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Impact of Deep Learning in Computer Vision

- 2012-2014 classification results in ImageNet CNN

e 2015 results: MSR under 3.5% error using 150 layers!

Slide from Yann LeCun’s CVPR’15 plenary and ICCV’15 tutorial intro by Joan Bruna




Why These Improvements in Performance?

[1] Razavian, Azizpour, Sullivan, Carlsson, CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRW’14.

Features are learned rather than hand-crafted
mean AP

More layers capture more invariances [1]
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Better regularization: Dropout

New nonlinearities
— Max pooling, Rectified linear units (ReLU)
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Theoretical understanding of deep networks remains shallow
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How is Non Convexity Handled?

* The learning problem is non-convex

min (Y, ®(X', ..., X))+ (X, .., XE)
X1, XK

— Back-propagation, alternating minimization, descent method

* To get a good local minima
— Random initialization
— If training error does not decrease fast enough, start again
— Repeat multiple times

* Mysteries
— One can find many solutions with similar objective values
— Rectified linear units work better than sigmoid/hyperbolic tangent
— Dead units (zero weights)

0




Prior Work on Optimization for Neural Nets

e Earlier work
— No spurious local optima for linear networks (Baldi & Hornik '89)

— Stuck in local minima (Brady '89, Gori & Tesi '92), but guaranteed to
converge for linearly separable data (Gori & Tesi '92)

— Manifold of spurious local optima (Frasconi '97)

e Recent work
— Convex neural networks in infinite number of variables: Bengio ‘05
— Networks with many hidden units can learn polynomials: Andoni‘14
— The loss surface of multilayer networks: Choromanska 15
— Attacking the saddle point problem: Dauphin ‘14
— Effect of gradient noise on the energy landscape: Chaudhuri ‘15
— Guaranteed training of NNs using tensor methods: Janzamin '15

 Today

— Guarantees of global optimality in neural network training: Haeffele ‘15




Main Results

min /Y, ®(X', ..., X")+ 09X, ... XT)
X1,... XK

e Assumptions:
~ U(Y, X): convex and once differentiable in X
— ® and ©: sums of positively homogeneous functions of same degree

flaX', ..., aX®) =P f(X', ..., X") VYa>0

e Theorem 1: A local minimizer such that for some j and all k
Xf — () is a global minimizer

« Theorem 2: If the size of the network is large enough, local
descent can reach a global minimizer from any initialization

Benjamin D. Haeffele, Rene Vidal. Global Optimality in Tensor Factorization, Deep Learning, and Beyond. arXiv:1506.07540, 2015




Main Results

min /Y, ®(X', ..., X")+ 09X, ... XT)
X1,... XK

e Assumptions:
~ 4(Y, X): convex and once differentiable in X
— ® and ©: sums of positively homogeneous functions of same degree

flaX', ..., aX®) =P f(X', ..., X") VYa>0

« Theorem 2: spurious local minima guaranteed not to exist

Critical Points of Non-Convex Function Guarantees of Our Framework

Benjamin D. Haeffele, Rene Vidal. Global Optimality in Tensor Factorization, Deep Learning, and Beyond. arXiv:1506.07540, 2015




min (Y, ®(X*', ..., X))+ 0(X, ..., XT)
X1, XK

* Global Optimality in Structured Matrix Factorization [1,2]
— PCA, Robust PCA, Matrix Completion
— Nonnegative Matrix Factorization
— Dictionary Learning v N. VT
— Structured Matrix Factorization

« Global Optimality in Positively Homogeneous Factorization [2]
— Tensor Factorization g A 12

- Deep Leaming et
_ More e A

[1] Haeffele, Young, Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing, ICML ’14
[2] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv, ‘15
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Low-Rank Modeling

« Models involving factorization are ubiquitous
— Principal Component Analysis
— Nonnegative Matrix Factorization
— Sparse Dictionary Learning
— Low-Rank Matrix Completion
— Robust PCA

L — et
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Hyperspectral imaging Recommendation systems  Affine structure from motion




e Convex formulations:

Typical Low-Rank Formulations

 Factorized formulations:

min/(Y, X) + AO(X) minl(Y,UV ")+ \O(U,V)

VT

— Low-rank matrix approximation
— Low-rank matrix completion
— Robust PCA

v Convex

— Principal component analysis
— Nonnegative matrix factorization
— Sparse dictionary learning

* Non-Convex

* Large problem size
* Unstructured factors

v Small problem size

v Structured factors




Convex Formulations of Matrix Factorization

« Convex formulations: :
- ¢, O :convexin X H‘l)%n K(YaX)‘F)\ @(X)

* Low-rank matrix approximation:
1 )
min o [[Y = X% + A|X [l J—{)x1- = 3 oi(x))

 Robust PCA:
min [[Y = X[l + A | X].

|

v Convex
* Large problem size
* Unstructured factors

EJ Candeés B Recht. Exa tm trix mpI t X optimization. Foundatio fComputationaI mathematics, 2009.

RH Keshavan, A Montan SOh M t mpI t f m a few entrie IEEET Information Theory, 2010 ,,,,,,,,,
EJ Candés TT . The p w ptm al ma t comple t IEEET ans. on Information Theory, 2010 AGING
Candes, Li, Ma, W right. Ro b tP p IC mp tA Iy is? Journal of the ACM 2011.

H Xu, C Caramanis, S Sanghavi. Robust PCA via outlier pursuit. NIPS 2010 LA R S bl S



Factorized Formulations Matrix Factorization

+ Factorized formulations: | min ((Y, UVT) + 20U, V)
- £(Y, X):convexin X u,v

- PCA[1]} min||Y —UV'|% st. U'U=1I

U,V
© NMF[2]:  min|]Y — UV'||2 st. U>0,V >0
+ SDL[3-5]: min ||y — UV'% st ||Ulls <1,||Villo < r

v Small problem size * Need to specify size a priori
v Structured factors * Non-convex optimization problem

[1] Jolliffe. Principal component analysis. Springer, 1986

[2] Lee and Seung. "Learning the parts of objects by non-negative matrix factorization." Nature, 1999

[3] Olshausen and Field, “Sparse coding with an overcomplete basis set: A strategy employed by v1?,” Vision Research, 1997

[4] Engan, Aase, and Hakon-Husoy, “Method of optimal directions for frame design,” ICASSP 1999

[5] Aharon, Elad, Bruckstein, "K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation”, TSP 2006




Main Results

min (Y, UV ") + A0(U, V)
U,V
e Assumptions:
~ 4(Y, X): convex and once differentiable in X
— © : sum of positively homogeneous functions of degree 2
OU,V) = ZH(Ui, Vi), O(au,av) = a?0(u,v),Va >0
i=1

 Theorem 1: Alocal minimizer (U,V) such that for some j
U, =V, =0 isaglobal minimizer

 Theorem 2: If the size of the factors is large enough, local
descent can reach a global minimizer from any initialization

B. Haeffele, E. Young, R. Vidal. Structured Low-Rank Matrix Factorization: Optimality, Algorithm, and Applications to Image Processing. ICML 2014
Benjamin D. Haeffele, Rene Vidal. Global Optimality in Tensor Factorization, Deep Learning, and Beyond. arXiv:1506.07540, 2015




Main Results: Nuclear Norm Case

e Convex problem Factorized problem

: - T
min (Y, X) + | X]. r&glé(Y, UV +Xe(U,V)

e Variational form of the nuclear norm

HXH*:I(%i‘]}l Z\Uilg\%]g st. UV =X

« Theorem 1: Assume loss / is convex and once differentiable
in X. A local minimizer of the factorized problem such that for
some i U; = V; = 0 is a global minimizer of both problems

e Intuition: regularizer © “comes from a convex function”

The following papers study the case of a square loss function using techniques from semi-definite programming:

[1] S. Burer and R. Monteiro. Local minima and convergence in low- rank semidefinite programming. Math. Prog., 103(3):427—444, 2005.

[2] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino, “Unifying nuclear norm and bilinear factorization approaches for low-rank matrix
decomposition,” in IEEE International Conference on Computer Vision, 2013, pp. 2488—2495.




Main Results: Nuclear Norm Case

e Convex problem Factorized problem

m}}nE(Y,X) + A|| X |4 ré_li‘;lﬁ(Y, UvV"')+X0(U, V)
——

« Theorem 1: Assume loss / is convex and once differentiable
in X. A local minimizer of the factorized problem such that for
some i U; = V; = 0 is a global minimizer of both problems

X

The following papers study the case of a square loss function using techniques from semi-definite programming:
[1] S. Burer and R. Monteiro. Local minima and convergence in low- rank semidefinite programming. Math. Prog., 103(3):427—444, 2005.

[2] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino, “Unifying nuclear norm and bilinear factorization approaches for low-rank matrix
decomposition,” in IEEE International Conference on Computer Vision, 2013, pp. 2488—2495.




Main Results: Projective Tensor Norm Case

* A natural generalization Is the projective tensor norm [1,2]

—mmZHUHuHVHU st. UV =X

 Theorem 1 [3,4]: A local minimizer of the factorized problem

T . .
%u‘;w(y UV’ + )\Z Uil Villo

such that for some i U; = V; = 0, is a global minimizer of
both the factorized problem and of the convex problem

iral, nce,C sparse matrix factor t X 2008.
vexrelaxat ft t ed matrix fa t t X 2013.

=
‘° o

You VdISt ctured Lo wR kMt F t t OptmltyAIg rithm, and Applications to Image Processing, ICML '14
eVdIGIbIOptmItyT or Factori DpL ning and Beyond, arXiv ‘15



Main Results: Projective Tensor Norm Case

 Theorem 2: If the number of columns is large enough, local
descent can reach a global minimizer from any initialization

Critical Points of Non-Convex Function Guarantees of Our Framework

 Meta-Algorithm:
— If not at a local minima, perform local descent
— At local minima, test if Theorem 1 is satisfied. If yes => global minima
— If not, increase size of factorization and find descent direction (u,v)

rr+1 U<+ U u| V|V v

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Algorithm: Projective Tensor Norm Case

. T _ .
min (Y, UV >+A;HU@HUHV@HU

« Convex in U given V and vice versa

« Alternating proximal gradient descent
— Calculate gradient of smooth term
— Compute proximal operator
— Acceleration via extrapolation

 Advantages
— Easy to implement
— Highly parallelizable
— Guaranteed to converge to Nash equilibrium (may not be local min) [1]

Y. Xu and W. Yin, “A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and
completion,” SIAM Journal of Imaging Sciences, vol. 6, no. 3, pp. 1758-1789, 2013.




Example: Nonnegative Matrix Factorization

 QOriginal formulation

min ¥ - UV'|I|IZ2 st. U>0,V>0

 New factorized formulation

%11‘51 Y —UV'||E + AZ Uil2|Vil2 st. U,V >0

— Note: regularization limits the number of columns in (U,V)




Example: Sparse Dictionary Learning

 QOriginal formulation

min||[V —UVT 3 st [Uills < 1, [[Villo < r

 New factorized formulation

. T2 | . .
min |y — UV ||F+AZ:\UZ\2(M!2+’VMI1)




Non Example: Robust PCA

* Original formulation [1]

min || B, + A X[, st. YV =X4E
X.E

« Equivalent formulation

min [[Y" = Xly + A Xl

 New factorized formulation

mmﬂY (ﬂﬂm1+x§:um|vb

* Not an example because loss is not dn‘ferenhable

[1] Candes, Li, Ma, Wright. Robust Principal Component Analysis? Journal of the ACM, 2011.




Application: Calcium Imaging Segmentatio

" 4

»

» Fluorescent microscopy technique
— Optical recording of brain activity
— Neurons “flash” when active electrically

60 microns 470 microns
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Find neuronal shapes and spike trains in calcium imaging

min [|Y" — UV IE+ 2> NUillulVillo
1=1 Ul UQ

Neuron Shape

Data l\ |\ I\
UVT

True Signal

Spike Times ‘ Vl ‘ ‘VQ
> >

Time Time

ki




min [[Y — @OV )[[E + A Y |Uilull Vil
’ i=1

=1 le+ 1 |l1+]

60 microns ‘
|

Raw Data Sparse + Low Rank + Total Variation

Siigivg



Conclussions

» Structured Low Rank Matrix Factorization
— Structure on the factors captured by the Projective Tensor Norm
— Efficient optimization for Large Scale Problems

« Local minima of the non-convex factorized form are global
minima of both the convex and non-convex forms

« Advantages in Applications
— Neural calcium image segmentation
— Compressed recovery of hyperspectral images
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From Matrix Factorizations to Deep Learning

« Two-layer NN
— Input: V e RVxd Xl c Rdl XT X2 c Rdg X7
— Weights: X" e R%>*"
— Nonlinearity: RelLU

output layer

Y1(x) = gnax(x, 0) inPUt Iayer
hidden layer

 “Almost” like matrix factorization
— r=rank (I)(Xl,XQ) :¢1(VX1)(X2)T

— r =#neurons in hidden layer




From Matrix Factorizations to Deep Learning

Recall the generalized factorization problem

i (Y, o(Xh ., X)) Fae(Xh LX)

Matrix factorization is a particular case where K=2

QU V)=> UV, U V)= |[UillullVill.
=1 1=1

Both ® and © are sums of positively homogeneous functions
flaX! ..., aX®)=aoPf(X',..., X)) VYa>0

Other examples
— ReLU + max pooling is positively homogeneous of degree 1




“Matrix Multiplication” for K > 2

* |n matrix factorization we have ,
QU V)=UV' = Z UV,

« By analogy we deflne

d(X1L, ..., Z¢ X

where Xk IS a tensor, Xk IS its i-th slice along its last
dimension, and ¢ is a posmvely homogeneous function

 Examples
— Matrix multiplication:

— Tensor product:
— ReLU neural network:




Example: CP Tensor Factorization

S S e
1 R e
X2 X2 X2
do ds X! boXx] ? x! '
I

r |




Example: Deep Learning

(X', X =D (X}, X[

1—=1
Xl X2 X3 X4 .
ReLU Network with One Hidden Layer 1 gt Multilayer ReLU
Parallel Network
X! X7
(X} X2 X3 X1)
V (1)4(X17 Xz)

X; X7

Rectified Linear Unit (ReLU)

> -3




Factorization Regularization for "K > 2~

* In matrix factorization we had “generalized nuclear norm”

—mmZHUHuHVHU st. UV =X

* By analogy we defme ‘nuclear deep net regularizer”

r

qu,g(X)—gm% O(X}, ..., XF)st. (XY, ... XF) =X
X
1=1

where 0 is positively homogeneous of the same degree as ¢
+ Proposition: {149 is convex

e Intuition: regularizer © “comes from a convex function”




Examples of Deep Network Regularizers

 Different norms for different properties on each factor
K
ox!, . XE) =TT IXE
k=1

» Different norms plus conic set constraints on the factors

K
oxt, ., XE) = TT (1%l + 0cn (X)) sewm={ 2 256

k=1
« Conic set examples {x : Ax = 0}
— Kernel of linear operator {:E - Ax > 0}

— Inequalities w.r.t. linear operator . <
— Constraints on non-zero support {:12 ’ ”33”0 — n}
— Semidefinite matrices {IB € S_?_}




Main Results

* Theorem 1: A local minimizer of the factorized formulation

(Y, LX) D eX, . X
min £( Zcb )) ;( )

such that for some i and all k X?;k = (s a global minimizer
for both the factorized problem and of the convex formulation

II}}H K(Y, X) + )\qu,g(X)

 Examples
— Matrix factorization
— Tensor factorization
— Deep learning

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Main Results

 Theorem 2: If the size of the network is large enough, local
descent can reach a global minimizer from any initialization

Guarantees of Our Framework

(i)

Critical Points of Non-Convex Function

 Meta-Algorithm:
— If not at a local minima, perform local descent
— At a local minima, test if Theorem 1 is satisfied. If yes => global minima
— If not, increase size by 1 (add network in parallell) and continue

— Maximum r guaranteed to be bounded by the dimensions of the
network output

[1] Haeffele, Vidal. Global Optimality in Tensor Factorization, Deep Learning and Beyond, arXiv ‘15




Current Limitations

* Requires networks with parallel architecture

— Future work to explore more general regularization strategies to
control other aspects of the network architecture

* Results only apply to local minima, not saddle points
— Finding descent direction from saddle point can be NP-Hard

* Upper bound on size of network is impractically large
— O(# of training examples in dataset)
— But, this is a worst case upper bound for any possible initialization




Relation to Dropout

* Qur theory suggests that a highly parallel architecture is
advantageous for optimization

« Similar to dropout regularization (not an exact analogy)
— Sum of exponential number of subnetworks

(a) Standard Neural Net

[1] Srivastava, et al, "Dropout: a simple way to prevent neural networks from overfitting." Journal of Machine Learning Research, 2014.




Balanced Degrees of Homogeneity

« Weight decay is often cited as not performing as well as
dropout in ReLU networks [1-3].
— Ex: L2 decay

K
min O B(X X)) AT X
yeees k=1

* Degrees of homogeneity are not typically balanced
dlaX!,. .. aX®) =X, ..., X5

K K
> llaxXt|F=a?) [IXF|E
k=1 k=1

* Proposition: If K > 2 there exist spurious local minima

[1] Srivastava, et al, "Dropout: a simple way to prevent neural networks from overfitting." JMLR, 2014.
[2] Krizhevsky, et al, “Imagenet classification with deep convolutional neural networks.” NIPS, 2012.
[3] Wan et al, “Regularization of neural networks using dropconnect.” ICML, 2013.




Conclusions and Future Directions

e Size matters
— Optimize not only the network weights, but also the network size
— Today: size = number of neurons or number of parallel networks
— Tomorrow: size = number of layers + number of neurons per layer

 Regularization matters
— Use “positively homogeneous regularizer” of same degree as network

— How to build a regularizer that controls number of layers + number of
neurons per layer

e Not done yet

— Checking if we are at a local minimum or finding a descent direction
can be NP hard

— Need “computationally tractable” regularizers




More Information,

Vision Lab @ Johns Hopkins University
http://www.vision.jhu.edu

Center for Imaging Science @ Johns Hopkins University
http://www.cis.jhu.edu

Thank You!



http://www.vision.jhu.edu
http://www.cis.jhu.edu/index.php

