor) reduces the dynamic range of the
log-likelihood of the emissions’ density and thus strengthens the influence of the state transitions and
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model features NMI

DP phone loop MFCC 33.94

Bigram phone loop MFCC 34.82

DP phone loop GP BN 42.06

Bigram phone loop GP BN 42.63

Table 2.1: Normalized Mutual Information of the DP phone-loop and the bigram phone-loop for
MFCC and MBN features

the language model. We found out experimentally that scaling the acoustic scores during the bigram
phone-loop model training can significantly improve the final NMI. Figure 2.3 shows the absolute NMI
improvement over the simple DP phone-loop model for various acoustic scale. The optimal scaling
differs for the MFCC and the MBN features as the dynamic range of both feature set are rather
different. Final results including the optimal acoustic scale for MFCC and MBN features are shown in

Figure 2.3: Absolute improvement of the NMI when scaling down the acoustic scores.

Table 2.2. For comparison, we computed the NMI from the output of a phone recogniser trained with

model features ac. scale NMI

DP phone loop MFCC - 33.94

Bigram phone loop MFCC 1.0 34.82

Bigram phone loop MFCC 0.1 35.86

DP phone loop GP BN - 42.06

Bigram phone loop GP BN 1.0 42.63

Bigram phone loop GP BN 0.2 43.25

English phone rec. - - 42.21

Table 2.2: NMI of the DP phone-loop and the bigram phone-loop for MFCC and MBN features with
optimal scaling

Kaldi [17] using the standard TIMIT recipe. Interestingly, the NMI of this baseline is similar to the
MBN DP phone-loop and the bigram MBN phone-loop is about one percent better (see Table 2.2).
Even though care has to be taken as the NMI is not a perfect metric, it is a promising result which
let us hope that the research field of AUD will soon be mature enough to be applied to low-resource
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languages that are so far out of reach of speech technologies.

2.7 Conclusion

We proposed to improve the AUD phone-loop model by incorporating a bigram language model.
First, we train a DP phone-loop model to infer the number of units and then, the bigram phone-loop
is initialized from the the DP phone-loop and trained until convergence of its parameters. Results
show an improvement about 1-2 % of NMI for both MFCC and MBN features. When combined with
MBN features, the AUD system has similar or higher NMI compared to a standard phone recogniser.
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Chapter 3

Alternative inference methods for
AUD model training

Yibo Yang, Lucas Ondel, and Lukáš Burget

The problem of automatic acoustic unit discovery (AUD) can be viewed as that of density es-
timation, i.e., learning or inferring a posterior distribution over the latent acoustic unit identities of
speech observations. As exact inference is often intractable, two dominant approaches, Markov Chain
Monte Carlo (MCMC) and Variational Bayesian methods (VB) have emerged to perform approximate
inference in complex Bayesian models. Both approaches have their strengths and weaknesses, and an
area of research has been developing methods that combine their strengths. This work investigates
two such alternative inference methods applied to the finite Bayesian Gaussian mixture model,
particularly the collapsed variational inference and collapsed Gibbs sampling algorithms, in the
context of frame-level AUD. We show that compared to their un-collapsed versions, both algorithms
experimentally lead to marginal improvements in acoustic clustering performance.

3.1 Introduction

Gibbs sampling (GS) is an MCMC algorithm that produces samples from the target posterior dis-
tribution by iteratively sampling from marginal distributions of its parameters; the samples from
the true posterior is then used for inference tasks. As mentioned in 1.1.3, GS generally faces the
issue of scalability, and requires monitoring of the convergence of the Markov chain. By contrast,
VB is a deterministic algorithm that minimizes the divergence between the true posterior distribu-
tion and its approximation, wherein additional independence assumptions are made for tractability;
the approximated true posterior is then used for inference. As seen in [7], VB training of a refined
AUD model based on [6] led to much higher inference efficiency, as well as quality of inference (even
though theoretically GS is guaranteed to produce samples from the true posterior, provided it reaches
convergence).

Collapsed Gibbs sampling (collapsed GS) was introduced to address the inefficiency of GS by
integrating out “nuisance” model parameters and only sampling from the much lower-dimensional
space of latent variables. Collapsed variational Bayesian inference (collapsed VB) performs VB in
the similarly lower dimensional space of a collapsed model, and aims to produce a more accurate
approximation to the true posterior by making weaker independence assumptions. Depending on
the exact parameters collapsed out, collapsed VB can retain the same computational advantage of
standard VB, namely its amenability to parallel implementations, which can lead to higher quality,
yet still scalable acoustic unit discovery.

To simplify the analysis, we use an approximation to the non-parametric Bayesian phone-loop
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model introduced in Chapter 2; in particular we remove the HMM component, so that acoustic unit
discovery is performed at frame-level (or, equivalently we restrict the HMM in the phone-loop model to
having only one state), and we approximate the Dirichlet Process prior over the acoustic unit weights
by a finite Dirichlet distribution.

In this chapter, we review the collapsed Gaussian mixture model and collapsed GS, fully derive
the collapsed VB algorithm for GMM as proposed in [18], and perform experimental evaluations. In
the derivation we adopt the notations in [18] and [19], and below is a list of frequently used notations
and their definitions:

N number of data points
D dimensionality of data
X = {xn|n ∈ [1, N ]} set of all data
xn ∈ RD the nth data point
K number of mixture components
z = {zn|n ∈ [1, N ]} set of latent variables responsible for data
zn ∈ [1,K] the nth discrete latent variable representing the

id of the component responsible for xn
zqn = {zm|m ∈ [1, N ],m 6= n} set of latent variables excluding the nth one
π = {πk|k ∈ [1,K]} set of mixture component weights
η = {ηk|k ∈ [1,K]} set of mixture components’ parameters
θ = {η,π} set of all mixture model parameters
ηk = {µk,Λk} parameters of the kth component, i.e. mean

vector and precision matrix of the kth Gaussian
µ = {µk|k ∈ [1,K]} set of all means of Gaussian components
Λ = {Λk|k ∈ [1,K]} set of all precisions of Gaussian components
α = (α1, α2, . . . , αK) parameters of Dirichlet prior on mixing weights
β = (m0, β0, ν0,W0) parameters of Gaussian-Wishart prior on the mean

and precision of each Gaussian component
m0 prior mean of µ
β0 proportional to our belief in m0

ν0 degree of freedom of Wishart prior on Λ
W0 scale matrix of Wishart prior on Λ

3.2 The Model

3.2.1 Finite Bayesian GMM

We model our data using a finite mixture of Gaussian distributions, with conjugate priors placed on
mixture weights and Gaussian component parameters.

Each observed data point xn is generated by the kth component with categorical probability
πk = P (zn = k|π) and multivariate Gaussian likelihood p(xn|ηk) = N (xn|µk,Λk), generally denoted
P (xn|ηzn) = N (xn|µzn ,Λzn) when the identity of the component zn is not given.

We place a Dirichlet distribution prior on the mixing weights:

p(π|α) = Dir(π;α1, . . . , αK) =
1

C(α)

K∏
k=1

παk−1
k (3.1)

where C(α) is the normalizing constant: C(α) =
∏K

k=1 Γ(αk)
Γ(α̂) with α̂ =

∑K
k=1 αk. The Dirichlet prior
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is conjugate to the categorical (or equivalently, multinomial) likelihood of latent variables:

p(z|π) =
N∏
n=1

p(zn|π) =
K∏
k=1

πNk
k (3.2)

where Nk =
∑

n I(zn = k) is the number of data points belonging to component k. Often we use a
symmetric Dirichlet prior1 to indicate ignorance about mixing weights [19, (10.39)]:

p(π|α) = Dir(π;α0, . . . , α0) =
1

C(α)

K∏
k=1

πα0−1
k (3.3)

However to conserve space, we restrict our attention to the general case of (3.1), knowing that results
for the symmetric case can always be obtained by replacing αk with α0 and α̂ with Kα0. We also
impose an independent Gaussian-Wishart prior on the mean and precision of Gaussian components
[19, (10.40)]:

p(η|β) =
K∏
k=1

p(ηk|β) =

K∏
k=1

N (µk|m0, (β0Λ)−1)W(Λk|W0, ν0) (3.4)

which is fully conjugate to the data likelihood:

p(X|z,η) =

N∏
n=1

p(xn|ηzn) =

N∏
n=1

N (xn|µzn ,Λzn) (3.5)

Thus the joint probability of our model is 2 [18, (7)]

p(X, z,η,π) = p(X|z,η)p(z|π)p(η)p(π) =

[
N∏
n=1

p(xn|ηzn)p(zn|π)

][
K∏
k=1

p(ηk)

]
Dir(π) (3.6)

3.2.2 Collapsed Model

We integrate out the mixing weights from the above model and obtain the marginal probability of
latent variable assignments [20, (24.24)]:

p(z|α) =

∫
π
p(z|π)p(π|α) dπ (3.7)

=
Γ (α̂)

Γ (N + α̂)

K∏
k=1

Γ(Nk + αk)

Γ(αk)
(3.8)

The joint probability of the collapsed model is therefore

p(X, z,η) = p(X|z,η)p(z)p(η) (3.9)

=

[
N∏
n=1

p(xn|ηzn)

]
p(z)

[
K∏
k=1

p(ηk)

]
(3.10)

with p(z) given above in (3.7).

1[18] observe that the symmetric Dirichlet distribution can well approximate the Dirichlet Process prior for large
enough number of mixture components.

2We omit the hyperparameters α and β for brevity.
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To prepare for later discussions, we calculate the probability of component assignment zn condi-
tioned all the other component assignments, i.e., the values of zqn, following [20, (24.25), (24.26)]:

p(zn = k|zqn,α) =
p(z|α)

p(zqn|α)
=
Nqn
k + αk
Nqn + α̂

(3.11)

where Nqn is the total number of data points excluding the nth, and trivially Nqn = N − 1.
We also calculate the posterior predictive distribution of the component id znew associated with a

new data point xnew, given all the observed data and assignments. Following [20, (24.21)]:

p(znew = k|z,X,α,β) ∝ p(znew = k|z,α,��β)p(X|znew = k, z,��α,β) (3.12)

= p(znew = k|z,α)p(xnew|X, znew = k, z,β) (3.13)

p(X|�����znew = k, z,β)

∝ p(znew = k|z,α)p(xnew|X, znew = k, z,β) (3.14)

The first term comes from slightly modifying (3.11):

p(znew = k|z,α) =
Nk + αk
N + α̂

(3.15)

To find the second term of (3.14), we use the fact that p(xnew|X, znew = k, z,β) = p(xnew|Xk,β),
where Xk is all the data associated with component k, and the right hand side is the posterior
predictive distribution of the kth Gaussian:

p(xnew|Xk,β) =

∫
ηk

p(xnew|ηk)p(ηk|β) dηk (3.16)

which can be shown to be a multivariate Student-T distribution:

p(xnew|Xk,β) = T (xnew|mk,
βk(νk −D + 1)

βk + 1
W−1

k , νk −D + 1) (3.17)

where mk, βk(νk −D+ 1)W−1
k /(βk + 1), and νk −D+ 1 are respectively the mean, scale matrix, and

degrees of freedom of the Student-T distribution; the updated parameters βk, mk, Wk, and νk are
defined later in (3.47)-(3.50) in the context of variational inference.

3.3 Collapsed Gibbs Sampling

As much literature exists on collapsed Gibbs sampling for GMM, we refer the reader to [20] for detailed
discussions. In fact, the full conditional distribution used in collapsed GS is identical to (3.12), with
zn and zqn replacing znew and z.

3.4 Collapsed Variational Inference

3.4.1 Standard Factorization

The variational Bayesian inference algorithm lower bounds the log marginal likelihood of data with
the negative variational free energy:

L(q) =

∫ ∫
q(z,θ) log

p(X, z,θ)

q(z,θ)
dz dθ (3.18)

= log p(X) +

∫ ∫
q(z,θ) log

p(z,θ|X)

q(z,θ)
dz dθ (3.19)

= log p(X)−KL(q(z,θ)||p(z,θ|X)) (3.20)

≤ log p(X) (3.21)
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where z is again the set of latent variables, θ is the set of model parameters (which together with z
are considered stochastic variables of the model in VB), q(z,θ) is the variational approximation to the
desired posterior distribution p(z,θ|X), and KL(q(z,θ)||p(z,θ|X)) is the Kullback-Leibler divergence
from p(z,θ|X) to q(z,θ), which is a non-negative measure of their dissimilarity.

In the standard mean-field setting, we assume independence between latent variables z and model
parameters θ, giving rise to the following factorization

q(z,θ) = q(z)q(θ) (3.22)

Approximate inference is then achieved by maximizing the variational lower bound L, which is equiv-
alent to minimizing KL(q(z,θ)||p(z,θ|X)), alternately with respect to q(z) and q(θ).

In the GMM of Section 3.2.1, θ = {η,π}, and factorization (3.22) becomes [18, (15)]

q(z,η,π) = q(z)q(η,π) (3.23)

=

[
N∏
n=1

q(zn)

][
K∏
k=1

q(ηk)

]
q(π) (3.24)

where the additional decompositions follow from the conditional indepences in the graphical model.

3.4.2 Collapsed Factorization

As noted in [18], the standard VB factorization (3.22) tends to be a bad assumption as it ignores
the often strong dependence of latent variables z on the model parameters θ; the lower bound on log
marginal likelihood can therefore be very loose and lead to inaccurate approximation.

In the original Gaussian mixture model, the latent variable assignments intimately depend on the
mixing weights π, which is ignored by factorization (3.23). We can finesse this problem by integrating
out π3 and use the collapsed model introduced in Section 3.2.2. In the collapsed model, the set
of model parameters θ reduces to the set of mixture component parameters η, and the dependence
of z on π is preserved in the marginal distribution p(z|α) given in (3.7), naturally resulting in the
factorization p(z,η) = p(z)p(η). Now applying (3.22) and assuming independence between q(zn) gives

q(z,η) = q(z)q(η) (3.25)

=

[
N∏
n=1

q(zn)

][
K∏
k=1

q(ηk)

]
(3.26)

Note that collapsing introduces new dependency among the latent variables (which are previously
conditionally independent), but since this dependency is spread out over a large number of latent
variables, the factorization of q(z) in (3.26) is a reasonable assumption.

3.4.3 Update Equations

As shown in [19, (10.9)], the log of the optimal form of each variational factor q∗(·) (which maximizes
the lower bound L) is obtained by taking the expectation of the log probability of the model joint
distribution with respect to all the other variational variables. We apply this procedure to the collapsed
GMM, keeping in mind that the optimal forms of q(z) and q(η) would be the same as the likelihood
functions (i.e. categorical and Gaussian-Wishart) due to our use of conjugate priors.

3Ideally we would like to integrate out all the model parameters θ = {η,π}, so the fully collapsed VB algorithm
would have a single update equation for the latent variable distribution q∗(zn); however the sequential nature of this
algorithm (similar to that in collapsed Gibbs sampling) is an obstacle for parallel implementation and can make fully
collapsed VB too computationally expensive.

22



Updating q∗(zn)

The optimal form of q(zn), denoted q∗(zn), is given by

log q∗(zn) = Ezqn,η [log p(X, z,η)] + const. (3.27)

= Ezqn,η [log p(zn|zqn) + log p(zqn) + log p(η) + log p(X|z,η)] + const. (3.28)

where zqn is the set of latent variables excluding the nth. Substituting (3.5) into log p(X|z,η) and
dropping terms that do not depend on zn yields

log q∗(zn) = Ezqn [log p(zn|zqn)] + Eηzn [log p(xn|ηzn)] + const. (3.29)

=
∑
zqn

∏
m 6=n

q(zm) log p(zn|zqn) +

∫
ηzn

q(ηzn) log p(xn|ηzn) dηzn + const. (3.30)

Now we consider the two terms in (3.29) separately. In the first term, we recognize p(zn|zqn) as
the conditional distribution of latent variable zn in the collapsed model; substituting in (3.11) for a
particular value of zn = k gives

Ezqn [log p(zn = k|zqn)] = Ezqn

[
log
(
Nqn
k + αk

)]
+ const. (3.31)

For efficiency, we approximate the above expectation by the following second order Taylor expansion4,

E [f(m)] ≈ f(E [(m)]) +
1

2
f ′′(E [m])V [m] (3.32)

(3.31) then becomes

Ezqn [log p(zn = k|zqn)] ≈ log
(

Ezqn

[
Nqn
k

]
+ αk

)
−

Vzqn

[
Nqn
k

]
2
(
Ezqn

[
Nqn
k

]
+ αk

)2 + const. (3.33)

which can be efficiently computed by noting that the random variable Nqn
k is the sum of (assumedly

independent) Bernoulli random variables Nqn
k =

∑
m 6=n I(zm = k), with mean and variance

Ezqn

[
Nqn
k

]
=
∑
m 6=n

q∗(zm = k) (3.34)

Vzqn

[
Nqn
k

]
=
∑
m 6=n

q∗(zm = k)(1− q∗(zm = k)) (3.35)

The second term of (3.29) for a particular zn = k is

Eηk [log p(xn|ηk)] = Eµk,Λk
[logN (xn|µk,Λk)] (3.36)

=
1

2
EΛk

[
log
∣∣Λk

∣∣]− 1

2
Eµk,Λk

[
(xn − µk)>Λk(xn − µk)

]
+ const. (3.37)

in which the expectation terms evaluate to [19, (10.64), (10.65)]:

Eµk,Λk

[
(xn − µk)>Λk(xn − µk)

]
= Dβ−1

k + νk(xn −mk)
>Λk(xn −mk) (3.38)

EΛk

[
log
∣∣Λk

∣∣] =
D∑
i=1

ψ

(
νk + 1− i

2

)
+D log 2 + log

∣∣Wk

∣∣ (3.39)

where the terms βk, mk, Wk, and νk result from the updated component parameter distribution
q∗(ηk) to be discussed below, and are defined in (3.47)-(3.50).

4To see this, first write down the second order Taylor polynomial for f(m) near the constant E [m] :

f(m) ≈ f(E [m]) + f ′(E [m])(m− E [m]) +
1

2
f ′′(E [m])(m− E [m])2

then take expectations of both sides with respect to m and apply the definition V [m] = E
[
(m− E [m])2

]
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Updating q∗(ηk)

Similarly, for the optimal form q∗(ηk) we have

log q∗(ηk) = Eηqk,z [log p(X, z,η)] + const. (3.40)

= Eηqk,z [log p(ηk) + log p(ηqk) + log p(z) + log p(X|z,η)] + const.

= Ez [log p(ηk) + log p(ηqk) + log p(z) + log p(X|z,η)] + const. (3.41)

= log p(ηk) + Ez [log p(X|z,η)] + const. (3.42)

Here p(ηk) is the joint probability of the mean and precision of the kth Gaussian given as factors
in (3.4), and ηqk is the set of component parameters excluding the kth. We dropped ηqk from the
expectation as each ηk is independent of another; we also dropped terms not dependent on ηk in (3.42).

To help simplify Ez [log p(X|z,η)], we temporarily switch to an alternative representation of latent
variables used in [19]: for each observation xn, the latent variable γn takes the form of a K dimensional
one-hot-vector, with elements γnk ∈ [0, 1] for k = 1, . . . ,K. Now (3.5) is equivalent to

p(X|z,η) =

N∏
n=1

K∏
k=1

p(xn|ηk)γnk (3.43)

therefore

Ez [log p(X|z,η)] =

N∑
n=1

K∑
k=1

Ez [γnk] log p(xn|ηk) =

N∑
n=1

K∑
k=1

q∗(zn = k) log p(xn|ηk) (3.44)

where we make use of the fact that γnk = I(zn = k) is a Bernoulli random variable, whose mean with
respect to the variational distribution q∗(z) is simply the probability q∗(zn = k). Substituting (3.44)
into (3.42) and again only keeping terms dependent on ηk gives

log q∗(ηk) = log p(ηk) +
N∑
n=1

q∗(zn = k) log p(xn|ηk) + const. (3.45)

From the above, q∗(ηk) can be shown to be an updated Gaussian-Wishart distribution:

q∗(ηk) = N (µk|mk, (βkΛk)
−1)W(Λk|Wk, νk) (3.46)

where we define5

βk = β0 +
N∑
n=1

q∗(zn = k) (3.47)

mk =
1

βk

[
β0m0 +

N∑
n=1

q∗(zn = k)xn

]
(3.48)

W−1
k = W−1

0 + β0m0m
>
0 +

[
N∑
n=1

q∗(zn = k)xnx
>
n

]
− βkmkm

>
k (3.49)

νk = ν0 +

N∑
n=1

q∗(zn = k) (3.50)

5[19, (10.61), (10.62)] give equivalent definitions for (3.48) and (3.49).
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3.4.4 Evidence Lower Bound

We apply the definition of the lower bound (3.18) to the collapsed model, then decompose and re-
arrange terms:

L(q) =

∫
q(z,η) log

p(X, z,η)

q(z,η)
(3.51)

= Eq [log p(X|z,η)]−KL (q(η)||p(η)) + Eq [log p(z)]− Eq [log q(z)] (3.52)

The first two terms can be shown 6 to take the simplified form

Eq [log p(X|z,η)]−KL (q(η)||p(η)] = −DN
2

log 2π +
DK

2
log β0 −

D

2

K∑
k=1

log βk

+K logB(W0, ν0)−
K∑
k=1

logB(Wk, νk) (3.53)

where B(W, ν) is the normalizing constant of the Wishart distribution given in [19, (B.79)].
For the third term of (3.52), substituting in (3.8) gives

Eq [log p(z)] = log Γ(α̂)− log Γ(N + α̂)−
K∑
k=1

log Γ(αk) +

K∑
k=1

Eq [log Γ(Nk + αk)] (3.54)

where the expectation term can again be approximated by the second order Taylor polynomial (3.32):

Eq [log Γ(Nk + αk)] ≈ log Γ (Ez [Nk] + αk) +
1

2
ψ1 (Ez [Nk] + αk) Vz [Nk] (3.55)

where ψ1(·) is the trigamma function, and Ez [Nk] and Vz [Nk] can be calculated in the same manner
as (3.34) and (3.35).

The last term of (3.52) is simply Eq [log q(z)] =
∑N

n=1

∑K
k=1 q

∗(zn = k) log q∗(zn = k).

3.4.5 A Note on Implementation

Collapsed VB can be implemented with only minor modifications to an existing implementation of
standard VB, and both have the same computational complexity. In VB, we cycle between two stages
analogous to the E and M steps of the EM algorithm, with one stage dependent on the results of the
other. In collapsed VB, we no longer maintain the weights π, and to calculate q∗t (zn) in the variational
E-step at time t, we not only require distributions over model parameters from the previous M-step
q∗t−1(ηk), but also the same distribution of latent variables from the previous E-step q∗t−1(zn).

3.5 Experimental Evaluation and Conclusion

We implemented GS, VB, and their collapsed versions in Python. We first used them to cluster
synthetic data, with a typical data set of size 200 and consisting of 30-dimensional data generated by
a 30-component Gaussian mixture. In all the algorithms, we set the number of model components
K to 10 plus that of the data-generating GMM; we initialize the models by randomly assigning data
to the components (with the same seed); we also use the same prior setting, with m0 and W0 set to
the mean and covariance of the data, ν0 set to the data dimension plus 2, and β0 and all αk set to
1. During training, we monitored the marginal joint probability of data and their assignment p(X, z)
in (collapsed) GS, as well as the likelihood lower bound on the data in (collapsed) VB, with typical
results shown in Figure 3.1 and Figure 3.2. We observed that collapsed GS often mixed faster, using
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Figure 3.1: Collapsed vs. standard GS Figure 3.2: Collapsed vs. standard VB

Figure 3.3: Frame-level NMI, TIMIT Figure 3.4: Number of acoustic clusters, TIMIT

many fewer iterations than standard GS; similarly, collapsed VB typically enjoyed faster convergence
and tighter lower bound than standard VB.

We also used these algorithms to perform frame-level AUD on TIMIT. We trained the models
on 39-dimensional MFCC features, labeled the test data by calculating (3.14)-(3.17), and evaluated
Normalized Information using frame-level transcripts. We initialized the models by the same procedure
used above for clustering synthetic data, except we set the number of Gaussian components to 500
7. As seen in Figure 3.3, the collapsed algorithms converged slightly faster than their un-collapsed
versions, and resulted in 1-2 % higher NMI in early stages of training. Interestingly, as seen in Figure
3.4, the collapsed algorithms also had the tendency to produce more acoustic clusters. We also observed
little to no difference between using Gaussian components with full or diagonal covariance matrices,
as well as between using only the first or both terms in the approximation (3.32) for collapsed VB 8.
However, collapsed GS on average took 25 % more CPU time per iteration than standard GS.

In conclusion, we derived the collapsed variational inference algorithm for finite GMM, exper-
imented with it along with collapsed Gibbs sampling for acoustic clustering, and found marginal
improvements over their standard counterparts.

6http://utdallas.edu/~yxy142230/notes/simplified_vb_lower_bound_gmm.pdf
7We empirically found this upper bound on the effective value of K by counting the number of unique test data labels

after several experiments with various K, as well as by performing the same clustering with Dirichlet Process GMM.
8Unsurprisingly, the former approximation of only using first-order terms resulted in slightly less CPU time than both

standard VB (1 % on average) and than if both terms are used (4 % on average).
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Chapter 4

Multilingual Acoustic Unit Discovery

Leda Sarı, Lucas Ondel, Lukáš Burget

Assuming that there is a common underlying generative model for the acoustic units in languages
and some acoustic units are shared between languages we can make use of the high-resource languages
which have sufficient amount of data to train more reliable systems. Therefore we can improve the
acoustic unit discovery (AUD) performance in a resource-less language by transferring knowledge
from other languages. This chapter presents methods that either use the posterior estimates of the
parameters in AUD models trained on different languages as the prior in the target language AUD
training procedure or utilize information contained in multiple languages while extracting features of
the target data for AUD training.

4.1 Introduction

Given the fact that there is abundance of devices that have audio recording capabilities, it is easy
to collect speech resources. However, training reliable systems with supervision requires having large
amount of transcribed data. The task of transcription by human experts is an expensive task and in
some cases such as for endangered languages, it might be impossible. Although each language can have
distinctive phonetic units, some of them are shared across languages. Therefore, several multilingual
approaches are proposed to make use of this common underlying structure in acoustic modeling [1, 129].
If we assume that there is a common generative model that covers multiple languages, then high-
resource languages can be utilized in acoustic unit discovery (AUD) task.

The aim of this chapter is to use multilingual data to improve the acoustic units discovered by
the variational Bayesian inference technique of [23] and the methods described in Chapter 2. The
information can be transferred to the target data either by using it as the prior knowledge of the
model or by obtaining a language-independent data representation of the target data that captures
the common information in languages and then using this representation as the input to the AUD
system.

This chapter is organized as follows: The methods to transfer information from one language to
another is summarized in Section 4.2, then the experimental setup and results are presented, the
chapter is concluded by summarizing the findings.

4.2 Methods

This section summarizes the ways of transferring information from multilingual datasets to the
resource-less target language. Depending on the use of available transcribed data for resourceful
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languages, three methods are used which can be grouped into two main categories:

1. Completely unsupervised approaches

- Direct use of an AUD model from other languages

- Transferring the posterior estimates of AUD parameters as the prior

2. Supervised approach via multilingual bottleneck features (BNF)

In the first approach, only audio from different languages are used to train AUD models. The most
basic way of utilizing an AUD model on another language is directly using the model to decode the
target data. In this method, a model from a mismatched language is used in Viterbi decoding phase
described in Section 2.2. Here it is assumed that both languages share the common units or units in
one language is sufficient to express units in the other. However, this assumption will not completely
be true as there can exist phonetic units which does not exist in the other ones. Therefore, a better
way is to transfer knowledge from this AUD model and train another AUD model on the target data
based on that knowledge, possibly allowing the discovery of the additional units that only exist in the
target language.

As described in [23], the training procedure of the AUD model consists of estimating the posterior
distribution of the hidden variables such as the HMM states and GMM component associated with
each frame and parameters such as transition probabilities. In the Variational Bayesian framework
of [23], the hidden variables and parameters are assumed to be independent and conjugate priors are
used so that the posterior estimates of the variables (or parameters) have closed form solution. These
priors have hyper-parameters that have to supplied at the beginning of training which are chosen
heuristically. However, if we have knowledge from another language, then more informative priors can
be used to initialize the training. Therefore, the second way of making use of multilingual data in an
unsupervised fashion is to get the posterior estimates of the parameters from one language and then
use it as the prior for training another AUD model on the target data. Figure 4.1 summarizes these
two unsupervised approaches when we transfer knowledge from Czech to English.

(a) Direct use of the AUD (b) Posteriors to priors

Figure 4.1: Direct use of the AUD model and using posteriors from Czech to initialize the priors of
the AUD training of English

The above mentioned approaches do not fully exploit the resources in other languages since they
only use the audio components. In the second approach, there is supervision where available written
resources are also utilized. In this approach, the transcriptions are used to train a multilingual
bottleneck network [16], then the input features for AUD training on the target data are extracted from
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the bottleneck layer of this network. These bottleneck features (BNF) give a language-independent
representation of the audio and it makes use of the information hidden in multilingual dataset. Besides
supervision, the second difference of this method from the unsupervised ones described above is that
here the knowledge transfer is achieved at the feature level instead of the model level.

4.3 Experiments and Results

In the experiments, Wall Street Journal (WSJ) dataset [125, 126] is used as the target language.
Seven languages (Czech, German, Portuguese, Russian, Spanish, Turkish and Vietnamese) from the
GlobalPhone (GP) dataset [98] are chosen as our multilingual data. The AUD performance is measured
using normalized mutual information (NMI) presented in Section 2.5. In addition, the number of units
used to express the test data is also reported.

Table 4.1 summarizes the results for the completely unsupervised setups. The second and third
columns show the performance when we train an AUD model from a language and directly use it to
decode the target language, which is English in our case. The last two columns show the NMI and
the number of units when we use the posterior estimates of the parameters for a language as our
prior for the target. Except for the last line of the table, the information is transferred from a single
language to the target language. In the experiment labeled as ‘7 languages’ equal-sized subsets of
each language are combined into a single dataset such that the total duration of this mixed dataset
is approximately matches the duration of training data in the individual languages which is about 20
hours per language.

When we directly use a mismatched model to decode WSJ which does not transfer knowledge
indeed, the performance is lower than that with a model trained on the same corpus as expected.
However, this experiment serves as a baseline to show whether we can improve NMI if we use posteriors
of AUD model parameters as our prior on WSJ. If we transfer knowledge from posterior to priors and
train an AUD model on WSJ with these priors, higher NMI is achieved as compared to the direct use
of models as shown in Table 4.1. However, except for Czech (28.17%) and German (28.78%), this type
of transfer does not improve the performance as compared to using the matched condition where the
AUD is performed only on the target data (28.12%). It is also observed that in Czech and German
experiments, we start with certain units but as we train on the target data, the number of decoded
units increase after using the informative priors.

Direct use Posterior to prior
Language NMI # of units NMI # of units

English (WSJ) 28.12 81 - -

Czech 26.47 73 28.17 74

German 26.51 73 28.78 77

Portuguese 26.28 81 27.77 81

Russian 25.55 79 27.32 79

Spanish 25.51 75 27.34 75

Turkish 26.00 73 27.70 73

Vietnamese 24.06 82 26.76 82

7 languages 26.26 78 27.37 78

Table 4.1: NMI (in %) and the number of discovered acoustic units for WSJ when AUD models from
different languages are used in an unsupervised manner

Table 4.2 summarizes the NMI where we make use of the multilingual dataset while extracting
our features for the target data which are in turn used as input to AUD training. If we use BNF for
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WSJ to train an AUD model, we observe 28.8% relative improvement over using MFCCs. If we also
incorporate the bigram language modeling approach described in Section 2.4, we get slightly lower
NMI than the unigram language model but it still performs better than the case where we use MFCC
features. Therefore, the main improvement comes from the input features.

Feature LM NMI # units

MFCC Unigram 28.12 81

BNF Unigram 36.21 95

BNF Bigram 36.15 95

Table 4.2: NMI (in %) and the number of discovered acoustic units for WSJ when BNF extracted
from multilingual neural networks are used along with different LM strategies in AUD

4.4 Conclusions

In the experiments, it is observed that following a fully unsupervised approach which does not make
use of the transcribed data of the multilingual dataset but makes use of the posterior estimates of
AUD parameters in one language as a prior on the target language, does not improve NMI. On the
other hand, utilizing the available transcribed data to train a multilingual bottleneck network and
then using the BNF of the target data as our input features to the AUD training led to 8.1% absolute
(28.8% relative) improvement in NMI. Therefore, finding a language-independent representation of
the target data or exploiting supervised data on unrelated languages is a way to improve the AUD
performance measured in terms of NMI.
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Chapter 5

An Empirical Evaluation of Zero
Resource Acoustic Unit Discovery

Chunxi Liu, Jinyi Yang, Ming Sun, Santosh Kesiraju, Alena Rott, Lucas Ondel, Pegah
Ghahremani, Najim Dehak, Lukaš Burget and Sanjeev Khudanpur

Acoustic unit discovery (AUD) is a process of automatically identifying a categorical acoustic unit
inventory from speech and producing corresponding acoustic unit tokenizations. AUD provides an
important avenue for unsupervised acoustic model training in a zero resource setting where expert-
provided linguistic knowledge and transcribed speech are unavailable. Therefore, to further facili-
tate zero-resource AUD process, in this chapter, we demonstrate acoustic feature representations can
be significantly improved by (i) performing linear discriminant analysis (LDA) in an unsupervised
self-trained fashion, and (ii) leveraging resources of other languages through building a multilingual
bottleneck (BN) feature extractor to give effective cross-lingual generalization. Moreover, we perform
comprehensive evaluations of AUD efficacy on multiple downstream speech applications, and their cor-
related performance suggests that AUD evaluations are feasible using different alternative language
resources when only a subset of these evaluation resources can be available in typical zero resource
applications.

5.1 Introduction

Standard supervised training of automatic speech recognition (ASR) systems typically replies on
transcribed speech audio and pronunciation dictionaries. However, for a large majority of the world’s
languages, it is often difficult or even almost impossible to collect enough language resources to develop
ASR systems with current standard ASR technology [21]. Therefore, developing speech technologies
for a target language with zero expert-provided resources in that language becomes a significant
challenge.

Recent zero resource efforts focused on phonetic discovery, or acoustic unit discovery (AUD),
have made important progress in fully unsupervised acoustic model training and performing subword
unit tokenization [22, 23]. In [22], a Dirichlet process hidden Markov model (DPHMM) framework
is formulated to simultaneously perform three sub-tasks of segmentation, nonparametric clustering
and sub-word modeling, and the spoken term detection task is used to evaluate the learned sub-
word models. [23] also presents a nonparametric Bayesian framework to solve the same problem of
unsupervised acoustic modeling with three major differences: (i) the Gibbs Sampling (GS) training
algorithm is replaced with Variational Bayesian (VB) inference, which allows parallelized training
amenable to large scale applications, (ii) a phone-loop model with a mixture of HMMs (each phone-
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like acoustic unit is modeled by a HMM) is seen as a single HMM and thus does not require sub-word
boundary variables, and (iii) normalized mutual information (NMI) between the hypothesized acoustic
unit sequences and orthographic phoneme transcripts is used to evaluate the modeling efficacy.

As being unknown to the guidance of word transcripts in zero-resource scenarios, effective acoustic
front-end processing becomes particularly critical to uncover the phonetic salience by the acoustics
themselves. In supervised ASR system, linear discriminant analysis (LDA) [24] is often employed
to exploit substantial contextual information, and the target class labels for LDA can be context-
dependent triphone states given by the forced alignments of speech transcripts that are unavailable
in zero resource setting. In this Chapter, we explore applying similar LDA strategy but with target
labels acquired by the first-pass acoustic unit tokenizations, which is considered as a self-supervised
fashion to solve the unknown label problem. Previous work in [25] also exploits such unsupervised
LDA to support Dirichlet process Gaussian mixture model (DPGMM) based clustering although being
limited to frame-level clustering without acoustic unit-level segmentation.

To date language-independent bottleneck (BN) features have been demonstrated as effective speech
representations in improving ASR accuracies [26, 27]. In our study, we explore a state-of-the-art
multilingual time delay neural network (TDNN) technique to generate robust cross-lingual acoustic
features in zero-resource setting, and the hope is that as one moves to new languages, this data driven
feature extraction approach will work as-is, without having to redesign feature extraction algorithms.

In this chapter, we employ the AUD framework in [23] and investigate the efficacy of incorporating
LDA and multilingual BN TDNN techniques to AUD. Given the two distinct evaluations in [22, 23], we
proceed by conducting not only an intrinsic measure of assessing the NMI between model hypothesis
and true reference, but also an extrinsic measure of AUD’s utility to downstream speech tasks.

Past studies in [28, 29] demonstrated the effectiveness of posterior features based on automatically
derived acoustic structures by spoken term detection and phoneme discrimination tasks, while being
limited to frame-level clustering and loss of phonetic temporal information. In contrast, [22] succeeded
in computing posteriorgram representations over the learned sub-word units, capturing the phonetic
context knowledge. In this chapter, we also exploit the feature representation of posteriorgrams across
acoustic units learned from our AUD procedure, and test by a unified evaluation framework proposed
in [30, 31] that quantifies how well speech representations enable discrimination between word example
pairs of the same or different type, which is referred to as the same-different task and characterized
by average precision (AP). [30] demonstrates almost perfect correlation between such AP and phone
recognition accuracies of supervised acoustic models; therefore, we would like to investigate if such
AP can also be a proxy for the unsupervised AUD accuracies, such that we can still evaluate AUD
efficacy in the zero-resource condition that no orthographic phoneme transcripts for NMI measure
are available but only word pairs. Since such word pairs can not only be obtained from manual
transcripts, also from unsupervised spoken term discovery systems without relying on any language-
specific resources [32, 33], at little cost compared with expensive phoneme transcripts.

Finally, previous work like [34, 35] presented the success of using unit- or word-level acoustic
patterns discovered from fully unsupervised setting to provide competitive performance in spoken
document topical classification and clustering, we also explicitly measure our AUD utility of learning
document representations in this study.

5.2 Improving Feature Representation Learning for acoustic unit
discovery

AUD is to discover repeated acoustic patterns in the raw acoustic stream and learn speaker independent
acoustic models for each unique acoustic unit. We employ the same nonparametric Bayesian framework
as [23]. A phone-loop model is developed as shown in Figure 5.1, and each unit is modeled as a Bayesian
GMM-HMM. Under Dirichlet process framework, we consider the phone-loop as an infinite mixture
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of GMM-HMMs, and the mixture weights are based on the stick-breaking construction of Dirichlet
process. Following [36], the infinite number of units in the mixture is approximated by a truncation
number T , giving zero weight to any unit greater than T .

Model parameters are fully Bayesian, with corresponding prior and posterior of conjugate distri-
butions for each parameter. The Variational Bayesian (VB) inference (seen as an extension of the
expectation-maximization algorithm that computes posterior distributions of both model parameters
and latent variables) [37] is used to train the full Bayesian models. We initialize the hyperparame-
ters for the prior distributions, and the posterior distributions are initialized the same as their prior
distributions before the first training iteration starts. During each iteration, sufficient statistics are
computed and accumulated to update the model posterior distributions. We can treat such mixture
of GMM-HMMs as a single unified HMM with loop transitions, and thus the segmentation of the
data can be performed using standard forward-backward algorithm in an unsupervised fashion. Par-
allelized training is conducted and convergence monitored by computing a lower bound on the data
log-likelihood. After VB training, during evaluation we use Viterbi decoding algorithm to obtain
acoustic unit tokenizations of the data, or forward-backward algorithm to produce posteriorgrams
across the learned acoustic units.

5.2.1 LDA with Unsupervised Learning

We first parameterize the acoustic data into Mel-frequency cepstral coefficients (MFCCs) or BN fea-
tures and apply Cepstral mean and variance normalization (CMVN), perform a first-pass AUD training
over such raw acoustic features, obtain acoustic unit HMM state tokenizations of the data, i.e., 1-best
HMM state-level decode for each acoustic frame, and use the resulting state-level labels as the class
labels for LDA.

To apply LDA, additional context frames after CMVN are stacked to around the center frame.
LDA is then performed on this higher-dimensional, context-rich representation. We apply the resulting
LDA transformation to project the context-rich raw acoustic features back into a lower dimensional
representation. These vectors after CMVN are subsequently used for a second-pass AUD training.
Note that, for the second-pass VB training on the LDA-based features, rather than starting from
scratch, we can first use the models learned from first-pass training to compute certain sufficient
statistics that can be transferred regardless of different front-end features, and use them to update
the model posteriors just for the first iteration; e.g., we can transfer the MFCC/BN-based statistics
of accumulated posteriors of certain latent variables (acoustic unit, HMM state or GMM component),
and use them to re-estimate the posterior’s parameters in the first iteration of LDA-based training,
by assuming certain acoustic structures discovered by the first-pass model being more accurate than
those by our prior models.

5.2.2 Cross-lingual Generalization of Multilingual BN Network

In our multilingual BN training recipe, we use the TDNN architecture with parallel GPU training
(using up to 8 GPUs) as described in [38] with two major extensions. First, hidden layers with ReLU
nonlinearity are shared across languages (ReLu dimension 600, i.e., the output dimensions of the weight
matrices), while separate language-specific final output layers with context-dependent triphone state
targets are used for each different language. Second, an additional 42-dimensional bottleneck layer is
added just before the final output layers, giving 6 hidden layers in total. Moreover, 3-fold training
data augmentation with speed perturbations of 0.9, 1.0 and 1.1 are used. Each mini-batch of training
data is randomly sampled based on the relative amounts of acoustic data in different languages, and
any data of each language is used only once in one epoch. 40-dimensional MFCCs (without cepstral
truncation [38]) augmented with 3-dimensional pitch and probability of voicing features are used as
inputs to the network.
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Figure 5.1: AUD phone-loop model with an infinite number of units and each unit modeled by a
Bayesian GMM-HMM.

We developed our TDNN-based BN training and validation using multiple languages in both
hybrid and tandem HMM-based ASR systems, while being unknown to the target language on which
we perform AUD. We assume the word error rate reductions in our BN-based ASR tasks will translate
into more effective cross-lingual generalization of our BN techniques on unseen target language, in
turn, facilitating more accurate AUD.

5.3 Evaluating Acoustic Unit Discovery

5.3.1 NMI against Orthographic Phoneme Transcripts

After VB training of the Bayesian AUD models, to evaluate the quality of the automatically learned
acoustic models, we first obtain acoustic unit tokenizations, i.e., 1-best HMM unit-level decode, of
the development data on which AUD training is performed; alternatively, we can also use the learned
models to obtain tokenizations of any evaluation data that the models do not see during training.
Then we align the decoded acoustic unit sequence Y= Y1, ..., YN with reference phoneme sequence
X= X1, ..., XM , and each Yj(1 ≤ j ≤ N) is aligned to a Xi(1 ≤ i ≤ M), based on which the mutual
information I(X; Y) is computed. We normalize it by the entropy H(X) of X, giving the normalized
mutual information NMI = I(X; Y)/H(X). NMI = 0 means Y carries no information about X,
and NMI = 1 means Y perfectly predicts X.

5.3.2 Same-Different Evaluation

To evaluate AUD models, we can also apply them to a data set by using forward-backward algorithm to
compute posterior distributions across the learned acoustic units over time. Thus, any word segments
required by the same-different task can be given such HMM unit-level or state-level posteriorgram
features. For each word pair, we compute a pairwise normalized dynamic time warping (DTW)
distance with symmetric KL-Divergence as frame-level distance metric; since our acoustic features
are posterior distributions, symmetric KL divergence are demonstrated superior to cosine distance for
posterior features [30]. The pairwise normalized DTW distance is further used as a same/different
classifier score; if the score is lower than some threshold τ , we declare this word pair corresponds to
the same word type. As we sweep the threshold τ , we can obtain a standard precision-recall curve,
under which the area is computed as the average precision (AP). In such means, we investigate if
the better posterior estimates across automatically derived acoustic categories in AUD procedure can
translate into the improved discriminability of separating same word type pairs from different word
type pairs.
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5.3.3 Spoken Document Classification and Clustering

Spoken document topical classification/identification (ID) is to classify a given document into one of
the predefined set of topics or classes. Typically, documents are characterized based on a bag-of-words
multinomial representation [39], or a more compact vector given by probabilistic topic models [40]. To
evaluate the quality of the acoustic unit tokenizations of spoken documents, we employ the document
representations as bags of acoustic units. For such classification task with topic labeled training data,
we use stochastic gradient descent based linear SVM [41, 42] as our multi-class classifier training
algorithm, with hinge loss and L1 norm regularization.

In the case that no topic labels are available, we can still perform unsupervised document clustering
by the bags of acoustic units representation. We would like to investigate if reasonable clustering
performance can be obtained without using manual or automatic transcript from supervised acoustic
models but only unsupervised AUD. Following [35], we use the clustering algorithm of globally optimal
repeated bisection [43].

5.4 Experiments

5.4.1 Experimental Setup

For our experiments we use the Switchboard Telephone Speech Corpus [44], a collection of two-sided
telephone conversations with a single participant per side. Following the data set split strategy in [35],
we use the same development and evaluation data set as [35]. There are 360 conversation sides of six
different topics (recycling, capital punishment, drug testing, family finance, job benefits, car buying)
in the development data set of 35.7 hours of audio. Each conversation side (seen as a single document)
has one single topic, and each topic has equal number of 60 sides of conversations. Similarly, there are
another different six topics (family life, news media, public education, exercise/fitness, pets, taxes)
evenly across the 600 conversation sides of evaluation data set (61.6 hours of audio). Unsupervised
VB training of acoustic unit models are performed on the development set (10 iterations); after
the unsupervised learning, we apply the learned acoustic unit models to obtain the acoustic unit
tokenizations of both development and evaluation sets.

For AUD model definitions, we use the truncation T = 200, which implies maximum 200 different
acoustic units can be learned from the corpus. For each acoustic unit, we use a HMM of 3 emission
states with a left-to-right topology and 2 Gaussians per state. Other hyperparameter values are the
same as [23].

To compute NMI, we first use a supervised ASR system trained on Switchboard training corpus
(about 300 hrs) to obtain forced aligned phoneme transcripts as our reference transcripts. During
scoring, we define the distance between an output acoustic unit token and a reference phoneme token
as the time frame difference between the center frames of two tokens; in doing so, each acoustic unit
token is assigned to a closest reference phoneme token based on the distance metric defined. As shown
in Table 5.1, the number of units in the tokenizations of a dataset is determined as the number of
unique units that occur in any of the 1-best Viterbi decode of that dataset; thus, truncation T = 200
is the ceiling number, and it is possible that unit numbers differ between development and evaluation
data since all 200 unit models are used during decoding process.

5.4.2 Feature Extraction Using LDA and Multilingual BN

For AUD experiments, we use manual segmentations provided by the Switchboard corpus to pro-
duce utterances with speech activity, and speech utterances are further parameterized either as 39-
dimensional MFCCs with first and second order derivatives, or 42-dimensional BN features, with
CMVN applied per conversation side.
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Table 5.1: AUD Performance evaluated by NMI, same-different task, document classification and
clustering on Switchboard

Acoustic Features Average Document Classification Document Clustering

Dataset AUD is based on # units % NMI Precision Accuracy Purity B-Cubed F1

MFCC 145 21.59 0.247 0.3083 ± 0.0908 0.2268 ± 0.0015 0.1817 ± 0.0008

Development MFCC w/ LDA 145 24.55 0.251 0.4361 ± 0.0692 0.2354 ± 0.0026 0.1855 ± 0.0006

Data BN 184 28.20 0.343 0.7028 ± 0.0796 0.2446 ± 0.0018 0.1949 ± 0.0008

BN w/ LDA 184 29.13 0.359 0.7167 ± 0.0733 0.2553 ± 0.0102 0.2023 ± 0.0047

MFCC 144 21.20 0.224 0.4633 ± 0.0702 0.2388 ± 0.0010 0.1899 ± 0.0001

Evaluation MFCC w/ LDA 144 24.07 0.219 0.4833 ± 0.0477 0.2426 ± 0.0031 0.1893 ± 0.0005

Data BN 184 28.01 0.303 0.7167 ± 0.0350 0.2398 ± 0.0069 0.1983 ± 0.0032

BN w/ LDA 184 28.84 0.329 0.7300 ± 0.0567 0.2373 ± 0.0037 0.2140 ± 0.0035

11-frame context windows of raw acoustic features (MFCCs or BN features) with CMVN are
stacked to represent the center frame (equal left and right context frames as 5), and used as the LDA
inputs. Using truncation parameter T = 200 and 3 HMM emission states yields 600 possible unique
HMM state labels for the first-pass tokenization of development data. These state labels are used
as LDA class labels. We accumulate LDA statistics and estimate the transformation matrix from
development data, and apply the resulting LDA transformation to both development and evaluation
data, reducing the spliced raw acoustic features into 40 dimensions for each frame. Then we proceed
with second-pass AUD training based on the 40-dimensional LDA features. We reuse the sufficient
statistics of certain latent variables (i.e., accumulated posteriors of each acoustic unit, HMM state
transitions and GMM component) that are computed by the first-pass AUD model on raw features,
for updating the model posterior distributions in the first iteration of second pass training; we find
empirically, this procedure outperforms conducting the second-pass training on LDA features from
scratch (i.e., initializing posterior distributions the same as their priors).

Using the Kaldi toolkit [45], we conduct our multilingual TDNN-based BN training with 10 lan-
guage collections provided in the IARPA Babel Program (IARPA-BAA-11-02): Assamese, Bengali,
Cantonese, Haitian, Lao, Pashto, Tamil, Tagalog, Vietnamese and Zulu. 10-hour transcribed speech of
each language is used for training. We first evaluated our multilingual BN recipe for ASR experiments
using this Babel corpus, and observed modest WER improvements in the hybrid multilingual TDNN
system by using other languages to supplement the training data of test language, and more robust
WER improvements in the tandem TDNN system with spliced multilingual TDNN-based BN features
and MFCCs. Detailed discussion of ASR results is beyond the scope of this chapter. Particularly,
we are interested in learning speech representations with effective cross-lingual generalization to an
unseen language as in a zero-resource setting where AUD is typically performed. The multilingual
TDNN-based BN training recipes will be available in the Kaldi code repository [45] as an open-source
capability of language-independent BN feature extraction.

5.4.3 AUD Evaluations

For same-different tasks, from the time aligned word transcriptions, we extracted all word examples
that are at least 0.50 s in duration and at least 6 characters as text from development and evaluation
data set respectively. Development set produces approximately 11k word tokens, 60.8M word pairs of
which 96.8k have the same word type. Evaluation data has 19k tokens and 186.9M word pairs with
281.8k pairs having the same word type. 200 (T = 200) dimensional AUD posteriorgram features
across HMM units are produced as inputs to DTW scoring function.

For document classification, we use the acoustic unit trigram representation, and we scale each
trigram feature value by the inverse document frequency, referred to as TFIDF features. We further
normalize each feature vector to L2 norm unit length. To be comparable with experimental results
in [35], classification accuracies are reported based on 10-fold cross validation, and average performance
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with standard deviations reported in Table 5.1.
For document clustering, we use the TFIDF features of the spliced acoustic unit unigrams, bi-

grams and trigrams. Purity and B-Cubed F1 score [46, 47] are used as evaluation metrics. We run
all clustering experiments using Cluto clustering library [43], and for each one, we use 10 different
initializations and report average performance and standard deviations.

As shown in Table 5.1, for NMI, same-different task and document classification, both LDA and BN
features produce substantial and correlated improvements, except that performing LDA on MFCCs
does not seem to improve the same-different AP. Specifically, the best performance across all mea-
sures by combining LDA and BN demonstrates the complementarity between these two approaches.
Given all the same AUD model configurations, we find the improved same-different AP or document
classification accuracy often indicates the NMI improvement, which implies in a zero-resource setting,
AUD evaluation can fall back to other resources if necessary, e.g., word pairs or topic labels, which
might be easier to be available or to obtain than the expensive orthographic phoneme transcripts.

Also, as we can see, NMI only drops slightly between development and evaluation data, which
shows the learned acoustic unit models can generalize well on unseen data.

Moreover, we find directly using the raw MFCCs after CMVN as acoustic features for all word
segments gives AP 0.208 on the same-different task of development data. Therefore, the significantly
higher AP 0.247 provided by our AUD posterior features across acoustic unit HMMs (learned from
MFCCs) demonstrates AUD posteriorgrams as effective acoustic representations. We also find the 600-
dimensional AUD posterior features across each acoustic unit HMM state can provide even higher AP
as 0.267, and we leave all the applications of HMM-state based posterior features for the future work,
since HMM state-level posteriors (with 3 times larger dimensions than HMM unit-level posteriors if
we use 3 state HMM) have much larger computational overhead in DTW scoring.

Also, our legitimate zero-resource document classification effort with LDA- and BN-based AUD
yields accuracy 0.73, which demonstrates AUD tokenizations to be effective document representations
for discriminative tasks. For topic clustering in development data, there are consistently marginal gains
as other measures improved. However, this trend does not well hold in evaluation data. Moreover, on
the same development data we use, [35] shows phone trigram features by a high-resource supervised
phoneme recognizer give classification accuracy up to 0.9138, clustering purity 0.6194 and B3 F1
score 0.5256, which indicates document processing with unsupervised phonetic information remaining
a challenging task.

5.5 Conclusions

We present an effective AUD framework can be successfully improved by integrating a self-supervised
LDA technique and a complementary language-independent TDNN-based BN feature extraction
recipe. We demonstrate the effectiveness of AUD-based discriminative features as acoustic repre-
sentations given by AUD posteriors across automatically discovered units, and as document repre-
sentations given by AUD tokenizations. Moreover, we find the gains in the intrinsic NMI metric for
AUD algorithm development can often be predicted by the improved efficacy of applying AUD to real
speech applications like same-different task and document classification. This suggests that in real
zero-resource scenarios, as we optimize the core AUD technology, alternative evaluations by various
different resources can be considered, which serve as zero resource efforts towards ASR technology
without replying on any expert-provided linguistic knowledge.
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Chapter 6

Topic identification of spoken
documents using unsupervised acoustic
unit discovery

Santosh Kesiraju, Raghavendra Pappagari, Lucas Ondel, Lukáš Burget, Najim Dehak,
Sanjeev Khudanpur and Jan “Honza” Černocký, Suryakanth V Gangashetty

This chapter investigates the application of unsupervised acoustic unit discovery for topic iden-
tification (topic ID) of spoken audio documents. The acoustic unit discovery method is based on
a non-parametric Bayesian phone-loop model that segments a speech utterance into phone-like cat-
egories. The discovered phone-like (acoustic) units are further fed into the conventional topic ID
framework. Using multilingual bottle neck features for the acoustic unit discovery, we show that the
proposed method outperforms other systems that are based on cross-lingual phoneme recognizer.

6.1 Introduction

Recent advances in machine learning and spoken language technologies have given rise to many daily
life applications. This progress is mainly coming from the so called “deep learning” methods, that
requires large amounts of labelled data for training. Unfortunately, for many languages the lack of
labelled data preclude the direct application of state-of-art spoken language technologies.

The need for automatic analysis of spoken documents is important, since the amount of and the
ability to store multimedia data is increasing day-by-day. The technologies developed in this regard
are primarily useful for tasks such as query based document retrieval, topic identification (topic ID),
key-word spotting, etc,. Most of these information retrieval tasks rely on the semantics in a document,
where the notion of topics play an important role. One particular task of interest is topic ID, where
the goal of a system is to identify the topics of the spoken documents in a given collection. This
can also be seen as a supervised task, where a given document has to be classified into one of the
pre-defined topics.

The majority of the systems for topic ID of spoken documents use word or phoneme based auto-
matic speech recognition (ASR) as the pre-processing step, followed by the application of techniques
developed by the text retrieval community [82, 83, 39]. It is possible to train ASR systems for English
on large amounts (1000 hours) of publicly available data [84] and software [85]. But, not every language
is rich in resources for building ASR systems, hence there is a need for developing techniques that are
useful for languages with low or zero resources. In this chapter, we propose a topic ID system that
relies on the unsupervised discovery of acoustic (phone-like) units using a non-parametric Bayesian
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model.

Earlier work on the analysis of spoken documents in zero resource scenarios was based on identifying
recurrent patterns of speech (spoken words), where dynamic time warping (DTW) based algorithms
were used [86, 87]. However, these are not scalable to large amounts of data. An alternative is to use
phone recognizers from other languages. This idea was explored for the task of topic ID in [88]. Under
limited resource conditions, i. e., with limited vocabulary for training an ASR, topic ID of spoken
documents was explored in [89].

We have recently proposed an infinite phone-loop model [90], similar to [6], to automatically
segment unlabelled speech into phone-like categories. By using Variational Bayes rather than Gibbs
sampling, we have shown that this model can be trained efficiently on large speech corpora with greater
accuracy [90]. We use this model as a front-end to a topic ID system. A similar idea was proposed
in [91, 92], where the authors used “self-organizing-units” to represent speech into meaningful tokens.
In our work, we jointly learn the speech segmentation and the parameters of the acoustic model in
a completely unsupervised fashion, whereas the earlier approaches [91, 6], learn the segmentation
independently of the acoustic model. In [91], the acoustic model is learnt together with the language
model, whereas we limit ourselves to model the acoustic data.

The infinite phone-loop model is described in Section 6.2, and our topic ID framework is explained
in Section 6.3. Section 6.4 includes the details of the data set, description of the baseline and the
proposed systems. We provide the results of topic ID systems in Section 6.5, followed by conclusions
in Section 6.6.

6.2 The infinite phone-loop model

6.2.1 Model

The model aims at segmenting and clustering unlabelled speech data into phone-like categories. It is
similar to a phone-loop model in which each phone-like unit is modelled by an HMM, and each HMM
state distribution is represented by a GMM. This phone-loop model is fully Bayesian in the sense that:

• it incorporates prior distributions over HMM state transition probabilities, and parameters of
state emission GMM distributions,

• it has a prior distribution over the units modelled by a Dirichlet process [10].

Informally, the Dirichlet process prior can be seen as a standard Dirichlet distribution prior for a
Bayesian mixture with an infinite number of components. However, we assume that our N data
samples have been generated with only M components (M ≤ N) from the infinite mixture. Hence,
the model is no longer restricted to have a fixed number of components but instead can learn its
complexity (i. e. number of components used, M) according to the training data. The generation of
a data set with M speech units can be summarized as follows:

1. sample the vector v = v1, ..., vM with

vi ∼ Beta(1, γ) (6.1)

where γ is the concentration parameter of the Dirichlet process

2. sample parameters of M HMMs, θ1,...,θM from the prior (base) distribution of the Dirichlet
process.

3. sample each segment as follows:
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(a) choose a HMM parameters with probability πi(v) (using stick breaking process [9]) defined
as:

πi(v) = vi

i−1∏
j=1

(1− vj) (6.2)

(b) sample a path s = s1, ..., sn from the HMM transition probability distribution

(c) for each si in s:

i. choose a Gaussian components from the mixture model

ii. sample a data point from the Gaussian density function

6.2.2 Model parameters

In the absence of information about the prior distribution of the parameters of the model, it is
convenient to use conjugate prior (distribution), which greatly simplifies the inversion of the model:
indeed, due to the conjugacy, the posterior distribution of each parameter of the model will have the
same parametric form of the prior. The distribution of the mean µ and the diagonal covariance matrix
Σ with diagonal λ is modelled by a Normal-Gamma density: N (µ|µ0, (κ0λ)−1) Gamma(λ|α0,β0)
where β0 is the rate parameter of the Gamma distribution. The prior of the weights π of a GMM and
the row r of the transition matrix of an HMM are modelled by Dirichlet distributions parametrized

by the vectors η
(gmm)
0 and η

(hmm,r)
0 respectively. Finally, the prior distribution over the proportions

vi is the Beta(1, γ) distribution. The model has also 3 set of hidden variables:

• ci the index of the HMM for the ith segment in the data set

• sij the HMM state of the jth frame in the ith segment

• mij the GMM component of the jth frame in the ith segment.

6.2.3 Inference

We would like to invert the model previously defined to obtain the probability of the parameters,
and the hidden variables which define the segmentation, given the data. Following variational Bayes
(VB) framework, it can be achieved by optimizing a lower-bound on the log-evidence of the data with
respect to the distribution over the parameters q:

log p(X) ≥Eq[log p(X, c,S,M,Θ|Φ0))]

− Eq[log q(c,S,M,Θ)]
(6.3)

where X is the entire set of features of the N segments, c = c1, ..., cN , S = s11, ..., sNLN
, M =

m11, ...,mNLN
, Θ is the set of all the parameters and Φ0 is the set of the hyper-parameters of the prior

distribution over the parameters. The equality is achieved if and only if q(c,S,M,Θ) = p(c,S,M,Θ |
X). Because of the conjugate prior distribution described in Section 6.2.2, we have a closed form
solution [9] for a co-ordinate ascent algorithm, when considering the mean-field approximation:

q(c,S,M,Θ) = q(c,S,M)q(Θ), (6.4)

where we have assumed the statistical independence between the parameters and the hidden variables
of the model. Following [9], another approximation is done to cope with the infinite number of
components in the mixture; we set vT = 1 to force the weight of any component greater than T
to zero. By using the factorization in (6.4) and variational calculus, one can show that the (log)
distributions that maximizes the bound (6.3) are :
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log q∗(c,S,M) = Eq(Θ)[log p(X, c,S,M,Θ|Φ0)] + const

log q∗(Θ) = Eq(c,S,M)[log p(X, c,S,M,Θ|Φ0)] + const
(6.5)

Maximizing the bound (6.3) minimizes the KL divergence between (6.4) and the true posterior distri-
bution of model parameters. Therefore (6.4) can be taken as the approximate posterior, which is found
by evaluating each factor in turn using (6.5) until convergence. Details about the update equations
can be found in [90].

The mixture of HMMs can be interpreted as a single compound HMM, which allows us to eas-
ily evaluate the approximate posterior distribution q(c,S,M) using the standard forward-backward
(Baum-Welch) algorithm. Similarly, Viterbi algorithm can be used for decoding the sequences of the
discovered acoustic units. This subtlety simplifies the inference algorithm as we do not need any
pre-segmentation of the speech data.

6.3 Topic ID framework

6.3.1 Topic ID in low resource scenarios

Let D be the collection of documents comprising a vocabulary V , and let each document belong to
one and only one topic from a set of T topics. Let d, w and t be the variables for denoting documents,
tokens in the vocabulary and topics respectively. Assuming the bag-of-words approach, each spoken
document d is represented in the form of a vector, whose dimension is equal to the size of the vocabulary
V . In the conventional topic ID framework, the vocabulary V is simply the set of words as seen in the
document collection. In low resource scenarios, when a reliable word based ASR is not available, the
vocabulary can be made from phoneme n-grams (usually n = 3, 4). It was observed that the topic ID
based on phoneme trigrams is a robust alternative to a word based topic ID system [83]. Since the
infinite phone-loop model discovers phone-like units, we experimented with 3-grams and 4-grams as
the terms (word-types) in the vocabulary.

6.3.2 Vocabulary selection

In a supervised setting, vocabulary selection plays an important role as it can drastically reduce the
dimension of the document vectors and significantly improve the performance of the classifier. The n-
grams for vocabulary are chosen based on conditional probabilities as proposed in [83]. The conditional
probability of topic t given a n-gram w is estimated as follows:

P (t | w) =
fwt + |T |P (t)

fw + |T |
, (6.6)

where fwt is the number of times the n-gram w appeared in documents related to topic t, fw is
the total number of times n-gram w appeared in all the documents from the training set. P (t) is
the probability of topic t as estimated from training corpus. The conditional probability in (6.6) is
computed for every topic and the vocabulary is formed by considering top Nt n-grams per topic with
the highest probabilities (6.6).

6.3.3 Document representation

If fwd represents the frequency of token w in document d, then the smoothed TF-IDF (term frequency
- inverse document frequency) representation (vwd) is given by,

vwd = fwd . log
( |D|

1 +Ndw

)
+ 1, (6.7)

where Ndw represents the number of documents in which the term w appears. The resulting document
vectors are further `2 normalized, such that the sum of the squares of elements equals to 1.
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Table 6.1: The statistics show number of recordings per topic from a subset of Fisher corpus used in
the preliminary experiments.

Topic Name # docs.

Training set Test set

Anonymous Benefactor 20 56
Corporate Conduct in the US 20 38
Education 20 57
Holidays 20 58
Illness 20 71
Minimum Wage 20 144

Total duration (hrs). 21.67 77.28

6.3.4 Document classification

For classifying the documents, we have used linear support vector machines, trained using stochastic
gradient descent [93, 42]. The SVMs are used in a one-versus-all strategy for multi-class classification.
On the training data, we used 5-fold cross validation and performed grid search over the choice of
hyper-parameters (i. e., choice of `1, `2, elastic net regularization and the regularization coefficient) of
the classifier. Using the best of hyper-parameters, the classifier is trained again using all the training
data to predict the topic labels of the test documents.

6.4 Experimental setup

6.4.1 Data set

Our experiments on topic ID are conducted on the Fisher phase 1 English corpus, which is a collection
of recordings from conversational telephone speech. Each document represents one telephone conver-
sation that includes both sides of the call, and is associated to one and only one topic. We chose
a subset that consists of the same 6 topics as in [87], but relatively more number of documents per
topic. The details of this subset of data used in our experiments is given in Table 6.1. This subset
was chosen to study the acoustic unit discovery (AUD) model. We have also experimented on a larger
set of 40 topics with the same data splits as used in [83, 39, 88].

6.4.2 Oracle system

The oracle system is based on the English phoneme recognizer trained on Fisher corpus with large
amounts (∼ 500 hrs.) of data. The motivation for using such a setup is to show the performance of a
topic ID system in scenarios where the target language is known and considerably large amounts of
training data is also available. We used DNN based phoneme recognizer built with the Kaldi toolkit
following the recipe described in [94].

6.4.3 Baseline systems

The baseline systems are based on phoneme recognizers from various languages: Czech, Hungarian,
Russian, which were trained with split temporal context features [95]; and Turkish, from the Ba-
bel program, which was trained in a similar framework as described in [96]. The Hungarian phone
recognizer was used as a baseline comparison for the task of topic ID in [83, 88, 91, 92].
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6.4.4 Proposed system

The proposed system is based on the discovered acoustic units from the infinite phone-loop model.
We explored the following set of input speech features for training the model:

1. 13 dimensional MFCCs + ∆ + ∆∆

2. Multilingual bottle neck features (Babel-MBN) [97].

3. Multilingual bottle neck features (global phone dataset, GP-MBN) [98].

The Babel-MBN features are extracted using bottle neck neural network trained on data comprising
of Cantonese, Pashto, Tagalog, Turkish and Vietnamese and GP-MBN are trained on data comprising
of Czech, German, Portuguese, Russian, Spanish, Turkish and Vietnamese languages. Both the neural
networks are trained in the same fashion as described in [97].

The hyper-parameters of the infinite phone-loop model play a significant role in quality and quan-
tity of the discovered acoustic units. We primarily experimented with the concentration (γ) of the
Dirichlet process prior and the truncation (M). The effect of these hyper-parameters is explained in
the following section along with the results. The rest of the hyper-parameters i. e., states per HMM
(S = 3) and Gaussian components per state (C = 2) are fixed. We also investigate the importance on
the amount of data used to train the infinite phone-loop models.

6.5 Results

In the first section of the results, we give the comparison of topic ID systems across various baselines
and AUD systems. All the systems are based on 1-best sequence from the recognizers. These exper-
iments are performed on a subset of 6 topics from the corpus as detailed in Table 6.1. In the later
section, we show the topic ID results on a larger set of 40 topics from the same corpus.

6.5.1 Topic ID on the subset

The AUD model was trained on the 21 hr. training set as presented in Table 6.1, and the trained
model was used to automatically transcribe both the training and test data in terms of the discovered
acoustic units. The resulting automatic transcription was fed into the topic ID framework that was
described in Section 6.3. Here, both the AUD and topic ID models are trained on the same 21 hr.
training set (Table 6.1).

The classification accuracy (in %) of the topic ID systems based on various phoneme recognizers
(baseline and oracle) and the discovered acoustic units (AUD) are presented in Table 6.2. The proposed
infinite phone-loop model outperforms all other phone recognizers except for the one trained on the
English (target language). This shows that systems trained on another phone set than the target one
are far from being optimal, and it is preferable to use unsupervised methods instead. The vocabulary
size (set of all unique trigrams) of the proposed system is however much bigger than baseline systems,
as the number of discovered acoustic units is 100 (which is larger than the number phoneme set of the
other phone recognizers). In Table 6.2, the results are reported only for the vocabulary size for which
the classification accuracy is observed to be highest.

Topic ID across various AUD systems

This section presents the comparison of several AUD systems that were explained in Section 6.4.4. We
primarily experimented with various types of input speech features and concentration (γ) parameter
of the Dirichlet process. Higher concentration (γ > 1) encourages more number of clusters (i. e., in the
stick-breaking process, higher concentration results in more number of smaller chunks of the stick).
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Table 6.2: Comparison of Topic ID accuracy (in %) on the subset of 6 topics across various systems
for the best set of 3-gram vocabulary.

Recognizer Acc. (%) Vocabulary size (|V |)

Hungarian (HU) 70.19 2428

Czech (CZ) 67.36 5856

Russian (RU) 60.90 3027

Turkish (TU) 55.04 12041

Proposed (AUD) 76.48 3029

Oracle (EN) 98.96 9516

From Table 6.3, we can observe that multilingual bottle-neck features are a better representation of
speech for unsupervised learning of acoustic units, and therefore results in better topic ID accuracy.

Table 6.3: Comparison of Topic ID accuracy (in %) on the subset of 6 topics across various AUD
systems.

Feature type Accuracy
γ = 1.0 γ = 10.0

MFCC 36.33 39.27
Babel-MBN 63.41 75.47
GP-MBN 72.74 76.48

6.5.2 Topic ID on the large set

The details of the topic ID training and test splits on a large set of 40 topics from Fisher corpus are
presented in Table 6.4. These are the same splits as used in [83, 39, 88]. For these experiments, we
have trained two AUD models, one with 26 hrs. (AUD-26) and the other with 52 hrs. (AUD-52), and
neither of them overlap with any of the topic ID training or test data from Table 6.4. These two AUD
models are trained with concentration, γ = 10 and GP-MBN input speech feature representation, as
this combination was observed to be giving the best topic ID performance earlier (Table 6.3). After
the AUD models are trained, they are used transcribe the topic ID training and test data (Table
6.4) in terms of the discovered acoustic units, followed by the topic ID framework described earlier in
Section 6.3.

We chose the best baseline system (i. e., Hungarian, HU) from Table 6.2 and perform the topic ID
experiments on this large set of 40 topics in the same framework. All these results are presented in
Table 6.5, and we can observe that the proposed AUD systems are better than the baseline, but still
far from the oracle system (DNN based English phoneme recognizer). This is partly because we have
a more difficult task of classifying 40 topics.

From these experiments, we observe that in an unknown scenario and/or language, it is better
to borrow knowledge from the other languages at a lower (feature) level (multi-lingual bottle neck
features) than at a much higher level (phone recognizer) and rely on the unsupervised methods to
discover the acoustic units from the data and use them for further tasks.
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Table 6.4: Statistics of the data splits from large set of Fisher phase 1 corpus used in the experiments.

Set # docs. Duration (hrs.) # topics

Topic ID training 1374 244 40
Topic ID test 1372 226 40

Table 6.5: Comparison of Topic ID accuracy (in %) on the large set of 40 topics for the best set of
n-grams from the vocabulary.

Recognizer Acc. (%) |V | n-gram AUD params.

AUD-26 53.84 6061 3 M = 200, γ = 10
AUD-52 55.54 2140 4 M = 100, γ = 10
HU 47.92 25351 3 -
EN 91.41 11236 3 -

6.6 Conclusions

This work focuses on the importance and application of unsupervised acoustic unit discovery for
the task of topic identification. We showed that using multilingual bottle-neck features for learning
the acoustic units, the performance of the topic ID system could be improved significantly. Our
experiments on a corpus of conversational telephone speech showed that the proposed system performs
better than the other systems which rely on the cross-lingual phoneme recognizers. Although the
results are encouraging, there is still a significant space for improvement to reach the performance of
supervised speech recognition systems. One step towards achieving this would be to jointly learn the
language model and the infinite phone-loop parameters in an unsupervised fashion.
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Chapter 7

Combining Acoustic and Lexical Unit
Discovery Towards Unsupervised
LVCSR

Thomas Glarner, Oliver Walter, Reinhold Haeb-Umbach

We present a hierarchical approach to training a speech recognition system from untranscribed
speech. The system consists of modules for the unsupervised discovery of both, acoustic and lexical
units, where the first correspond to phonemes and the latter to words. While solutions for either of
the two tasks can be found in the literature, the purpose of this contribution is to couple the two
to learn a hierarchical representation of speech with acoustic units on the lower and word-like units
on the upper level of the hierarchy. Nonparametric Bayesian models are employed for both tasks to
cope with the a priori unknown number of models. Further, a feedback loop from the word discovery
unit to the acoustic model discovery unit is proposed to improve the latter by exploiting the language
model information learned in the former. Initial experiments on the Xitsonga language show that
this feedback indeed improves the quality of the discovered acoustic units.

7.1 Introduction

Transcription costs make annotated corpora expensive to create, and linguistic expert knowledge is
required to compile pronunciation dictionaries. In contrast to this, raw audio data is cheap to obtain.
Furthermore, there are many languages which are only spoken by a small number of people, rendering
the creation of annotated corpora uneconomical.

However, building a speech recognizer from audio only is a widely unsolved challenge, which calls
for unsupervised learning techniques. Bayesian techniques are of particular interest since they allow
for the incorporation of prior knowledge (e.g., the Zipf law in the case of language modeling), and
because they can express uncertainty in a formal way, which helps to avoid premature decisions on
tokens before exploiting all available knowledge sources. Furthermore, in the case of acoustic unit
(AU) and word discovery (WD), the number of AUs and words are not known beforehand, which can
be approached with nonparametric Bayesian techniques.

In this contribution, our working hypothesis is that the hierarchical structure of speech, where the
words are composed of elementary AUs, the phonemes, should also be reflected in the unsupervised
learning approach, which should attempt to learn this hierarchical representation. We thus need to
solve two subtasks, acoustic unit discovery (AUD) and WD on top of the AUD. While either of the
two tasks has been tackled earlier in isolation, this chapter aims at combining the two. This contrasts
with approaches which directly model word-like units as in [48], which we believe will become more
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difficult as the vocabulary size grows.

While there have been many approaches to learn the elementary acoustic units from data, more
recently Bayesian approaches have become prevalent. In [49] a nonparametric Bayesian model has
been proposed which later has been extended to jointly learn the acoustic units and the segment
boundaries [50]. While these two approaches relied on Gibbs sampling, the variational Bayesian
approach of [51] is computationally less expensive while achieving comparable, if not better recognition
performance.

The subtask of WD has mostly been studied on text input, where it corresponds to inserting white
spaces in a character stream, i.e., carrying out a segmentation task. Again, Bayesian methods have
been shown to be quite effective. The work of [52] employs a Hierarchical Dirichlet Process (DP)
for word segmentation, while [53] introduces a Nested Hierarchical Pitman-Yor Process, consisting of
hierarchical Bayesian language models at the word and the character level. Word discovery is achieved
by iterating between word segmentation, given a language model, and language model estimation for
a given word segmentation.

Only few works have considered the segmentation of a label sequence produced by an ASR phoneme
recognizer. This is a much harder task, since the label sequence contains recognition errors. A system
for the segmentation of input phoneme lattices based on Weighted Finite State Transducers has been
proposed in [54]. In own prior work we have shown that unsupervised word segmentation on phoneme
lattices produced by an ASR decoder can even improve the ASR decoder result [55, 56]: Using the
language model learned jointly with the word segmentation in the next iteration of the ASR decoder
led to an improved phoneme recognition rate. This observation was the motivation for the work
described here.

In this contribution, we combine the nonparametric Bayesian AU discovery from [51] with the word
discovery and segmentation system proposed in [55, 56]. This results in a large vocabulary subword-
unit based speech recognizer, which is trained in a completely unsupervised manner. Due to the lack
of supervision, both acoustic unit and word discovery have high error rates. In an attempt to cope
with this issue we employ lattices as interface between the two, such that the word discovery is able
to correct errors which may be present in the first-best label sequence produced by the AU discovery.
Further, we propose a feedback loop architecture, where the best-scoring label sequence, according to
the word discovery module, is used as tentative transcription to retrain the AU discovery system.

We evaluated the proposed system on the Xitsonga corpus which has been provided for a recent
zero resource challenge [57]. While the observed improvements in AU discovery by the feedback loop
are modest, we nevertheless believe that the proposed hierarchical approach is promising for future
work.

7.2 Modules of the unsupervised ASR system

The proposed feedback system has its foundation in two components that tackle different subtasks of
unsupervised speech recognition: An AUD component and a WD component. The interface between
the components is given through a lattice of acoustic units. The following sections give a brief overview
of these components.

7.2.1 Acoustic unit discovery

The AUD system component is the one proposed by Ondel, Burget and Cernocky [51]. It is similar
to the approach proposed by Lee et al. [49] in that the acoustic model consists of an infinite mixture
of HMMs based on a DP prior. However, they differ in the way they treat the DP: In the work
of Lee et al., the Chinese Restaurant Process representation is used to perform inference by Gibbs
Sampling. In contrast to this, Ondel et al. employ a variational approximation based on a truncated
Stick Breaking Process analogous to [58]. Here, the main idea is that the true distribution is modeled
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as a full Dirichlet Process and thus an infinite HMM mixture model. A variational approximation is
stated under the assumption that, after a fixed truncation length, subsequent mixture units can be
neglected due to their vanishing probability. The learning algorithm aims to maximize the similarity
between the truncated mixture and the original Dirichlet Process. The variational approach allows
for fast and easily parallelizable Bayesian inference.

Furthermore, no explicit boundary variable between the acoustic units is included in the model.
Instead, the sequence of acoustic units within an utterance is modeled by a phone loop: Any acoustic
unit HMMs can follow any other, and when the end state of one HMM is reached, the next HMM is
chosen according to its unit probability given under the DP.

The acoustic unit discovery training is an Expectation-Maximization type of algorithm, which
iterates between the E-step (modified forward-backward algorithm to obtain state posteriors) and the
M-step (update of the model parameters), see [51] for details.

A drawback is that the variational inference can handle only unigram acoustic unit probabilities.
For higher-order models, such as a bigram, no variational inference algorithm is known [58]. To
overcome this drawback, we propose to incorporate longer-range context information by feeding back
the result of the word discovery module as described later on.

7.2.2 Word discovery

The word discovery or word segmentation module is the one proposed in [56]. It is based on the system
in [54], which in turn relies on the language model introduced by [53].

The underlying assumption is that the sequence of acoustic units within a word can be better
predicted than at word boundaries. The predictive probabilities are given by a Nested Hierarchical
Pitman-Yor language model, which is estimated alongside the word segmentation task. It comprises
two hierarchical Pitman-Yor language models (HPYLMs), one at the word and one at the AU level
[59]. The predictive probability of a word w appearing in a context u is given by:

Pr(w|u) =
cuw· − d|u|tuw
θ|u| + cu··

+
θ|u| + d|u|tu·

θ|u| + cu··
Pr(w|π(u)). (7.1)

If Pr(w|u) is an n-gram probability, u denotes the context of length n−1. cuw· is the number of times
the word w has been seen in the context u, and π(u) denotes the shortened context of length n−2. The
count tuw stands for the number of distinct draws from the base measure (the prior probability) for
the given context (the so-called number of tables in the Chinese Restaurant Process). The parameters
of the model are the concentration θ|u| and the discount parameter d|u|. While the first controls the
variation of the distribution around its base measure, the second parameter is what differentiates the
Pitman-Yor process from the DP: it makes sure that the resulting distribution follows Zipf’s law. In
(7.1), the dot stands for any character. E.g., cuw· stands for number of occurrences of the word w in
the context u, irrespective of the ”table” it is assigned to. For more details see [59].

At the root of the HPYLM is the zerogram language model. However, since the vocabulary and
thus its size is unknown, the zerogram probability, which is equal to one over the vocabulary size,
cannot be computed. Instead, the probability of the AU sequence that the word consists of is used.
This probability is calculated using another HPYLM over the AUs. This is the nested HPYLM, which
allows for a potentially infinite vocabulary size [53]. The entire language model is called segmentation
LM in the remainder of the chapter.

To learn new words, a (blocked) Gibbs sampling scheme is performed. Given a language model, a
new segmentation of an utterance is sampled using the forward filtering backward sampling algorithm
[53]. With this segmentation the language model probabilities can be updated. Then a new utterance
is chosen and the scheme is repeated until convergence.

Furthermore, since the AU sequence provided by the AUD module to the WD module contains
recognition errors, the interface between the two modules is realized by a lattice, which contains the
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Figure 7.1: Complete AUD+WS system including the proposed feedback loop.

set of the most likely sequences of acoustic units in a directed acyclic graph structure. Since the
lattice may contain sequences with fewer errors than in the 1-best path, the word segmentation is
able to correct errors by choosing an alternative to the sequence considered most probable by the
AUD module. This selection is done by rescoring the phoneme lattice with an additional rescoring
AU HPYLM learned in the WD module.

As explained in [56], this rescoring AU HPYLM needs to be different from the AU part in the
segmentation LM for two reasons: Firstly, the AU level part of the segmentation LM is only trained
with a fraction of the corpus, namely those AU sequences which cannot be identified to be part of
a word. Secondly, both language model orders should be chosen differently, since the rescoring LM
seems to benefit from a high AU LM order while the word segmentation LM does not, probably due
to the different training set sizes. Further, this second LM includes a word end tag and calculates the
word end probability at the AU level and therefore incorporates the knowledge of the word level part.

7.2.3 Word-level information feedback

In order to improve the result of the acoustic unit discovery, this work proposes to exploit the output
of the word segmentation component. Both the rescored lattice and the segmentation output comprise
valuable information about the likelihood of acoustic unit sequences over a long-range context. This
information is fed back by extracting the best path from the rescored lattice. The corresponding AU
sequence serves as the transcription for a forced alignment in the Viterbi step of the AUD component.
With this initialization the AU training is repeated to improve the AU discovery. The full system is
shown in Fig. 7.1.

7.3 Experiments

The proposed system is evaluated on the Xitsonga corpus of the Zero Resource challenge [60]. The
corpus consists of read speech from 24 different speakers totaling about 2 hours and 30 minutes of
speech with a vocabulary of 2288 words.

Standard MFCC feature vectors are extracted from the audio input. The concentration parameter
of the DP for modeling the acoustic unit probabilities in the AUD component is set to 1, and the stick
breaking process is truncated at 100 acoustic units. For each acoustic unit, a three-state-HMM in left-
to-right topology is assumed with two-component Gaussian mixture models as emission distributions.
The AUD training is performed with 20 iterations, where each iteration consists of the estimation of
the latent variables (E-step) and estimation of the model posterior parameters (M-step).
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For the segmentation LM, the word LM is always a unigram model since we observed that the
acoustic units are too noisy to obtain robust n-grams of higher order. The orders of the AU LMs –
the unit LM part of the segmentation LM and the rescoring LM – were set to higher values, though.

After the word segmentation stage, the best AU sequence is fed back to the AUD stage, and 10
additional iterations of the AUD training are carried out.

Performance of the AUD module is measured in terms of the normalized mutual information
between the discovered units and the ground truth: Given the labels Y obtained by labeling the
evaluation subset with the trained model and the corresponding true labels X from the transcriptions,
a confusion matrix is calculated and the mutual information is obtained by

I(X;Y ) = H(X)−H(X|Y ) = E

[
log

(
Pr(X|Y )

Pr(X)

)]
. (7.2)

It is convenient to normalize the mutual information with the phoneme label entropy H(X), resulting
in a measure between 0 and 1,

NMI =
I(X;Y )

H(X)
, (7.3)

where larger numbers indicate better performance.

The second performance measure is the ABX error between phonemic minimal pairs [61]. For
example, the ABX discriminability between the minimal pair ’had’ and ’hat’ is defined as the proba-
bility that A and X are closer than B and X, where A and X are tokens of ’had’, and B a token of ’hat’
(or vice versa). As the distance measure the Kullback-Leibler divergence is used between frame-wise
unit posteriorgram vectors.

Table 7.1 presents the results on the Xitsonga corpus for different LM orders for the AU LM part of
the NHPYLM and the rescoring LM. All setups improve the measures of AUD performance compared
to their initial values, with the best configuration improving the ABX error from 16.9 to 16.6%. These
values compare favorably with the results obtained by other methods on the same data [60]. The NMI
score is improved from 30.8% to 32.2%. While the feedback provides a consistent improvement of the
performance measures, the actual LM orders do not seem to have a significant impact, as the achieved
values are similar over a range of LM orders. A maximum token F-score of 2.5% and a type F-Score
of 4.2% for the segmentation result and lexicon is obtained with a segmentation AU LM of order 2
and a rescoring LM of order 4, which is comparable to other results on the ZeroSpeech challenge as
well.

Although the improvements obtained by feeding back the word discovery results to the AUD
module are modest, they show that indeed AUD performance can be improved by incorporating long-
range context information provided by the language model estimated in the word discovery module.

7.4 Conclusions

This chapter has presented a hierarchical approach to training an unsupervised speech recognition
system with an acoustic unit discovery component and a word discovery component, which acts on
the label sequence provided by the acoustic unit discovery. Representing word models as a composi-
tion of acoustic units makes this approach suitable for large vocabulary tasks. The system employs
iterative algorithms at various levels: acoustic unit discovery is achieved by iterating between the esti-
mation of the latent variables and latent parameters of the model; word discovery is done by iterating
between word segmentation and language model estimation; and, finally, the acoustic unit discovery
is improved by feeding back language model information estimated in the word discovery module.
Experiments on the Xitsonga corpus of the Zero Resource challenge demonstrated the feasibility of
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Table 7.1: Results for the Xitsonga corpus for different LM orders

Setup NMI [%] ABX error [%]

Initial AUD Result 30.8 16.9

AU LM Rescoring LM NMI [%] ABX error [%]

2 2 32.24 16.74

2 4 31.98 16.72

2 6 32.06 16.77

4 2 32.23 16.79

4 4 31.99 16.76

4 6 31.97 16.73

6 2 32.22 16.75

6 4 32.00 16.73

6 6 31.98 16.64

the approach. However, unsupervised large vocabulary ASR is still very much inferior to supervised
ASR, demonstrating the difficulty of the task and calling for further research.
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Chapter 8

Bayesian joint-sequence models for
grapheme-to-phoneme conversion

Mirko Hannemann, Jan Trmal, Lucas Ondel, Santosh Kesiraju, and Lukáš Burget

We describe a fully Bayesian approach to grapheme-to-phoneme conversion. Similar to the joint-
sequence models, we use a language model on graphone units (joint grapheme-phoneme pairs). How-
ever, we take a Bayesian approach using hierarchical Pitman-Yor-Processes. This provides an elegant
alternative to using smoothing techniques to avoid over-training. No held-out sets and complex param-
eter tuning is necessary, and several convergence problems encountered in the discounted Expectation-
Maximization (as used in the joint-sequence models) are avoided. Every step is modeled by weighted
finite state transducers and implemented with standard operations from the OpenFST toolkit. We
evaluate our model on a standard data set (CMUdict) and show that it gives comparable results to
joint-sequence models in terms of phoneme-error rate while requiring a much smaller training/testing
time. The most important advantage is that our model can be used in a Bayesian framework and for
(partly) un-supervised training.

8.1 Introduction

Grapheme-to-phoneme conversion (G2P) refers to the task of converting a word from its orthographic
form (sequence of letters / characters / graphemes) to its pronunciation (sequence of phonemes or
other types of acoustic units). G2P has its application in speech synthesis and speech recognition.
However, the techniques used for G2P can be applied to any monotonous translation problem.

To avoid the effort of manual rule crafting and to be able to generalize, most of the recent ap-
proaches to G2P are data-driven and probabilistic [62]. Recent discriminative approaches to G2P
(e.g. [63]) seem to slightly outperform the generative ones. Both face the problem of over-fitting to
the training data, which is alleviated by smoothing (e.g. [62]) and regularization techniques (e.g. [63]).
The measurement of the training progress and the tuning of the smoothing/regularization parameters
is done with the help of a held-out set. Smoothing and regularization changes the objective function
of the training. Therefore, when tuning the parameters on the held-out set, the value of the objective
function on the training set might deteriorate, or the training might even fail to converge. Since
Bayesian methods have a notion of uncertainty of the model parameters, the model cannot over-train
and no held-out set is necessary, i.e. all data can be used to estimate the model parameters. Our mo-
tivation is to design a model, that can be applied in a bigger Bayesian framework, e.g. in a Bayesian
open-vocabulary speech recognizer. We also want to be able to deal with (partly) un-annotated data.
For example, imagine that only a small root dictionary contains both orthographic form and pronun-
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ciation, but a much bigger word list without pronunciations is available (from a text corpus), as well
as a set of phoneme sequences without orthographic form that were recognized in places of out-of-
vocabulary words. Therefore, we need a generative model that is also reversible, i.e. can be applied
to the G2P and P2G task.

8.2 Relation to prior work

Many techniques have been proposed for the G2P problem [62]. Popular are joint-sequence models
[62] and the publicly available tool Sequitur, which serves as our baseline. More recent work builds
mainly on discriminative approaches: e.g. [64, 63, 65, 66, 67]. However, for the Bayesian approach,
generative techniques are needed. Within a framework for unsupervised acoustic unit discovery, Lee
et. al. [68] jointly learns a Bayesian model for G2P. Similar to our implementation, the training uses
blocked Gibbs sampling of the letter-phoneme alignment to estimate the model parameters. However,
[68] use a different parametrization (based on a context window around the current letter) and apply
more restrictive constraints on the possible alignments (one letter can generate 0/1/2 phones). More
importantly, the use of graphone units in our case makes the model reversible, i.e. the same model
can be applied for G2P and P2G.

Similar to this work, Phonetisaurus [69, 70, 71, 72] (referring to [73]) also realizes G2P with the
help of WFSTs and the OpenFST toolkit. Wu et. al. [74] use Phonetisaurus and OpenFST and incor-
porate conditional random fields and system combination. Phonetisaurus performs the segmentation
(graphone alignment) as a separate step. The set of graphones is estimated using a context-less model
(as an approximation to speed-up), and then a standard n-gram language model (LM) is estimated
on the segmented training set. However, in our case, similar to [62], we jointly estimate the seg-
mentation and the graphone LM. As opposed to [62], we do not use bottom-up model construction
(step-wise ’ramping-up’ and training LMs of increasing order). This approximation is not necessary
in the Bayesian approach, we can immediately train the full order LM.

8.3 Joint-sequence models

Joint-sequence models [62] use a sequence of joint grapheme-phoneme units (graphones) to generate
the orthographic form (letter sequence g ∈ G∗) and pronunciation (phoneme sequence ϕ ∈ Φ∗) of a
word. A graphone q is a pair of a letter sequence and a phoneme sequence of possibly different length
and represents a mapping of 0..n letters to 0..m phonemes. The graphone inventory Q is usually
derived automatically from the dataset:

q = (gq,ϕq) ∈ Q ⊆ G∗ × Φ∗. (8.1)

Figure 8.1: Graphone alignment for the word ’mixing’ is a co-segmentation of spelling and pronunci-
ation. Shown here using FST-style (01-to-01) graphones [62]: 0..1 letters map to 0..1 phonemes.

The spelling and the pronunciation are segmented into graphones using a co-segmentation
(Fig. 8.1): the letter sequence g and the phoneme sequence ϕ are grouped into an equal number
of segments K. For a given pair of letter and phoneme sequence, the segmentation into graphones is
usally not unique. The task of graphone segmentation is to find (all) possible graphone sequences and
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to calculate their probabilities. S is the set of all possible co-segmentations of g and ϕ (i.e. graphone
sequences q ∈ Q∗):

S(g,ϕ) :=

{
q ∈ Q∗

∣∣∣∣∣gq1 ^ . . . ^ gqK
ϕq1 ^ . . . ^ ϕqK

}
. (8.2)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

ε:A

a:ε

a:A
a:A,B

a,b:A

ε:B

a:ε

a:B
a:B,B

a,b:B

ε:A

b:ε

b:A
b:A,B

b,a:A

ε:B

a:ε

a:B
a,b:B

a:B,A

ε:B

b:ε

b:B
b:B,B

b,a:B

ε:A

a:ε

a:A
a:A,B

ε:A

a:ε

a:A
a,b:A

ε:B

b:ε

b:B
b:B,A

b,a:B

ε:B

a:ε

a:B
a:B,B

ε:A

a:ε

ε:A

b:ε

b:A
b,a:A

ε:B

a:ε

a:B
a:B,A

ε:B

b:ε

ε:A

a:ε

a:A

ε:B

a:ε

ε:A

$:$

Figure 8.2: Lattice of all possible co-segmentations of letters g = A,B,B,A and phonemes ϕ = a, b, a.
Each vertex corresponds to a pair of positions in g and ϕ, possibly conditioned on the history of
graphones h. Edges correspond to graphones. Black: 01-to-01 graphones; Gray: additional 0..2-to-
0..2 graphones (except (2, 2)).

The set of all possible alignments S can be represented as a lattice (Fig. 8.2). The joint probability
p(g,ϕ) is determined by summing over all matching graphone sequences:

p(g,ϕ) =
∑

q∈S(g,ϕ)

p(q). (8.3)

p(g,ϕ) is thus a probability distribution p(q) over graphone sequences qK1 = q1, . . . , qK , which can
be modeled using a graphone language model (LM), using the standard M -gram approximation:

p(qK1 ) ∼=
K+1∏
j=1

p(qj |qj−1, . . . , qj−M+1). (8.4)

To obtain a Bayesian joint-sequence model, we have to replace interpolated Kneser-Ney used in
[62] with a Bayesian LM. In section 8.5, we introduce the hierarchical Pitman-Yor Process LM for
that purpose. The task of G2P is to search for the most likely pronunciation given the orthographic
form using Bayes’ decision rule:

ϕ(g) = arg max
ϕ′∈Φ∗

p(g,ϕ′) (8.5)
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8.4 Model Estimation: Discounted EM

Many G2P algorithms require the grapheme-phoneme alignment (segmentation) as external input.
Joint-sequence models have the advantage, that the alignment and the model parameters are optimized
jointly on the training data O = (g1,ϕ1) . . . (gN ,ϕN ). The parameters to be estimated are the
graphone M -grams p(qj |hj ;ϑ) in Eq. 8.4, where hj = qj−1, . . . , qj−M+1 and ϑ indicates a particular
setting of the parameters. The training is performed with an Expectation-Maximization algorithm
(EM) [62]:

e(q, h;ϑ) =

N∑
i=1

∑
q∈S(gi,ϕi)

p(q;ϑ)∑
q′∈S(gi,ϕi)

p(q′;ϑ)
nq,h(q) (8.6)

In this expectation step, e(q, h;ϑ) is the expected number of occurrences (fractional count) of
the graphone q in context h given the current parameters ϑ, and nq,h(q) is the number of times the
particular graphone q occurs in the sequence q. If we represent the set of all possible alignments as a
lattice (Fig. 8.2), where the arc costs correspond to p(qj |hj ;ϑ), Eq. 8.6 is summing the arc posteriors
of the alignment lattice, which can be obtained with the lattice forward-backward algorithm. In
maximum likelihood training, we start with a flat initialization of all possible graphones and we
alternate the expectation and the maximization steps (Eqs. 8.6 and 8.7):

p(q|h;ϑ′) =
e(q, h;ϑ)∑
q′ e(q

′, h;ϑ)
(8.7)

The use of this original EM guarantees that the likelihood on the training set reaches a (local)
optimimum, but it has several problems: it over-fits the training data, results in a huge graphone
inventory, and once in any iteration e(q, h;ϑ) = 0, the graphone q|h can never emerge again in future
iterations. To avoid over-fitting and to keep the set of graphones manageable, the evidence counts
are smoothed and pruned. As explained in [62], smoothing in this case needs to deal with fractional
counts and an interpolated Kneser-Ney (KN) LM is used:

pM (q|h) =
max (e(q, h)− dM , 0)∑

q′ e(q
′, h)

+ λ(h) · pM−1(q|h̄) (8.8)

Here, dM is the discount used for model order M , λ(h) is the interpolation weight, and pM−1(q|h̄)
is the lower-order distribution (using a shortened history h̄), which recursively has exactly the same
shape as pM , but uses a different kind of evidence counts ê(q, h̄) according to a marginal constraint
(details in [62]).

The discounted EM algorithm as implemented in Sequitur [62] is:

1. Initialize all graphones (flat).

2. Compute expected counts (Eq. 8.6).

3. Estimate new parameters (Eq. 8.8).

4. If likelihood on held-out set improved, continue with 2.

5. Tune discounting parameters d1, . . . , dM by optimizing the held-out likelihood.

6. If held-out likelhood improves, continue with 2.

7. Prune model and terminate.

While in the original EM (Eqs. 8.6 and 8.7), the training likelihood is guaranteed to converge
to a (local) optimimum, for discounted EM, there are effectively two possibly conflicting objective
functions: the setting of the optimal discount parameters (estimated on the held-out set) can in some
cases detoriate the training likelihood and prevent the discounted EM from converging, causing a
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sub-optimal termination of the overall algorithm. In order to reach the (local) optimum, it is in some
cases necessary to manually keep the discounts small in the first few iterations until the training data
’guides’ the model towards the optimum, and to apply the discounts only in the fine-tuning phase.
As already pointed out in [62], starting from a larger initial graphone set (e.g. 0..2-to-0..2 graphones)
always gave worse performance than when allowing only 01-to-01 graphones. Since those are a subset
of the larger set, the training algorithm should be able to pick at least the same optimum.

Sequitur uses a bottom-up model construction: Starting with unigrams, the lower-order M −
1 model is trained until convergence, and then the higher-order model pM (q|h) is initialized with
pM−1(q|h̄) (called ’ramping-up’). Here, histories h can only be constructed from h̄ that were not
pruned in the lower-order model. This greedy approximation is necessary to keep the model tractable
for higher orders M and when using graphones with more than one letters and phonemes. Surprisingly,
when starting directly with a higher-order model (e.g. bigram), the training finishes in a worse local
optimum, than when training bottom-up (fixing the optimal set of graphones in the unigram, and
training a bigram on top of that). That indicates, that the training procedure is not able to find good
sets of unigram graphones, even if the bigger context should help to make an even better selection.

As seen in this section, the implementation of the discounted EM needs a good deal of engineering,
and sometimes it is necessary to force the model into the right direction. We therefore propose to
replace the smoothed graphone LM with a Bayesian LM, and to train the model in more principled,
fully Bayesian way.

8.5 Hierarchical Pitman-Yor Process LM

To obtain a Bayesian joint-sequence model, we use a non-parametric Bayesian LM as graphone LM
for the computation of p(q|h;ϑ) instead of Eq. 8.8. We chose the Hierarchical Pitman-Yor Process
language model (HPYLM) [75, 76, 77], that has achieved good results as word LM and results in a
similar form as the interpolated KN (Eq. 8.8), which can be interpreted as a HPYLM with a special
form of inference [76]. The hidden variables in a HPYLM are the distributions of graphones given
a particular context p(q|h;ϑ), and they are related to each other in a hierarchical structure, where
the prior mean (base measure) of a particular context is given by the distribution of graphones in
the shortened context (h̄, leaving out the earliest graphone). This hierarchical structure (Fig. 8.3)
corresponds exactly to interpolating between higher and lower order n-grams.

Each hidden variable p(q|h;ϑ) is distributed according to a Pitman-Yor process (PY), which is
a generalization of the Dirichlet process. A PY generates a probability distribution G (in our case
discrete, over graphones), that is similar to another distribution G0 called base measure. The dis-
tribution G ∼ PY (d, θ,G0) has two parameters: the discount factor d, which shapes the tail of the
distribution and θ controling the similarity of G to G0. At the lowest hierarchy level, the base measure
for unigrams G0 = 1/|Q| is a uniform distribution over graphones:

G1 ∼ PY (d1, θ1, G0 = 1/|Q|)
. . .

Gh̄ ∼ PY (d|h̄|, θ|h̄|, G¯̄h
)

Gh ∼ PY (d|h|, θ|h|, Gh̄)

It is not possible to observe G, since it has an infinite number of components. However, there is
an equal representation of the HPYLM with G integrated out, in the form of a hierarchy of Chinese
restaurant processes (Fig. 8.3). There is one Chinese restaurant process for each graphone q in con-
text h (including the empty context ∅ for unigrams). The training of the model is done by seating
customers (graphone n-gram counts c(q|h)) over tables 1 . . . thq (the number of tables for a particular
graphone/context). We use Gibbs sampling, where one sampling step is to remove a customer and to
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Figure 8.3: Hierarchical Pitman-Yor Process language model and its corresponding hierarchical Chi-
nese restaurant processes [78].

re-seat the customer by choosing a table k:

k =

{
chqk − d (k = 1 . . . thq)

θ + d · th· (k = new).

Here, chqk is the number of customers at table k so far, and th· =
∑

q thq. The customers c(q|h) are
only directly seated at the highest order M . Every time a new table k is created, a proxy-customer
is hierarchically sent down (Fig. 8.3). Therefore, the lower-order distributions are only updated for
graphones in unseen contexts, and as in KN smoothing, they are not proportional to counts c(q|h̄).
The resulting equation for the graphone HYPLM (with θ = 0 and thq = 1) resembles the interpolated
KN (Eq. 8.8):

p(q|h) =
c(q|h)− d · thq

θ + c(h)
+
θ + d · th·
θ + c(h)

· p(q|h̄) (8.9)

There are two hidden variables in the inference of the graphone HPYLM: the co-segmentation
S(g,ϕ) of the grapheme/phoneme sequence and the seating arrangements of the Chinese restaurants.
A direct implementation of Gibbs sampling would sample one boundary of a single graphone at a time
(as done in [68]), which results in an inefficient algorithm that can only take into account local (bi-
gram) statistics. Instead, we use a blocked Gibbs sampler, i.e. we sample the co-segmentation S(g,ϕ)
of a whole utterance (word), re-seating all corresponding customers at once. Sampling means to select
one path (graphone sequence) in the alignment lattice (Fig. 8.2) according to the posterior probability
p(q|g,ϕ;ϑ). As shown in [68] and [78] this can be implemented with the forward filtering and backward
sampling procedure. Forward filtering is the forward part of the lattice forward-backward algorithm (as
in Section 8.4) and backward sampling picks a path according to the forward probabilities, starting
from the final state. Thus, the inference procedure in the graphone HPYLM is to iterate over all
training utterances (words):

1. Sample co-segmentation S(g,ϕ) according to posterior.

2. Update graphone counts c(q, h).

3. Sample seating arrangements thq in Chinese rest. (Fig. 8.3).

8.6 Implementation with WFSTs

We implemented the whole Bayesian G2P framework with the help of weighted finite state transducers
(WFST) [79] mostly using standard library functions of OpenFST www.openfst.org/. The generation
of all possible graphone segmentations in an alignment lattice can be implemented using WFST
composition.

As shown in Fig. 8.4, the letter sequence g and the phoneme sequence ϕ can be represented as
linear acceptors L and P , respectively. To construct a lattice containing all possible alignments, we
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Figure 8.4: Transducer chain P ◦ P2G ◦G2L ◦ L for toy example with grapheme inventory A,B and
phoneme inventory a, b. Outer left: phoneme acceptor P for ϕ = a, b, a; Outer right: letter acceptor L
for g = A,B,B,A corresponding to a pronunciation dictionary entry ’ABBA a b a’. Middle part: Left:
transducer P2G mapping from phonemes to the set of all possible graphones. Right: G2L mapping
from graphones to letters.

use two mapping transducers. In Fig. 8.4, transducer P2G (middle left) maps from graphones to
phonemes and transducer G2L (middle right) maps from graphones to letters. For simplicity, we use
only 01-to-01 graphones (Fig. 8.1), so the set of all possible graphones stays reasonable. Given these
transducers, we can form a chain of compositions to produce the alignment lattice transducer (example
in Fig. 8.4 results in Fig. 8.2.): A = P ◦ P2G ◦G2L ◦ L.

We use a blocked Gibbs sampling approach, where we always sample a new alignment for a whole
pronunciation entry (word) at once. A sample alignment is a particular path through the lattice A
(Fig. 8.2). Also the graphone LM (HPYLM) can be represented as a WFST G.To represent an n-gram
LM as WFST, we use the compact representation using back-off arcs ([79], page 19). We can apply
the probabilities of the graphone HPYLM with the help of WFST composition (which corresponds to
lattice re-scoring):

B = P ◦ P2G ◦G ◦G2L ◦ L (8.10)

As already pointed out by [71], to correctly evaluate the interpolated LM in the WFST framework,
we need to encode the back-offs as failure arcs [80] and to use the correct matchers in the composition
(phi-composition, indicated by ◦ϕ). For higher-order graphone LMs, and already for small graphone
inventories, the G transducer gets huge. Moreover, for a particular training utterance (word), only
a small portion of G is accessed. Therefore, we use OpenFST’s interface for lazy composition. We
implemented the HPYLM with the source code developed by Walter/Heymann [81] https://github.
com/fgnt/nhpylm and wrote our own wrapper, that creates a lazy (on-the-fly) OpenFST WFST
object.

While WFST composition is an associative operation, the grouping of compositions in Eq. 8.10 has
an important impact on memory use and speed, especially when using lazy composition (and possibly
pruning). Since the composition with G is the most costly operation and the linear acceptors P and
L are the knowlegde sources that constrain the possible graphone sequences, we want to apply them
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as early as possible, before applying G. The final composition is:

B = Π2(Π1(P ◦ P2G) ◦G2L ◦ L) ◦ϕ G (8.11)

The projection operations Π1(T ) and Π2(T ) obtain an acceptor from WFST T by omitting the
input or output labels, respectively. We project onto the output symbols after composing P ◦ P2G
and project the resulting alignment lattice A onto the input symbols to obtain an acceptor lattice
with graphone labels. Eq. 8.11 results in a 2-3x speed-up over Eq. 8.10. In the WFST framework,
the forward filtering and backward sampling procedure as used in [68] and [78] can be implemented
by applying weight pushing towards the initial state in the (log) probability semi-ring, and then
forward-sampling a path (graphone sequence), which is used to sample a new seating arrangement in
the Chinese restaurant processes. During training, we go through all training utterances in random
order. Typically, 3-4 iterations through the data are sufficient to converge to a likely segmentation and
seating arrangement. After each iteration, we re-sample the hyperparameters for d and ϑ as described
in [76], appendix C. Since we use Gibbs sampling to approximate p(q|h), correct estimates can be
obtained by averaging several HPYLM with different seating arrangements. As a first approximation,
we used just a single HPYLM in the experiments.

8.7 Experimental results and conclusions

We trained the HPYLM G2P on the CMUdict v0.7 kindly provided by [71]. It contains 106,837 unique
training words with 113,438 pronunciations. The test set contains 12,000 unique words with 12,753
pronunciations. Our baseline is a 7-gram joint-sequence model trained with Sequitur [62] using the
default settings and selected 1% of the training as held-out set to tune the discounts. We reached
5.92% phoneme error rate (PER) and 24.65% word error rate (WER) after 11h of training, which is
very close to what is reported in [62]. Using a 9-gram LM as in [62] took an additional 9h training
and gave the same performance. Our Bayesian HPYLM G2P does not need a held-out set. After
three iterations of sampling the training set in 2h, we reached 5.92% PER and 24.73% WER, which
is basically the same as our baseline. We can expect further improvement from averaging several
sampled HPYLM. With Phonetisaurus [71] we reached 5.80% PER and 24.36% WER in the order of
minutes.

We presented a fully Bayesian approach to G2P, which is fully implemented with WFSTs. The
Bayesian G2P based on a hierarchical Pitman-Yor-Process does not need a held-out set and compli-
cated parameter tuning and avoids the pitfalls of the discounted EM algorithm. The Bayesian model
has the same performance as the smoothed joint-sequence models. Despite the fact, that Gibbs sam-
pling was used and the resulting models (7-grams) are already significantly large, the training is much
faster than using Sequitur, but still slower than Phonetisaurus. No greedy assumptions are necessary,
as e.g. the bottom-up model initialization ([62]) and the segmentation is done jointly in training, using
full context. However, the most important advantage is that the resulting model can be used in a
bigger Bayesian framework and can deal with (partly) un-annotated data.
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Chapter 9

Unsupervised learning of pronunciation
dictionary from unaligned phone and
word data

Takahiro Shinozaki, Shinji Watanabe, Daichi Mochihashi and Graham Neubig

The performance of automatic speech recognition systems has recently approached human levels in
several tasks. However, there is still a large gap in the handling of unknown words. Humans are able to
recognize words, even ones they have never heard before, by reading text and understanding the context
in which a word is used. While this ability is important to keep updating the vocabulary for new
words that appear daily, existing methods based on G2P or OOV detection lack a holistic mechanism
of learning the pronunciation and spelling of new words from textual and acoustic evidence. In this
work, we propose a new paradigm in learning for speech recognition that parallels the human ability to
learn new words by reading text: automatic learning of word pronunciations from unaligned acoustic
and textual data. While the task is very challenging and we are at the initial stage, we demonstrate
that a model based on Bayesian learning of Dirichlet processes can acquire word pronunciations from
phone transcripts and text of the WSJ data set.

9.1 Introduction

While the recognition accuracy of automatic speech recognition systems is approaching the human
level, the performance is heavily dependent on supervised learning. To support a new task domain or
new words, which are invented daily, new labeled speech data and pronunciations of new words must
be prepared. This often limits the usability of the system to the initially prepared domain due to the
large cost.

Compared to the use of unlabeled speech data for acoustic model training [99, 100, 101], there are
relatively few studies about automatic acquisition of word pronunciations. However, this learning of
pronunciations is an essential step in creating adaptable speech recognition system that requires less
human help.

An existing approach to find a mapping from a word to its pronunciations is grapheme to phoneme
(G2P) conversion [102, 103, 104, 105], where a pre-trained G2P converter is applied to the surface
form of a new word. A limitation is that these methods are not applicable for words for which the
pronunciation is hard to infer directly from the spelling. While there are several works that learn
pronunciations from acoustic data (e.g. [106]), these works generally assume parallel speech and text
data, which is hard to come by.
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Another approach is based on out of vocabulary (OOV) detection [107, 108] and phone recognition.
Speech input is first decoded by a phone recognizer, and a speech segment detected as an OOV is
labeled by the decoded phone sequence at the corresponding time position. By combining with a
word decoder, it is expected that a word is output if it is included in the decoders’ vocabulary and
otherwise a phone sequence is output [109, 110]. This method has the flexibility to discover unknown
words automatically, but is not able to take advantage of external textual resources, and has no way
of connecting the phoneme string with its actual spelling in natural written language.

The source of information about new words is from the word-level text for the G2P approach, and
from phoneme recognition results for the OOV detection based approach. In this chapter, we propose a
new paradigm of learning from unaligned speech and text, which allows us to utilize information about
new words from both of these sources simultaneously. This is done by creating a probabilistic model of
the pronunciation dictionary and performing Bayesian inference [111] to estimate its parameters, under
the assumption that the text and speech are from the same mother distribution, which corresponds
to the language at hand. By making this assumption, we can use distributional information found
in text to guess which pronunciation corresponds to which word. The more instances of a word with
unknown pronunciation that appear in the phone transcript, the fewer the possible pronunciations of
the word will become. As a result, the approach can learn words from unaligned speech and textual
context, allowing it to improve over the OOV detection approach by giving a mapping from a word
spelling to its pronunciations, and giving it advantages over pure G2P by allowing it to learn from
acoustic evidence.

The organization of the chapter is as follows. Firstly the proposed method is explained in sec-
tion 9.2. Then experimental condition is described in Section 9.3 and the results are shown in Sec-
tion 9.4. Finally, conclusion and future works are given in Section 9.5.

9.2 Proposed unsupervised pronunciation dictionary learning
method

The proposed method is based on treating pronunciation dictionary as a random variable. In the
followings, the formulation of the pronunciation dictionary is first explained. Then a Bayesian network
representation of the overall framework of the proposed method is given. Finally, a weighted finite
state transducer (WFST) [112] based implementation is introduced.

9.2.1 Probability model of a pronunciation dictionary

The proposed pronunciation dictionary model is a conditional probability P (p|w) of a pronunciation
p (e.g. “HH AH L OW”) given a word w (e.g. “hello”). The pronunciation is a finite length phone
sequence. The pronunciation dictionary is represented by an array of words each of which is associated
with an infinite distribution of pronunciations to potentially allow any pronunciation for a word.
Figure 9.1 depicts the structure of the pronunciation dictionary. The distribution of the pronunciation
of a word is generated by a Dirichlet process [113]. The probability of the pronunciation dictionary is
the joint probability of the pronunciation distributions as shown in Equation (9.1).

P (PD) =
∏
w∈V

DP [Pw (p) |α,G0] , (9.1)

where PD is the pronunciation dictionary, V is the vocabulary, DP [Pw|α,G0] is the probability that
a distribution of a pronunciation Pw (p) is generated from a Dirichlet process with a concentration
parameter α and a base distribution G0. A draw from the base distribution G0 is a pronunciation.
All the Dirichlet processes share the same base distribution.

While each word has infinite number of pronunciations in our modeling, the trick of the Dirichlet
process is that the predictive distribution given a finite amount of observations is explicitly obtained
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Figure 9.1: Proposed pronunciation dictionary model. A word entry is represented by a no corner
rectangle and it corresponds to a restaurant of the Chinese restaurant process. An open circle in
the restaurant is a table that represents a pronunciation, and a filled small circle is a customer that
corresponds to an appearance of the pronunciation.

by the Chinese restaurant process [114]. For our pronunciation dictionary, a word in the dictionary
is a restaurant, and an appearance of a pronunciation in data is an appearance of a customer. Let’s
assume that a set of utterances U are observed in which a word w has appeared nw times. Let’s
also assume that a pronunciation p of the word w has appeared np times where

∑
np = nw, and the

number of appearances of different pronunciations for w is mw. Then, the predictive distribution of
the pronunciation p for the word w is given by Equation (9.2).

P (p|w,U) =
np

α+ nw
+

α

α+ nw
G0 (p) . (9.2)

Since the number of non-zero observation counts np is mw, and mw is at max nw, only limited amount
of memory is needed to store the value of np. The fact that a word usually has only a few (mostly
only one) pronunciations is represented by choosing α close to 0.0.

9.2.2 Bayesian network based system modeling for training and evaluation

If aligned phone transcripts with word boundaries and word level text are given, then pairs of a
word and its pronunciation are easily extracted and the estimation of the pronunciation dictionary is
trivial. However, if they are not aligned and the word boundary is unknown in the phone transcript,
the problem becomes much more difficult.

To perform unsupervised learning and evaluation of the pronunciation dictionary using unaligned
phone transcripts and word level text, we use Gibbs sampling [115, 116] for a full Bayesian approach.
The probabilistic inference is performed based on a Bayesian network shown in Figure 9.2. The
definitions of the nodes in the network are summarized in Table 9.1. The shown network is a large
view, and each node has internal structures.

As is described in the table, the node “Language model” is a hierarchical Bayesian language
model [117]. The node “Pronunciation dictionary” represents the proposed pronunciation dictio-
nary. The node represented by a filled small circle represents a rule to convert the word segmented
phone sequence to no word segmented phone sequence, which correspond to the hidden semi-Markov
model [118]. It is a constant and not a random variable.
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Figure 9.2: Bayesian network representing the full system to train and evaluate the pronunciation
dictionary using unaligned phone and word data.

Table 9.1: Description of the nodes in the Bayesian network shown in Figure 9.2.

Node Description

Pronunciation dictionary (PD) Pronunciation dictionary based on a set of Dirichlet distributions

Language model (LM) Hierarchical Bayesian language model

Word sequence (W ) Word sequence of an utterance

Segmented phone sequence (sP ) Phone sequence of an utterance with word boundaries

Phone sequence (nP ) Phone sequence of an utterance without a word boundary

The three nodes “Word sequence”, “Segmented phone sequence”, and “Phone sequence” represent
an utterance given as a word sequence, a word segmented phone sequence, and a phone sequence with
no word segmentation, respectively. The word sequence is generated from the language model, and
the segmented phone sequence is generated from the word sequence and the pronunciation dictionary
by replacing the word entries to their pronunciation based on the distributions of the pronunciations.
The no word segmented phone sequence is generated from the word segmented phone sequence. For
example, “the sale of the hotels” is a word sequence, “DH AH </w> S EY L </w> AH V </w> DH
AH </w> HH OW T EH L Z </w>” is a word segmented phone sequence where </w> represents
a word boundary, and “DH AH S EY L AH V DH AH HH OW T EH L Z” is a no word segmented
phone sequence. Each utterance is assumed to be independent given the language model and the
pronunciation dictionary.

The framework is an extension of the unsupervised word segmentation. If the phones and characters
are the same and the pronunciation dictionary is replaced with a spelling model, then it reduces to
the unsupervised word segmentation [119, 120].

9.2.3 Gibbs sampling for learning and evaluation

The Bayesian network shown in Figure 9.2 has three nodes to represent an utterance. When an
utterance is given as a word level text, the word sequence node of the utterance is observed and
the word segmented phone sequence and the phone sequence nodes are hidden. Similarly, when an
utterance is given as a phone level transcript, the phone sequence node is observed and the other two
nodes are hidden. The Gibbs sampling is performed by repeating randomly picking up an utterance
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and updating the values of its hidden nodes by drawing a sample from their posteriors given values of
the rest of the nodes starting with an initial assignment.

The joint posterior of the hidden nodes of a selected utterance is obtained from a joint posterior
of the three nodes, which is obtained by Equation (9.3).

P (nPs, sPs,Ws|nPT , sPT ,WT )

=

∫
P (nPs, sPs,Ws, LM,PD|nPT , sPT ,WT ) dLMdPD

= P (Ws|WT ) P (sPs|Ws,WT , sPT ) P (nPs|sPs) , (9.3)

where nP , sP , W , LM , PD represents the phone sequence, word segmented phone sequence, word
sequence, language model, and pronunciation dictionary, respectively. The suffix s indicates the
selected utterance, and T indicates the set of rest utterances. The derivation of Equation (9.3) is
based on the Bayes chain rule, conditional independences that are read from the Bayesian network
by d-separation [121], and marginalization of LM and PD which are obtained based on the Chinese
restaurant process. The posterior of the word segmented phone sequence of the selected utterance
P (sPs|Ws,WT , sPT ) can be easily evaluated by the Chinese restaurant processes because both WT

and sPT are in the conditional part, which means they are treated as if they were observed at the
same time for the same utterances in T , which in tern means they are treated as if their alignments
were known. When an utterance is given as the word level text, the segmented phone sequence node
and the phone sequence node may be marginalized out instead of sampling their values because of the
Bayesian network structure.

9.2.4 WFST based implementation

The sampling from the joint posterior distribution of the hidden variables of the selected utterance that
is obtained from Equation (9.3) is not a simple task since the nodes have complex internal structures
similar to speech recognition. To implement the Gibbs sampling, we make use of the framework of
the WFST, extending the implementation of the unsupervised word and LM learning [122, 123, 124]
introducing the pronunciation dictionary.

For the sampling from P (sPs,Ws|nPs, nPT , sPT ,WT ), first the input phone sequence of the selected
utterance nPs and each component of Equation (9.3) are represented by WFSTs and they are composed
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to form a single WFST that expresses an unnormalized distribution of the posterior. Then a sample
is obtained by applying the forward filtering backward sampling algorithm to the composed WFST.
The WFST for P (nPs|sPs) takes a phone sequence nPs as the input and outputs a word segmented
phone sequence sPs. All possible segmentations are encoded as WFST paths. The construction of the
WFST for P (Ws|WT ) is basically the same as for the N-gram WFST. It takes a word sequence Ws

as the input and outputs the same word sequence assigning a probability. For the details about these
two WFSTs and the sampling, please refer to [123]. Here, only the differences are described.

The WFST of P (sPs|Ws,WT , sPT ) corresponds to a pronunciation dictionary, and transduces
a word segmented phone sequence sPs to a word sequence Ws. It has a structure consisting from
a normal pronunciation dictionary and a sub module encoding the base distribution. Figure 9.3
shows an example of the pronunciation dictionary WFST having only two words. For each word in
the vocabulary, an arc starts from the start node (s) having the word as the output label. Each
pronunciation of the word associated with a table of the Chinese restaurant process is represented by
a path having the pronunciation as a sequence of phone input labels, where the path starts from the
end node of the word arc (e). The end of the pronunciation path (p) is connected to the start node by
an arc with a word boundary input symbol and an weight ww,p =

np

α+nw
that corresponds to the first

term of Equation (9.2), where nw and np are the counts of the word and the pronunciation obtained
from WT and sPT . There is another arc with an weight fbw = α

α+nw
that starts from the end node

(e) of the word arc and ends in a node (b), which corresponds to falling back to the base distribution
G0. In the figure, phone 1-gram is assumed as the base distribution and it is implemented by phone
loops. Once a pronunciation is drawn from the base distribution, it goes back to the start node (s) by
an arc having a word boundary symbol as the input. In real implementation, a more compact WFST
can be made by adopting the tree structured dictionary.

When composing a WFST, a problem is that the intermediate symbols are removed. This means
the necessary information about the segmented phone sequence sPs is marginalized out when compos-
ing the WFSTs of the input phone sequence, the segmentation, the pronunciation dictionary and the
language model. To address the problem and obtain a value for sPs as the result of the sampling, we
modify the composition operation so that intermediate symbols are accumulated in the input label.
When an arc having “a” and “b” as the input and output labels and an arc having “b” and “c” are
composed by the modified composition, the composed arc has “a b” as the input label and “c” as the
output label instead of “a” and “c”.

9.3 Experimental setup

Experiments were performed using the WSJ corpus [125, 126] and the CMU dictionary. As the phone
transcript, true phone labels were used. While the phone names adopted by the CMU dictionary are
represented by a string, we truncated them to a single character removing all but the first character,
which increased the ambiguity in the mapping from a phone sequence to a word sequence. The reduced
phone set size was 25. The word entries of the pronunciation dictionary was made from a word level
transcript, in which 85% were given a pronunciation as an initial setting. No pronunciation was
assigned to the remaining 15% of the words. The task was to find their pronunciations from unaligned
word and phone level transcripts. As the base distribution for the pronunciation, phone 0-gram was
used. The length of the pronunciations were constrained to be greater than 0. The concentration
parameter α for the pronunciation dictionary was set to 0.001. During the sampling using the phone
level transcript, the vocabulary was fixed so that no new word was generated with unknown spelling.
The software was implemented by modifying the LatticeWordSegmentation [124, 127, 122].
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Figure 9.4: Word error rate when using 2-gram language model.

9.4 Results

Figure 9.4 shows the relation of the number of epochs of the Gibbs sampling and the word error
rate (WER) when 100 utterances with phone level transcript and 100 utterances with word level text
were used. The word and the phone level transcripts were obtained from the same 100 utterances
in the corpus. However, no utterance level alignment information was given to the system. The
vocabulary size was 849 in which pronunciations were given to 742 words. The language model was
a word 2-gram and the perplexity was 30.8. The WER was evaluated for output word labels of
WFST paths obtained by the sampling for the phone input data. In the figure, “PerUtter” indicates
that the sampling was performed utterance by utterance with a single thread processing. “Parallel5”
means five utterances were processed in parallel and the variable update was performed gathering
their statistics. “Beam1000” and “Beam300” were the results when the sampling was performed for
a list of hypotheses obtained by a beam search for the purpose of reducing the memory and CPU
requirements by combining the lazy WFST composition [112].

As can be seen, PerUtter gave the best result achieving the lowest WER of 9.2%. Parallel5 gave
slightly worse but comparable result as PerUtter. When the beam search was used with the beam
width 1000, the WER was larger than Parallel5 at the beginning but it became close after enough
epochs. When the beam width of 300 was used, WER largely increased compared to the others.
Although, it also gave some improvement compared to the beginning by repeating the epochs. When
a Xeon E5-2630v2 CPU was used, wall-clock time of running PerUtter, Beam1000, and Beam300
were 161, 90, and 32 minutes per an epoch, respectively. When a Core i7 6800k CPU was used, it
was 122 minutes for PerUtter and 42 minutes for Parallel5. Table 9.2 shows an example of a part of
sampled word level text obtained for a phone transcript input when PerUtter was used. It can be seen
the correct sentence was obtained at third epoch, which was the result of successful pronunciation
assignment.

Figure 9.5 shows dictionary error rate, which is defined as a ratio of correct pronunciations in the
sampled pronunciation dictionary. Insertion error means an extra wrong pronunciation is introduced,
and deletion means correct pronunciation is missing. The total error rate is their sum. In this
experiment, 3-gram language model was used and five utterances were processed in parallel. As
can be seen, correct pronunciations were acquired by iterating the epochs. After 30 iterations, the
minimum total error rate was 4.0%.
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Table 9.2: Example of a part of sampled sentences. Pronunciations of the words “fed” and “assets”
were unknown.

reference strategy to sell off assets and

epoch1 strategy to sell a fuss eight fed and

epoch2 strategy to sell officer bids and

epoch3 strategy to sell off assets and
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Figure 9.5: Dictionary error rate when using 3-gram language model.

Finally, an experiment was performed by using a phone and word level transcripts that were derived
from non-overlapping sets of utterances in WSJ. To obtain reasonable word perplexity, the amount of
word level transcription was increased to 10000 utterances. The vocabulary size was 13240 in which
11254 were given pronunciations as the initialization. Word 2-gram is used for the language model
and the perplexity was 181. Due to the largely increased vocabulary and the LM sizes, running an
experiment with this setting was quite tough requiring huge memory and CPU time. Therefore, we
needed to combine the parallel sampling with the parallel factor of three and the beam search with
the beam width 300. Because of the increased perplexity and the errors in the sampling, only a small
improvement of WER from 29.3 to 28.0 was obtained. This result indicates the probability model and
the sampling algorithm need to be improved to get good performance when the perplexity and the
vocabulary size are large.

9.5 Conclusion and future works

We have proposed a new framework of unsupervised pronunciation dictionary learning using unaligned
phone and word data. Experimental results show that it works well when perplexity and vocabulary
size of the task is small, while it needs improvements in the modeling and the sampling algorithm to
deal with more difficult tasks. Future works include combining with G2P to pick the best of both,
and implementing the slice sampling [128] to improve the efficiency of the sampling.
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Chapter 10

Graphemic Knowledge Transfer

Matthew Wiesner

This work describes two methods of cross-lingual knowledge transfer by exploiting the shared
orthographies of high and low resource languages. In this sense the focus is more on transfer learning for
corpora with no transcribed audio than on unsupervised techniques. We propose a simple framework
for automatic speech recognition in a setting with no transcribed audio. The assumption of these
methods is that most low-resource languages are written using a phonemic orthography shared by a
high-resource language and that furthermore, shared graphemes in these orthographies have similar
acoustic realizations.

10.1 Introduction

Prior work on cross-lingual knowledge transfer has generally focused on learning language independent
acoustic features [27, 130, 131], normally through multilingual bottleneck features, or it has focused on
exploiting shared linguistic knowledge encoded in the form of a universal phoneme set [129, 98]. These
techniques have been used for language adaptation, or bootstrapping speech recognition systems in
new languages by transferring acoustic models across languages [132].

One promising recent line of work [135] adapts universal phonemic acoustic models to a low-resource
target language. Universal phonemic acoustic models are trained on many languages and then adapted
by including noisy phonetic transcriptions of the target language. The phonetic transcriptions are the
output of a WFST trained on transcriptions of phonetic sequences in the native orthographies of
Turkers. In this sense, the WFST is just a G2P component used to generate phonetic transcriptions.

This work investigates a few architectures based roughly on the work in [135]. First, we replace
the universal phoneme set with generic acoustic units learned in an unsupervised fashion on the target
language. It is hoped that these acoustic units more accurately model the target language acoustics
than the universal phoneme set. We have seen that using unsupervised acoustic units in the target
language seems to perform better for topic-id and in terms of normalized mutual information with
ground truth phonemes than using mismatched phoneme recognizers ported from other languages.

We also eliminate the role of Turkers primarily through the assumption of shared graphemes across
languages. Prior work on graphemic speech recognition systems [134] shows that using graphemic
acoustic models results in only minor degradation in ASR performance, especially in languages with
a near 1-to-1 grapheme-to-phoneme map. In such cases no lexicon is needed, or at least its creation
is trivially the expansion of a word into its constituent letters.
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10.2 Problem setup

We assume that we have un-transcribed audio in target language, unrelated text in the same language,
and transcribed speech in a separate language. We do not have access to a pronunciation lexicon or
a universal phoneme set. The hope is that using either graphemes or a universal phoneme set will
result in similar performance. Below are two proposed architectures followed by preliminary results
reporting character error rate on both systems. We implement all systems in Kaldi [85].

10.3 System I

A naive solution is to simply train graphemic acoustic models on speech from a resource-rich language
and subsequently decode the target language using these graphemic acoustic models. We could in
fact train on as many resource-rich languages sharing the same, or almost the same orthography as
the target language. In our preliminary experiments, however, we train on a single language. This
serves as a baseline system. In our baseline experiment, the Wall Street Journal (WSJ) Corpus is
the resource-rich language and the BABEL Turkish corpus is the target language. Clearly there is
a severe mismatch between the train and test sets. One way to reduce some of the mismatch is to
downsample the WSJ corpus to 8kHz so that both languages have the same bandwidth. In keeping
with the WFST framework as proposed in [79], and also used in Kaldi [85], and [135], we look to
construct the components H ◦ C ◦ L ◦G needed for a WFST based ASR system.

For the baseline system we immediately have H, the acoustic model, from the graphemic acoustic
models trained on WSJ. We train a context dependent graphemic TDNN system with speed and
volume perturbation. Since we are interested in character error rate, we construct a language model
on graphemes by simply collapsing all words into a single long grapheme string and training a standard
4-gram language model on this grapheme string.

The knowledge transfer is really cross-lingual lexical transfer where we now assume a 1-to-1 map
between Turkish acoustic models and English acoustic models accomplished by simply matching
graphemes. If a grapheme does not occur in one language the easiest way to account for it is to
‘back off’ by removing diacritics the unknown grapheme to a grapheme shared by both languages.
Parsing the Unicode description of the grapheme or removing the combining characters when the
grapheme is represented in its canonical decomposed form easily accomplishes this backing off pro-
cedure. For this experiment (and for most language pairs sharing orthographies) this is sufficient.
Should an unknown grapheme with no potential back off grapheme exist in the language, a 1-to-many
map can be used for that grapheme such that the unknown grapheme maps to any grapheme from the
resource-rich language. Since the trained acoustic models are context dependent models, each Turkish
grapheme simply has an alternate pronunciation for each context dependent grapheme in English to
which it mapped.

Lastly the following FST is used between C and L to prevent forbidden combinations of context
dependent units, (i.e. H_I E_E L_B L_I O_B).

Figure 10.1: FST for Constraining context dependent character sequecnes.
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10.4 System II

Having acoustic models in the target language might help relieve the problem of acoustic mismatch,
and also to alleviate the assumption of a perfect 1-to-1 map between the target language phonemes
and the resource-rich language graphemes. Unfortunately, with no transcribed speech it is impossible
to train standard acoustic models. An alternative is to use unsupervised acoustic models. For this
setup, we use the Bayesian nonparametric model described in [7]. Once we have discovered acoustic
models in the target language we use these in a role similar the Turkers in [135]. In our experiment
we generate a ground truth graphemic transcription of speech from the WSJ corpus by force aligning
the transcribed text using graphemic acoustic models. In [135] noisy grapheme sequences were tran-
scribed to describe ground truth phoneme sequences whereas here noisy acoustic unit sequences are
automatically generated to describe ground-truth grapheme sequences. We simply use the single best
path during acoustic unit decoding to form the acoustic unit sequences.

Equipped with aligned pairs of English graphemes and Turkish acoustic unit sequences we then
learn a WSFT that accepts acoustic units and emits English graphemes. The transducer is constructed
in the following way: For each English grapheme seen in the training corpus, denoted G_j below, create
the following elementary left-to-right HMM with emissions described by a discrete distribution over
the acoustic units denoted a_i below. The output a_i are to indicate emissions.

Figure 10.2: Grapheme HMM.

The null arc (with ¡eps¿ emission) allows for 1-to-many mappings of Turkish acoustic units to
English graphemes while the self-loop allows for many-to-1 mappings. We then assign acoustic unit
segments to the closest grapheme segment as measured by the central frame. From this alignment
we estimate the unigram distribution of acoustic units for each grapheme and use these to initialize
the emission probabilities for all non-null arcs. We initialize the transition probabilities as 0.8, 0.1,
and 0.1 for the 0-1 transition, self-loop and null arc respectively. We then concatenate sequences of
HMMs for each utterance to form our HMM topology and perform standard Baum-Welsh training
until convergence. We implement add-1 smoothing to account for unseen acoustic units.

This raises a separate issue of how to account for acoustic units seen in English but not in Turkish
and visa versa. We consider the inventory of acoustic units to be only those we have previously seen
in Turkish since that is the language whose acoustics we are attempting to model. On the other hand
if we see a unit in Turkish, but never in English, then the add-1 smoothing takes care of the situation
and we do not accidentally eliminate the unit from our acoustic unit inventory. Another interesting
alternative would be to weight the emission probabilities for each acoustic unit by the distribution of
acoustic units on Turkish.

The above HMM for a single grapheme has an equivalent WFST representation shown below. The
symbol a_i on an arc represents all the arcs between the same nodes, one for each acoustic unit. G is
the grapheme output.

Of course each arc also has a weight. This weight is simply P (l)P (a i|l), where l is the arc in the
FST. To finally get a general transducer from acoustic units to graphemes, we take union and closure
of all the grapheme WFSTs. We will call this component T . We construct L as we did in the baseline
system, but ignoring the context dependent graphemes. Composing T ◦ L, we can consider this new
lexicon, LT , a WFST which takes as input acoustic unit sequences and outputs graphemes. One could
imagine creating a lexicon for all words, since each word is trivially written in terms of its constituent
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Figure 10.3: Equivalent Grapheme FST.

CER (Turkish) PER [135] (CA,MD)

System I (Baseline) 79.6 68.4, 71.3

System II 77.2 57.2, 58.2

Table 10.1: Results.

letters from which we then have a mapping to acoustic units. In this way we have simultaneously
discovered and trained acoustic models while simultaneously learning a lexicon.

We then generate acoustic unit lattices for the un-transcribed Turkish audio, the composition of
which with LT returns a new WFST that transduces Turkish audio into English graphemes.

10.5 Results and Conclusions

The results of the two experiments described in the previous sections are in table 10.1. In the first
column are the character error rates resulting on Turkish from the two systems. In the second column
are phone error rates as reported in [135] on the most comparable phonemic systems for the best and
worst languages. This is just to give a reference point. It should be noted that the experiments in
[135] were run on broadcast news recordings, which are relatively clean speech, where are the BABEL
Turkish was noisy telephone speech. This may account for some of the difference. Nonetheless it
appears that the system is approaching error rates at which useful ASR tasks are possible
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[7] Lucas Ondel, Lukáš Burget, and Jan Černocký, “Variational inference for acoustic unit dis-
covery,” in Procedia Computer Science. 2016, vol. 2016, pp. 80–86, Elsevier Science.

[8] Daniel Renshaw, Herman Kamper, Aren Jansen, and Sharon Goldwater, “A comparison of
neural network methods for unsupervised representation learning on the zero resource speech
challenge,” in INTERSPEECH 2015, 16th Annual Conference of the International Speech
Communication Association, Dresden, Germany, September 6-10, 2015, 2015, pp. 3199–3203.

[9] David M. Blei and Michael I. Jordan, “Variational inference for dirichlet process mixtures,”
Bayesian Analysis, vol. 1, pp. 121–144, 2005.

[10] Charles E. Antoniak, “Mixtures of dirichlet processes with applications to bayesian nonpara-
metric problems,” Annals of Statistics, vol. 2, no. 6, November 1974.

[11] Carl Edward Rasmussen, “The infinite gaussian mixture model,” in NIPS, Sara A. Solla,
Todd K. Leen, and Klaus-Robert Müller, Eds. 1999, pp. 554–560, The MIT Press.

[12] Yee Whye Teh, “A hierarchical bayesian language model based on pitmanyor processes,” in In
Coling/ACL, 2006. 9, 2006.

72



[13] Y. W. Teh and M. I. Jordan, “Hierarchical Bayesian nonparametric models with applications,”
in Bayesian Nonparametrics: Principles and Practice, N. Hjort, C. Holmes, P. Müller, and
S. Walker, Eds. Cambridge University Press, 2010.

[14] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and N. L. Dahlgren,
“DARPA TIMIT acoustic phonetic continuous speech corpus CDROM,” 1993.

[15] S. J. Young, G. Evermann, M. J. F. Gales, T. Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason,
D. Povey, V. Valtchev, and P. C. Woodland, The HTK Book, version 3.4, Cambridge University
Engineering Department, Cambridge, UK, 2006.
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