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In	the	beginning,	there	was	nothing	
•  Then	Kaldi	was	born	in	Bal0more,	MD,	in	2009.	



Kaldi	then	grew	up	&	became	…	
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Meanwhile,	Speech	Search	went	from	
“Solved”	to	“Unsolved”	…	Again	

•  NIST	TREC	SDR	(1998)	
–  Spoken	“document”	retrieval	from	STT	output	as	good	
as	retrieval	from	reference	transcripts	

–  Speech	search	was	declared	a	solved	problem!	

•  NIST	STD	Pilot	(2006)	
–  STT	was	found	to	be	inadequate	for	spoken	“term”	
detec0on	in	conversa0onal	telephone	speech	

•  Limited	language	diversity	in	CTS	corpora	
–  English	Switchboard,	Call	Home	and	Fisher	
– Arabic	and	Mandarin	Chinese	Call	Home	



In	2012,	IARPA	launched	BABEL	
One	month	ader	Dan	Povey	returned	to	Kaldi’s	birthplace	

•  Automa0c	transcrip0on	of	conversa0onal	
telephone	speech	was	s0ll	the	core	challenge.	

•  But	with	a	few	subtle,	crucial	changes	
–  Focused	aVen0on	on	low-resource	condi0ons	
–  Required	concurrent	progress	in	mul0ple	languages	

•  PY1:	Cantonese,	Tagalog,	Pashto,	Turkish	and	Vietnamese	
•  PY2:	Assamese,	Bengali,	Hai0an	Creole,	Lao,	Zulu	and	Tamil	

–  Reduced	system	development	0me	from	year	to	year	
– Used	keyword	search	metrics	to	measure	progress	



Kaldi	Today	
A	community	of	Researchers	Coopera0vely	Advancing	STT		

•  C++	library,	command-line	tools,	STT	“recipes”	
–  Freely	available	via	GitHub	(Apache	2.0	license)	

•  Top	STT	performance	in	open	benchmark	tests	
–  E.g.	NIST	OpenKWS	(2014)	and	IARPA	ASpIRE	(2015)	

•  Widely	adopted	in	academia	and	industry	
–  300+	cita0ons	in	2014	(based	on	Google	scholar	data)	
–  400+	cita0ons	in	2015	(based	on	Google	scholar	data)	
– Used	by	several	US	and	non-US	companies	

•  Main	“trunk”	maintained	by	Johns	Hopkins	
–  Forks	contain	specializa0ons	by	JHU	and	others	



Co-PI’s,	PhD	Students	and	Sponsors	
•  Sanjeev	Khudanpur	
•  Daniel	Povey	
•  Jan	Trmal	
•  Guoguo	Chen	
•  Pegah	Ghahremani	
•  Vimal	Manohar	
•  Vijayaditya	Peddin0	
•  Hainan	Xu	
•  Xiaohui	Zhang	
•  and	several	others	



Building	an	STT	System	with	Kaldi	
•  Data	prepara0on	

–  Acous0c	model	training	data	
–  Pronuncia0on	lexicon	
–  Language	model	training	data	

•  Basic	GMM	system	building	
–  Acous0c	model	training	
–  Language	model	training	

•  Basic	Decoding	
–  Crea0ng	a	sta0c	decoding	graph	
–  Lance	rescoring	

•  Basic	DNN	system	building	
•  Going	beyond	the	basics	



Senng	up	Paths,	Queue	Commands,	…	
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Preparing	Acous0c	Training	Data	



data/train/text	



data/train/wav.scp	



data/train/(uV2spk|spk2uV)	



data/train/(cmvn.scp|feats.scp)	
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Preparing	the	Pronuncia0on	Lexicon	



data/local/dict/lexicon.txt	



data/local/dict/*silence*.txt	



data/local/lang	



Word	Boundary	Tags	



Disambigua0on	Symbols	



data/lang	



data/lang/(phones|words).txt	



data/lang/topo	



data/lang/phones/roots.txt	



data/lang/phones/extra_ques0ons.txt	
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Preparing	the	Language	Model	



local/train_lms_srilm.sh	



local/train_lms_srilm.sh	(cont’d)	



Interpolated	Language	Models	



local/arpa2G.sh	
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GMM	Training	(1)	



GMM	Training	(2)	



cluster-phones,	compile-ques0ons,	
build-tree	



GMM	Training	(4)	



GMM	Training	(5)	
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Building	HCLG	(1)	



Building	HCLG	(2)	



Building	HCLG	(3)	



Building	HCLG	(4)	



Decoding	and	Lance	Rescoring	



steps/decode_sgmm2.sh	
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steps/lmrescore_const_arpa.sh	
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local/nnet3/run_ivector_common.sh	



steps/nnet3/tdnn/make_configs.py	



steps/nnet3/train_dnn.py	
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Advanced	Methods:	
Staying	Ahead	in	the	STT	Game	

•  STT	technology	is	advancing	very	rapidly	
– Amazon,	Apple,	Baidu,	Facebook,	Google,	Microsod	

•  Kaldi	leads	and	keeps	up	with	major	innova0ons	
–  From	SGMMs	to	DNN	(2012)	
–  From	“English”	to	low-resource	languages	(2013)	
–  From	CPUs	to	GPUs	(2014)	
–  From	close-talking	to	far-field	microphones	(2015)	
–  From	well-curated	to	“wild	type”	corpora	(2016)	

•  A	preview	of	some	upcoming	developments	
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Deep	Neural	Networks	for	STT	



DNN	Acous0c	Models	for	the	Masses	

•  Nontrivial	to	get	the	DNN	models	to	work	well	
– Design	decisions:	#	layers,	#	nodes,	#	outputs,	type	of	
nonlinearity,	training	criterion	

–  Training	art:	learning	rates,	regulariza0on,	update	
stability	(max	change),	data	randomiza0on,	#	epochs	

–  Computa0onal	art:	matrix	libraries,	memory	mgmt	
•  Kaldi	recipes	provide	a	robust	star0ng	point	

Corpus	 Training	Speech	 SGMM	WER	 DNN	WER	

BABEL	Pashto	 10	hours	 69.2%	 67.6%	

BABEL	Pashto	 80	hours	 50.2%	 42.3%	

Fisher	English	 2000	hours	 15.4%	 10.3%	
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Low-Resource	STT	for	the	Masses	

•  Kaldi	provides	language-independent	recipes	
– Typical	BABEL	Full	LP	condi0on	

•  80	hours	of	transcribed	speech,	800K	words	of	LM	text,	
20K	word	pronuncia0on	lexicon	

– Typical	BABEL	Limited	LP	condi0on	
•  10	hours	of	transcribed	speech,	100K	words	of	LM	text,	
6K	word	pronuncia0on	lexicon	

Language	 Cantonese	 Tagalog	 Pashto	 Turkish	

Speech	 80h	 10h	 80h	 10h	 80h	 10h	 80h	 10h	

CER/WER	 48.5%	 61.2%	 46.3%	 61.9%	 50.7%	 63.0%	 51.3%	 65.3%	

ATWV	 0.47	 0.26	 0.56	 0.28	 0.46	 0.25	 0.52	 0.25	
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Parallel	(GPU-based)	Training	

•  Original	neural	network	training	algorithms	
were	inherently	sequen0al	(e.g.	SGD)	

•  Scaling	up	to	“big	data”	becomes	a	challenge	
•  Several	solu0ons	have	emerged	recently	
– 2009:	Delayed	SGD	(Yahoo!)	
– 2011:	Lock-free	SGD	(Hogwild!		U	Wisconsin)	
– 2012:	Gradient	averaging	(DistBelief,	Google)	
– 2014:	Model	averaging	(NG-SGD,	Kaldi)	





Model	Averaging	with	NG-SGD	

•  Train	DNNs	with	large	amount	of	data	
– U0lize	a	cluster	of	CPUs	or	GPUs	
– Minimize	network	traffic	(esp.	for	CPUs)	

•  Solu0on:	exploit	data	paralleliza0on	
– Update	model	in	parallel	over	many	mini-batches	
–  Infrequently	average	models	(parameters)	

•  Use	“Natural-Gradient”	SGD	for	model	upda0ng	
– Approximates	condi0oning	via	inverse	Fisher	matrix	
–  Improves	convergence	even	without	paralleliza0on	



Paralleliza0on	MaVers!	

•  Typically,	a	GPU	is	10x	faster	than	a	16	core	CPU	
•  Linear	speed-up	0ll	ca	4	GPUs,	then	diminishing	
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IARPA’s	Open	Challenge	
•  Automa0c	speech	recogni0on	sodware	that	works	in	a	variety	

of	acous0c	environments	and	recording	scenarios	is	a	holy	
grail	of	the	speech	research	community.	

•  IARPA’s	Automa0c	Speech	recogni0on	In	Reverberant	
Environments	(ASpIRE)	Challenge	is	seeking	that	grail.	



Rules	of	the	ASpIRE	Challenge	

•  15	hours	of	speech	data	were	posted	on	the	IARPA	website	
–  Mul0-microphone	recordings	of	conversa0onal	English	
–  5h	development	set	(dev),	10h	development-test	set	(dev-test)	
–  Transcrip0ons	provided	for	dev,	only	scoring	for	dev-test	output	
–  For	training	data	selec0on,	system	development	and	tuning	

•  12	hours	of	new	speech	data	during	the	evalua0on	period	
–  Far-field	speech	(eval)	from	noisy,	reverberant	rooms	
–  Single-microphone	or	mul0-microphone	condi0ons	

•  Word	error	rate	is	the	measure	of	performance	
–  Single-microphone	submissions	were	due	on	02/18/2015	
–  Results	were	officially	announced	on	09/10/2015	



Examples	of	ASpIRE	Audio	

•  Typical	sample	
–  Suggested	by	Dr.	Mary	Harper	

•  Almost	manageable	
–  Easy	for	humans,	26%	errors	for	ASR	

•  Somewhat	hard	
–  Easy	for	humans,	41%	errors	for	ASR	

•  Much	harder	
– Not	easy	for	humans,	60%	errors	for	ASR	

•  *#@!	!#%	#%^^	
–  Very	hard	for	humans,	no	ASR	output	



Kaldi	ASR	Improvements	for	ASpIRE	

•  Time	delay	neural	networks	(TDNN)	
–  A	way	to	deal	with	long	acous0c-phone0c	context	
–  A	structured	alterna0ve	to	deep/recurrent	neural	nets	

•  Data	augmenta$on	with	simulated	reverbera0ons	
–  A	way	to	mi0gate	channel	distor0ons	not	seen	in	training	
–  A	form	of	mul0-condi0on	training	of	ASR	models	

•  i-vector	based	speaker	&	environment	adapta$on	
–  A	way	to	deal	with	speaker	&	channel	variability	
–  Adapted	[with	a	twist]	from	Speaker	ID	systems	



Kaldi	ASR	Improvements,	ASpIRE++	

•  Pronuncia$on	and	inter-word	silence	modeling	
–  Inspired	by	pronuncia0on-prosody	interac0ons	
–  A	simple	context-dependent	model	of	inter-word	silence	

•  Recurrent	neural	network	language	models	(RNNLM)	
–  A	(known)	way	to	model	long-range	word	dependencies	
–  Incorporated	post-submission	into	JHU	ASpIRE	system	

•  Ongoing	Kaldi	inves0ga0ons	that	hold	promise	
–  Semi-supervised	discrimina0ve	training	of	(T)DNNs	
–  Long	short-term	memory	(LSTM)	acous0c	models	
–  Connec0onist	temporal	classifica0on	(CTC)	models	



Time	Delay	Neural	Networks	
(See	our	paper	at	INTERSPEECH	2015	for	details)	



A	28	Year	Old	Idea,	Resurrected	

Alex	Waibel,	Kevin	Lang,	et	al	(1987)	
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Improved	ASR	on	Several	Data	Sets	

•  Consistent	5-10%	reduc0on	in	word	error	rate	(WER)	over	
DNNs	on	most	datasets,	including	conversa0onal	speech.	

•  TDNN	training	speeds	are	on	par	with	DNN,	and	nearly	an	
order	of	magnitude	faster	than	RNN	

Standard	ASR	Test	Sets	 Size	 DNN	 TDNN	 	Rel.	Δ	

Wall	Street	Journal	 80	hrs	 6.6%	 6.2%	 5%	

TED-LIUM	 118	hrs	 19.3%	 17.9%	 7%	

Switchboard	 300	hrs	 15.5%	 14.0%	 10%	

Libri	Speech	 960	hrs	 5.2%	 4.8%	 7%	

Fisher	English	 1800	hrs	 22.2%	 21.0%	 5%	

ASpIRE	(Fisher	Training)	 1800	hrs	 47.7%	 47.6%	



Data	Augmenta0on	for	ASR	Training	
(See	our	paper	at	INTERSPEECH	2015	for	details)	



Simula0ng	Reverberant	Speech	for	
Mul0-condi0on	(T)DNN	Training			

•  Simulate	ca	5500	hours	of	reverberant,	noisy	data	from	
1800	hours	of	the	Fisher	English	CTS	corpus		
–  Replicate	each	of	the	ca	21,000	conversa0on	sides	3	0mes	
–  Randomly	change	the	sampling	rate	[up	to	±10%]	
–  Convolve	each	conversa0on	side	with	one	of	320	real-life	
room	impulse	responses	(RIR)	chosen	at	random	

–  Add	noise	to	the	signal	(when	available	with	the	RIR)	
•  Generate	(T)DNN	training	labels	from	clean	speech	
–  Align	“pre-reverb”	speech	to	ca	7500	CD-HMM	states	

•  Train	DNN	and	TDNN	acous0c	models	
–  Cross-entropy	training	followed	by	sequence	training	



Result	of	Data	Augmenta0on	
Acous$c	Model	 Data	Augmenta$on	 Dev	WER	

TDNN	A	(230	ms)	 None	(1800h,	clean	speech)	 47.6%	

TDNN	A	(230	ms)	 +	3	x	(reverbera0on	+	noise)	 31.7%	

TDNN	B	(290	ms)	 +	3	x	(reverbera0on	+	noise)	 30.8%	

TDNN	A	(230	ms)	 			+	sampling	rate	perturba0on	 31.0%	

TDNN	B	(290	ms)	 			+	sampling	rate	perturba0on	 31.1%	

•  Data	augmenta0on	with	simulated	reverbera0on	is	beneficial	
–  Likely	to	be	a	very	important	reason	for	rela0vely	good	performance	

•  Sampling	rate	perturba0on	didn’t	help	much	on	ASpIRE	data	
•  Sequence	training	helped	reduce	WER	on	the	dev	set	

–  Required	modifying	the	sMBR	training	criterion	to	realize	gains	
–  But	the	gains	did	not	carry	over	to	dev-test	set	



i-vectors	for	Speaker	Compensa0on	
(See	our	paper	at	INTERSPEECH	2015	for	details)	



Using	i-vectors	Instead	of	fMLLR	
and	using	unnormalized	MFCCs	to	compute	i-vectors	

•  100-dim	i-vectors	are	appended	to	MFCC	inputs	of	the	TDNN	
–  i-vectors	are	computed	from	raw	MFCCs	(i.e.	no	mean	subtrac0on	etc)	
–  UBM	posteriors	however	use	MFCCs	normalized	over	a	6	sec	window	

•  i-vectors	are	computed	for	each	training	uVerance	
–  Increases	speaker-	and	channel	variability	seen	in	training	data	
–  May	model	transient	distor0ons?	e.g.	moving	speakers,	passing	cars	

•  i-vectors	are	calculated	for	every	ca	60	sec	of	test	audio	
–  UBM	prior	is	weighted	10:1	to	prevent	overcompensa0on	
–  Weight	of	test	sta0s0cs	is	capped	at	75:1	rela0ve	to	UBM	sta0s0cs	

Speaker	Compensa$on	Method	 Dev	WER	

TDNN	without	i-vectors	 34.8%	

+	i-vectors	(from	all	frames)	 33.8%	

+	i-vectors	(from	reliable	speech	frames)	 30.8%	



Pronuncia0on	and	Silence	Probabili0es	
	(See	our	paper	at	INTERSPEECH	2015	for	details)	



Trigram-like	Inter-word	Silence	Model	

P s a_b( ) = P s a_( )F s _b( )

F s _b( ) =
c sb( )+λ3

c !a *b( )P s !a _( )
!a
∑ +λ3

P s a_( ) =
c as( )+λ2P s( )
c a( )+λ2



Is	“Prosody”	Finally	Helping	STT?	
Task	 Test	Set	 Baseline	 +	Sil/Pron	

WSJ	 Eval	92	 4.1	 3.9	

Switchboard	 Eval	2000	 20.5	 20.0	

TED-LIUM	 Test	 18.1	 17.9	

Libri	Speech	
Test	Clean	 6.6	 6.6	

Test	Other	 22.9	 22.5	

•  Modeling	pronuncia0on	and	silence	probabili0es	yields	modest	but	
consistent	improvement	on	many	large	vocabulary	ASR	tasks	

Pronuncia$on/Silence	Probabili$es	 Dev	WER	

No	probabili0es	in	the	lexicon	 32.1%	

				+	pronuncia0on	probabili0es	 31.6%	

				+	inter-word	silence	probabili0es	 30.8%	



Recurrent	Neural	Network	based	
Language	Models	

(See	our	paper	at	INTERSPEECH	2010	for	the	first	“convincing”	results)	



RNN	LM	on	ASpIRE	Data	
Language	Model	and	Rescoring	Method	 Dev	WER	

4-gram	LM	and	lance	rescoring	 30.8%	

RNN-LM	and	100-best	rescoring	 30.2%	

RNN-LM	and	1000-best	rescoring	 29.9%	

RNN-LM	(4-gram	approxima0on)	lance	rescoring	 29.9%	

RNN-LM	(6-gram	approxima0on)	lance	rescoring	 29.8%	

•  An	RNN	LM	consistently	outperforms	the	N-gram	LM	
•  The	Kaldi	lance	rescoring	appears	to	cause	no	loss	in	

performance	
–  Approxima0on	entails	not	“expanding”	the	lance	to	represent	
each	unique	history	separately	

–  When	two	paths	merge	in	an	N-gram	lance,	only	one	s(t)	is	
chosen	at	random	and	propagated	forward	



The	IARPA	ASpIRE	Leader	Board	

Rank	 Par$cipant	 Dev	WER	 System	Type	

1	 tsakilidis	 27.2%	 Combina0on	

2	 rhsiao	 27.5%	 Combina0on	

3	 vijaypeddin0	 27.7%	 Single	System	



hVp://www.dni.gov/index.php/newsroom/press-releases/210-press-releases-2015/1252-iarpa-announces-winners-of-its-aspire-challenge	



hVp://www.dni.gov/index.php/newsroom/press-releases/210-press-releases-2015/1252-iarpa-announces-winners-of-its-aspire-challenge	



Performance	on	Evalua0on	Data	

Acous$c	Model	 Language	Model	 Dev	
WER	

Test	
WER	

Eval	
WER	

TDNN	B	(CE	training)	 4-gram	 30.8%	 27.7%	 44.3%	

TDNN	B	(sMBR	training)	 4-gram	 29.1%	 28.9%	 43.9%	

TDNN	B	(CE	training)		 RNN	 29.8%	 26.5%	 43.4%	

TDNN	B	(sMBR	training)	 RNN	 28.3%	 28.2%	 43.4%	

Par$cipant	 Test	WER	 System	Type	

Kaldi	 44.3%	 Single	System	

BBN	(and	others)	 44.3%	 Combina0on	

I2R	(Singapore)	 44.8%	 Combina0on	



Keys	to	Good	Performance	on	ASpIRE	

•  Time	delay	neural	networks	(TDNN)	
– Deal	well	with	long	reverbera0on	0mes	

•  i-vector	based	adapta0on	compensa0on	
– Deals	with	speaker	&	channel	variability	

•  Data	augmenta0on	with	simulated	reverbera0ons	
– Deals	with	channel	distor0ons	not	seen	in	training	

•  Pronuncia0on	and	inter-word	silence	probabili0es	
– Helpful	in	adverse	acous0c	condi0ons	



The	JHU	ASpIRE	System	
(See	our	ASRU	2015	paper	for	details)	



Semi-supervised	MMI	Training	
(See	our	paper	at	INTERSPEECH	2015	for	details)	



Discrimina0ve	(MMI)	Training:	
a	hand-waving,	mostly	correct	introduc0on	

θ̂ML = argmax
θ

logP Ot Wt ;θ( )
t=1

T

∑ KL P̂ Pθ( )

θ̂MMI = argmax
θ

log
P Ot Wt;θ( )
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Semi-Supervised	Sequence	Training	

•  Sequence	training	improves	substan0ally	over	basic	
cross-entropy	training	of	DNN	acous0c	models	

•  Semi-supervised	cross-entropy	training	–	by	adding	
unlabeled	data	–	also	improves	substan0ally	over	
basic	cross-entropy	training	on	labeled	data	

•  But	semi-supervised	sequence	training	is	“tricky”	
–  Sensi0vity	to	incorrect	transcrip0on	seems	greater	
–  Confidence-based	filtering	or	weigh0ng	must	be	applied	
–  Empirical	results	are	not	very	sa0sfactory	



Semi-supervised	Sequence	Training:	
without	comminng	to	a	single	transcrip0on	

•  View	MMI	training	as	minimizing	a	condi0onal	entropy	

I W ∧O ;θ( ) =
1
T

log
P Ot Wt ;θ( )
P Ot ;θ( )t=1

T

∑ =
1
T

log
P Ot Wt ;θ( )

P Ot #W ; θ )P #W( )(
#W
∑t=1

T

∑

I W ∧O ;θ( ) = H W( ) − H W O ;θ( ) = H W( ) − 1
T

H W Ot ;θ( )
t=1

T

∑

•  The	laVer	does	not	require	comminng	to	a	single	Wt	
–  Well	suited	for	unlabeled	speech	
–  Entails	compu0ng	a	sum	over	all	W’s	in	the	lance	



Compu0ng	Lance	Entropy	Using	
Expecta0on	Semi-rings	

•  How	to	efficiently	compute	

•  Replace	arc-probabili0es	pi	with	the	pair	(	pi	,	pi	log{pi}	)	

−H W Ot ;θ( ) = P π( ) logP π( )
π∈L
∑

Z Ot ;θ( ) = P π( )
π∈L
∑

Semi-ring	Element	&	Operators	 (	p	,		p×log{p}	)	

(	p1	,	p1log{p1}	)	+	(	p2	,	p2log{p2}	)	 (	p1+p2	,	p1log{p1}+p2log{p2}	)	

(	p1	,	p1log{p1}	)	×	(	p2	,	p2log{p2}	)	 (	p1p2	,	p1p2log{p2}+p2p1log{p1}	)	

•  Take	inspira0on	from	the	computa0on	of	



Semi-supervised	Sequence	Training:	
Key	Details	Needed	to	Make	it	Work	

•  View	training	criterion	as	MCE	instead	of	MMI	
–  i.e.	arg	min	H(W|O;θ)	instead	of	arg	max	I(W∧O;θ)	
–  Efficiently	compute	H(W|O;θ)	for	the	lance,	and	its	
gradient,	via	Baum	Welch	with	special	semi-rings	

•  Use	separate	output	(sod-max)	layers	in	the	DNN	
for	labeled	and	unlabeled	data	
–  Inspired	by	mul0lingual	DNN	training	methods	

•  Use	a	slightly	different	“prior”	for	conver0ng	DNN	
posterior	probabili0es	to	acous0c	likelihoods	



Results	for	Semi-Supervised	MMI	
on	Fisher	English	CTS	

DNN	Training	Method	(hours	of	speech)	 Dev	WER	 Test	WER	

Cross-Entropy	Training	(100h	labeled)	 32.0	 31.2	

CE	(100h	labeled	+	250h	self-labeled)	 30.6	 29.8	

CE	(100h	labeled	+	250h	weighted)	 30.5	 29.8	

Sequence	Training	(100h	labeled)	 29.6	 28.5	

Seq	Training	(100h	labeled	+250h	weighted)	 29.9	 28.8	

Seq	Training	(100h	labeled	+	250h	MCE)	 29.4	 28.1	

Sequence	Training	(350h	labeled)		 28.5	 27.5	

•  Recovers	about	40%	of	the	supervised	training	gain	
–  Inves0ga0on	underway	for	2000h	of	unlabeled	speech	

•  Repeatable	results	on	BABEL	datasets	with	10h	
supervised	training	+	50-70h	unsupervised	
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Advanced	Methods:	
Staying	Ahead	in	the	STT	Game	

•  STT	technology	is	advancing	very	rapidly	
– Amazon,	Apple,	Baidu,	Facebook,	Google,	Microsod	

•  Kaldi	leads	and	keeps	up	with	major	innova0ons	
–  From	SGMMs	to	DNN	(2012)	
–  From	“English”	to	low-resource	languages	(2013)	
–  From	CPUs	to	GPUs	(2014)	
–  From	close-talking	to	far-field	microphones	(2015)	
–  From	well-curated	to	“wild	type”	corpora	(2016)	

•  A	preview	of	some	upcoming	developments	



Heterogeneous	Training	Corpora	
•  Transcribed	speech	from	different	collec0ons	are	not	easy	

to	merge	for	STT	training	
–  Genre	and	speaking	style	differences	
–  Different	channel	condi0ons	
–  Slightly	different	transcrip0on	conven0ons	

•  Typical	result:	the	corpus	matched	to	test	data	gives	best	
STT	results;	others	don’t	help,	some0mes	hurt!	

•  SCALE	2015	case	study	with	Pashto	CTS	
–  Collected	in	country,	and	transcribed,	by	same	vendor	
–  Roughly	80	hours	each	in	the	

•  Appen	LILA	corpus	and	IARPA	BABEL	corpus	
–  Pronuncia0on	lexicon	to	cover	transcripts;	same	phone	set	



A	Study	in	Pashto	
(A	manuscript	is	in	prepara0on	for	future	publica0on)	



A	Study	in	Pashto	
•  Transcrip0ons	require	

extensive	cross-corpus	
normaliza0on	

•  Even	ader	that,	language	
models	don’t	benefit	much	
from	corpus	pooling	

•  Simple	corpus	pooling	doesn’t	
improve	acous0c	modeling	
either	

•  DNNs	with	shared	“inner”	
layers	and	corpus-specific	
input	and	output	layers	work	
best	

Training	
Data	

Single	
Model	

Interpola$on	Weights	
LM	A								LM	B						LM	T	

Interpolated	
Model	

Text	A	 99.2	 0.8	 0.2	 0.0	 92.9	

Text	B	 141.9	 0.1	 0.8	 0.1	 140.0	

Text	T	 86.7	 0.0	 0.0	 1.0	 86.7	

Mul$-corpus	(A+B)	Training	
Strategy	

STT	Word	Error	Rates	
Test	A								Test	B								Test	T	

Shared	DNN	layers	(except	1)	 53.2%	 47.4%	 27.0%	

Shared	DNN	layers	(except	2)	 51.2%	 45.0%	 25.4%	

+	Op0mized	Language	Model	 50.8%	 44.8%	 25.4%	

+	Dura0on	Modeling	 50.4%	 44.3%	 24.8%	

DNN	Training	Data	 STT	Word	Error	Rates	
Test	A									Test	B									Test	T	

Single	corpus	(matched)	 55.4%	 46.8%	 24.8%	

Two	corpora	(Pashto	A	+	B)	 51.9%	 48.2%	 52.6%	



Advanced	Methods:	
Staying	Ahead	in	the	STT	Game	

•  STT	technology	is	advancing	very	rapidly	
– Amazon,	Apple,	Baidu,	Facebook,	Google,	Microsod	

•  Kaldi	leads	and	keeps	up	with	major	innova0ons	
–  From	SGMMs	to	DNN	(2012)	
–  From	“English”	to	low-resource	languages	(2013)	
–  From	CPUs	to	GPUs	(2014)	
–  From	close-talking	to	far-field	microphones	(2015)	
–  From	well-curated	to	“wild	type”	corpora	(2016)	

•  A	preview	of	some	upcoming	developments	



Other	Addi0ons	and	Innova0ons	
•  Semi-supervised	(MMI)	training	
– Using	unlabeled	speech	to	augment	a	limited	
transcribed	speech	corpus	

•  Mul0lingual	acous0c	model	training	
– Using	other-language	speech	to	augment	a	limited	
transcribed	speech	corpus	

•  Removing	reliance	on	pronuncia0on	lexicons	
– Grapheme	based	models	and	acous0cally	aided	G2P	

•  Chain	models	
–  10%	more	accurate	STT,	plus	
–  3x	faster	decoding,	and	5x-10x	faster	training	



The	Genesis	of	Chain	Models	

•  Connec0onist	Temporal	Classifica0on	
–  The	latest	shiny	toy	in	neural	network-based	acous0c	
modeling	for	STT	(ICASSP	and	InterSpeech	2015)	

– Nice	STT	improvements	shown	on	Google	datasets	
– We	haven’t	seen	STT	gains	on	our	datasets	

•  Chain	Models	
–  Inspired	by	(but	quite	different	from)	CTC	
–  Sequence	training	of	NNs	without	CE	pre-training	
– Nice	STT	improvements	over	previous	best	systems	
–  3x	decoding	0me	speed-up;	5x-10x	training	speed-up	



2006:	A	New	Kid	on	the	NNet	Block	



2015:	The	New	Kid	Comes	of	Age	



2015:	The	New	Kid	Comes	of	Age	



CTC,	Explained	…	in	Pictures	
Figure	from	Graves	et	al,	ICML	2006	

dh	 ax	 s	 aw	 n	 d	



CTC,	Explained	…	in	Pictures	
Figure	from	Graves	et	al,	ICML	2006	
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DNN	versus	CTC:	STT	Performance	
Figures	and	Tables	from	Sak	et	al,	ICASSP	2015	

DNN	 Target	 CE	 sMBR	

LSTM	 Senone	 10.0%	 8.9%	

BLSTM	 Senone	 9.7%	 9.1%	

CTC	 Target	 CE	 sMBR	

LSTM	 Phone	 10.5%	 9.4%	

BLSTM	 Phone	 9.5%	 8.5%	



First,	the	Bad	News	…	

•  We	haven’t	been	able	to	get	CTC	models	to	
give	us	any	no0ceable	improvement	over	our	
best	(TDNN	or	LSTM-RNN)	models	on	our	data	
–  It	appears	to	be	easier	to	get	them	to	work	when	
one	has	several	1000	hours	of	labeled	speech	

– But	we	care	about	lower-resource	scenarios	



…	and	then	the	Good	News	

•  We	are	able	to	get	similar	improvements	using	
a	different	model,	which	is	inspired	by	ideas	
from	the	CTC	papers	
– Use	simple	“1-state”	HMMs	for	each	CD	phone	
– Reduce	frame	rate	from	100	Hz	to	33	Hz	
– Permit	slack	in	the	frame-to-state	alignment	



Chain	Models	and	LF-MMI	Training	

•  A	new	class	of	acous0c	models	for	hybrid	STT	
–  “1-state”	HMM	for	each	context-dependent	phone	
–  LSTM/TDNNs	compute	state	posterior	probabili0es	

•  MFCCs	are	down-sampled	from	100Hz	to	33Hz	
–  Inspired	by	CTC	

•  A	new	lance-free	MMI	training	method	
–  Improved	paralleliza0on,	sequence	training	on	GPUs	

•  Larger	mini-batches,	smaller	I/O	bandwidth	
– Does	not	require	CE	training	before	MMI	training	
– Uses	“flexible	label	alignment”	inspired	by	CTC	



Discrimina0ve	(MMI)	Training:	
a	hand-waving,	mostly	correct	introduc0on	
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θ

logP Ot Wt ;θ( )
t=1

T

∑ KL P̂ Pθ( )

θ̂MMI = argmax
θ

log
P Ot Wt;θ( )

P Ot !Wt;θ( )P !Wt( )
!Wt

∑

#

$
%

&
%

'

(
%

)
%t=1

T

∑ I W ∧O;θ( )



Lance-Free	MMI	Training	

•  Denominator	(phone)	graph	crea0on	
– Use	a	phone	4-gram	language	model,	L	
–  Compose	H,	C	and	L	to	obtain	denominator	graph	

•  This	FSA	is	the	same	for	all	uVerances;	suits	GPU	training	
•  Use	(heuris0c)	sentence-specific	ini0al	probabili0es	

•  Numerator	graph	crea0on	
– Generate	a	phone	graph	using	transcripts	

•  This	FSA	encodes	frame-by-frame	alignment	of	HMM	states	
–  Permit	some	alignment	“slack”	for	each	frame/label	
–  Intersect	slackened	FSA	with	the	denominator	FSA	



Regulariza$on	 Hub-5	‘00	Word	Error	Rate	

Cross	Entropy	 L2	Norm	 Leaky	HMM	 Total	 SWBD	
N	 N	 N	 16.8%	 11.1%	
Y	 N	 N	 15.9%	 10.5%	
N	 Y	 N	 15.9%	 10.4%	
N	 N	 Y	 16.4%	 10.9%	
Y	 Y	 N	 15.7%	 10.3%	
Y	 N	 Y	 15.7%	 10.3%	
N	 Y	 Y	 15.8%	 10.4%	
Y	 Y	 Y	 15.6%	 10.4%	

Lance-free	MMI	Training	(cont’d)		
•  LSTM-RNNs	trained	with	this	MMI	training	procedure	are	

highly	suscep0ble	to	over-finng	
•  Essen0al	to	regularize	the	NN	training	process	

–  A	second	output	layer	for	CE	training	
–  Output	L2	regulariza0on	
–  Use	a	leaky	HMM	



STT	Results	for	Chain	Models	
300	hours	of	SWBD	Training	Speech;	Hub-5	‘00	Evalua0on	Set		

Training	Objec$ve	 Model	(Size)	 Total	
WER	

SWBD	
WER	

Cross-Entropy	 TDNN	A	(16.6M)	 18.2%	 12.5%	

CE	+	sMBR	 TDNN	A	(16.6M)	 16.9%	 11.4%	

Lance-free	MMI	

TDNN	A	(9.8M)	 16.1%	 10.7%	

TDNN	B	(9.9M)	 15.6%	 10.4%	

TDNN	C	(11.2M)	 15.5%	 10.2%	

LF-MMI	+	sMBR	 TDNN	C	(11.2M)	 15.1%	 10.0%	

•  LF-MMI	reduces	WER	by	ca	10%-15%	rela>ve	
•  LF-MMI	is	beVer	than	standard	CE	+	sMBR	training	(ca	8%)	
•  LF-MMI	improves	very	slightly	with	addi0onal	sMBR	training	



Chain	Models	and	LF-MMI	Training	
STT	Performance	on	a	Variety	of	Corpora	

Corpus	and	
Audio	Type	

Training	
Speech	

CE	+	sMBR	
Error	Rate	

LF-MMI	
Error	Rate	

AMI	IHM	 80	hours	 23.8%	 22.4%	

AMI	SDM	 80	hours	 48.9%	 46.1%	

TED-LIUM	 118	hours	 11.3%	 12.8%	

Switchboard	 300	hours	 16.9%	 15.5%	

Fisher	+	SWBD	 2100	hours	 15.0%	 13.3%	

•  Chain	models	with	LF-MMI	reduce	WER	by	6%-11%	(rela>ve)	
•  LF-MMI	improves	a	bit	further	with	addi0onal	sMBR	training	
•  FL-MMI	is	5x-10x	faster	to	train,	3x	faster	to	decode	



A	Recap	of	Chain	Models	

•  A	new	class	of	acous0c	models	for	hybrid	STT	
–  “1-state”	HMM	for	context-dependent	phones	
–  LSTM-RNN	acous0c	models	(TDNN	also	compa0ble)	

•  A	new	lance-free	MMI	training	method	
–  BeVer	suited	to	using	GPUs	for	paralleliza0on	
– Does	not	require	CE	training	before	MMI	training	

•  Improved	speed	and	STT	performance	
–  6%-8%	rela0ve	WER	reduc0on	over	previous	best	
–  5-10x	improvement	in	training	0me;	3x	decoding	0me	



Summary	of	Advanced	Methods:	
Staying	Ahead	in	the	STT	Game	

•  STT	technology	is	advancing	very	rapidly	
– Amazon,	Apple,	Baidu,	Facebook,	Google,	Microsod	

•  Kaldi	leads	and	keeps	up	with	major	innova0ons	
–  From	SGMMs	to	DNN	(2012)	
–  From	“English”	to	low-resource	languages	(2013)	
–  From	CPUs	to	GPUs	(2014)	
–  From	close-talking	to	far-field	microphones	(2015)	
–  From	well-curated	to	“wild	type”	corpora	(2016)	
–  Chain	models	for	beVer	STT,	faster	decoding	(2017)	

•  and	the	list	goes	on	...	



Team	Kaldi	@	Johns	Hopkins	
•  Sanjeev	Khudanpur	
•  Daniel	Povey	
•  Jan	Trmal	
•  Guoguo	Chen	
•  Pegah	Ghahremani	
•  Vimal	Manohar	
•  Vijayaditya	Peddin0	
•  Hainan	Xu	
•  Xiaohui	Zhang	
•  …	and	several	others	



Kaldi	Points-of-Contact	

•  Kaldi	mailing	list	
– kaldi-help@googlegroups.com		

•  Daniel	Povey	
– dpovey@gmail.com	

•  Jan	“Yenda”	Trmal	
–  trmal@jhu.edu	

•  Sanjeev	Khudanpur	
– khudanpur@jhu.edu	
– 410-516-7024	


