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Abstract 

Useful training data for automatic speech recognition   

systems of colloquial speech is usually limited to expensive 

in-domain transcription. Broadcast news is an appealing 

source of easily available data to bootstrap into a new dialect. 

However, some languages, like Arabic, have deep linguistic 

differences resulting in poor cross domain performance. If no 

in-domain transcripts are available, but a large amount of in-

domain audio is, self-training may be a suitable technique to 

bootstrap into the domain. In this work, we attempt to adapt 

Modern Standard Arabic (MSA) models to Levantine Arabic 

without any in-domain manual transcription. We contrast 

with varying amounts of in-domain transcription and show 

that 1) Self-training is effective with only one hour of in-

domain transcripts. 2) Self-training is not a suitable solution 

to improve strong MSA models on Levantine. 3) Two 

metrics that quantify model bias predict self-training success. 

4) Model bias explains the failure of self-training to adapt 

across strong domain mismatch. 

Index Terms: Arabic ASR, domain adaptation, self-training 

1. Introduction 

Effective large vocabulary continuous speech recognition 

(LVCSR) of spoken colloquial dialects requires costly in-

domain transcription since these languages are not formally 

written. For example, given the dozens of Hindi sub-dialects, 

deploying a system with low word error rate (WER) (trained 

on 100 hours of transcription) for each one is infeasible. 

However, for almost any language, broadcast news (BN) 

corpora are much more easily available as well as copious 

amounts of news wire and web data for language modeling.  

 In this paper, we focus on LVCSR of conversational 

telephone speech (CTS) for spoken colloquial dialects. 

Unfortunately, some languages have wider domain 

mismatches between BN and CTS. Dialectal Arabic is one 

example of this mismatch. Systems trained on broadcast 

news, prompted speech or other colloquial dialects show very 

poor cross-domain performance on CTS data. Without in-

domain transcription, typical domain adaptation techniques 

appear useless.  

 Previous work [1] drastically reduced WER of poor 

initial acoustic models by decoding large amounts of data and 

training on the automatic transcripts, despite high initial 

WER. This method, self-training (or unsupervised training), 

was used to successfully adapt Spanish BN acoustic models 

(AM) to Polish BN, reducing WER from 63.4% to 20%. 

Even well-trained models can be improved. Self-training of 

150 hours of MSA reduced WER from 16.7% to 15.5% [2].  

 Most previous work on self-training used strong language 

models (LM) since the target domain was BN with lots of 

available newswire data. Work with English CTS acoustic 

modeling showed reductions in WER from 58% to 37% with 

only 100k words of in-domain transcriptions [3].  Our work 

differs from the previous literature in that no in-domain 

transcription or language modeling text will be available. We 

will also compare performance with stronger in-domain LMs. 

 Work on colloquial Arabic adaptation from MSA has 

focused on mapping between phonemes and then using 

techniques like MAP and MLLR to improve system 

performance. Adapting 33 hours of MSA with 20 hours of 

transcribed Egyptian reduced WER by 6% [4]. A reduction in 

WER from 16.8% to 11.8% was achieved by first adapting 12 

hours of MSA to 45 hours of phonetically transcribed 

Tunisian prompted telephone speech and then using MLLR 

to adapt to the final Jordanian test data [5]. We hope a large 

amount of unlabeled audio (100 hours) will compensate for a 

smaller amount of transcribed data. Although we are working 

with Arabic, our goal is not to improve state-of-the-art 

dialectal LVCSR performance. Instead, we use this as a test 

bed for unsupervised adaptation across domain and dialect. 

 In this paper, we adapt a strong MSA acoustic and 

language model to Levantine Arabic using only a list of 

Levantine words and 100 hours of unlabeled audio. Self-

training must compensate for differences in acoustic channel, 

speaking style and language. Sections 2 and 3 describe the 

system and corpora and quantify the differences between 

MSA and Levantine. Section 4 provides supervised baselines 

and upper bounds for unsupervised adaptation. Section 5 

shows that in-domain self-training with one hour of 

Levantine manual transcripts behaves similar to previous 

work, giving significant gains. Section 6 then attempts to 

adapt from MSA to Levantine using both self-training and 

standard adaptation techniques of MLLR and MAP but with 

limited gains. Finally, section 7 explains why in-domain 

transcription succeeded while adaptation failed and offers a 

strong predictor of self-training effectiveness.  

2. System Description 

We used a multi-pass state-of-the-art LVCSR system that 

uses state-clustered Gaussian tied-mixture models [1]. 

Decoding requires three passes: a forward and backward pass 

using triphone models and an approximate trigram LM to 

generate an N-best list, which is then rescored using 

quinphone cross-word acoustic models and trigram LM. 

These three steps are then repeated after speaker adaptation 

using constrained maximum likelihood regression. We do not 

run discriminative training since little gain has been shown 

for unsupervised scenarios [7]. 

For self-training, we decode a large amount of unlabeled 

audio and for each utterance estimate the confidence that the 

WER is below some threshold. Then we retrain and iterate 

until WER stops decreasing, typically two or three passes. 

While finer-grained selection at the word or frame level 

would help, the gain versus utterance level selection is not 

large [8]. The original MSA transcripts are not included in 

the new acoustic models. We run AM and LM self-training 

independently, leaving the other model fixed, in order to 

control for WER reductions. 
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3. Corpora 

In order to compare our semi-supervised techniques with 

fully supervised transcription, we require that our target 

corpus be manually transcribed. Additionally, since self-

training works best with large amounts of audio [3], we 

selected the Levantine Arabic Fisher corpus. We refer the 

reader to previous literature [8], for detailed explanations of 

the linguistic differences between dialects of Arabic. 

3.1. Levantine Arabic 

Spoken by 35 million people in the Levant region – Syria, 

Palestine, Jordan, and Lebanon – this dialect lacks case 

inflection and is lax on gender/number agreement. We use 

156 hours in total from LDC corpus LDC2007T04. This 

corpus follows the Fisher transcription methodology, where 

strangers are assigned to speak about one of a few dozen 

topics for ten minutes over cellular or landline telephones. 

 The 156 hours were partitioned into one or ten hour 

initial training sets, 100 hours of “unlabeled” audio for 

decoding, and the remaining 45 hours used to build a strong 

in-domain LM.  Three LMs were built from 1, 10 or 45 hours 

of language modeling text and the 100 hours were held out 

for use in decoding during self-training. For testing, we used 

2.5 hours of carefully transcribed data released as part of the 

RT 2004 Arabic CTS evaluation, again without short vowels. 

We used a 37k graphemic dictionary derived from the 

released LDC corpora for all experiments. This is the only 

supervised resource assumed available for adaptation. 

3.2. Modern Standard Arabic 

The literary standard of the Arab world, MSA is extensively 

used in broadcast news and newswire. It is not, however, a 

native dialect used in conversation. The MSA system was 

trained with 1400 hours of transcribed BN. This system when 

used on MSA BN test data gives 11% WER. For decoding 

Levantine, the audio was band limited to 8 kHz to match the 

Levantine telephony data and the word models were derived 

from the 37k Levantine dictionary. Since both systems used 

graphemic pronunciations, the phoneme set was the same. 

3.3. Differences between MSA and Levantine 

Besides acoustic differences, the vocabularies of the two 

languages are very different. The 256k MSA vocabulary gave 

a 29% out of vocabulary (OOV) rate on the Levantine test 

set. For comparison, the 37k Levantine vocabulary has an 

OOV rate of 6%. Since we assume this dictionary is given to 

us, this is the OOV rate of all models in this work. 

Morpheme-based decoders would help, but the complexity of 

tackling this issue has not shown a significant gain [10].  

Additionally, Levantine is primarily SVO word ordering 

while MSA is predominantly VSO. As seen in Table 1, this 

leads to MSA being a very poor language model for 

Levantine. 10M words of MSA are significantly worse than 

7K words of Levantine transcripts. For comparison, 1M 

words of English BN are about as strong as 200K words of 

English Fisher CTS transcripts. MSA and Levantine are not 

just separate dialects, but indeed, different languages. 

If we instead ask whether the two words in a Levantine 

bigram appear anywhere in the MSA text (not just in 

sequence) the “component” hit rates double, hinting at the 

VSO/SVO mismatch. Devising a mapping between MSA and 

Levantine n-grams completely unsupervised does not appear 

feasible without extensive linguist knowledge of the two 

domains.  

  N-gram Count Ngram Hit Rate 

LM PPL 2gr 3gr 2gr 3gr 

1400hr MSA 3830 55M 45M 6% 1% 

1hr Lev 1220 6k 7k 25% 5% 

10hr Lev 709 45k 60k 42% 12% 

45hr Lev 521 150k 245k 54% 19% 

Table 1 – Comparison of LM strength on Levantine. Four different 
language models (rows 2-5) were evaluated against Levantine. The 

perplexity (col. 2) encapsulates the power of the LM. N-gram counts 

(col. 3-4) show the number of unique n-gram types. Hit rate (col. 5-6) 
measures the percentage of test n-grams (by token) that appeared in 

the LM training data. Despite millions of n-grams, the MSA LM is 

much poorer than one hour of in-domain Levantine. These four LMs 
will be paired with acoustic models for self-training experiments. 

4. Supervised Baselines 

We first measured WER on Levantine test data using 

different amounts of manual transcription for AM and LM 

training. This defines the landscape for gains in self-training.  

 

 

 Language Model 

 
 MSA 

Levantine  

1hr 10hr 45hr 100hr 
A

co
u

st
ic

 M
o

d
el

 

1400 MSA 69.8 68.8 63.9 61.4 61.1 

1hr Lev 84.8 79.0 76.7 75.2 75.1 

10hr Lev 70.1 65.2 62.5 60.1 59.5 

100hr Lev 59.1 55.0 52.9 50.5 50.1 

Table 2 – Upper bounds for self-training. Four different AMs (rows) 

were paired with five different LMs (columns). The 1400hr MSA 
starting point (top left cell) has an initial WER of 69.8%. 100 hours of 

Levantine manual transcription would improve the acoustic model 

(bottom left) and reduce WER by 11%. There is a 9% gain for the LM 

(top right). Combining these two results gives the total possible gain 

for 100 hours of Levantine manual transcription (bottom right).  

Notice from Table 2 that the 1400hr MSA acoustic model has 

similar WER to ten hours of Levantine as language models 

change in st rength. Similarly, as seen in Table 3, ten hours of 

MSA has about the same strength as one hour of Levantine 

data for acoustic modeling. Additional MSA acoustic training 

very slowly reduces WER on Levantine. For the language 

model, the situation is even worse. As seen in Table 1 and 

Table 2, the MSA LM is significantly worse than one hour of 

Levantine in terms of both perplexity and WER when paired 

with either MSA or Levantine acoustic models. 

  Language Model 

  MSA 45hr Lev 

A
co

u
st

ic
 M

o
d

el
 

1 Lev 84.8 75.2 

10 MSA 82.5 75.3 

10 Lev 70.1 60.9 

1400 MSA 69.8 61.4 

Table 3 – Equivalent MSA and Levantine models. When paired with 
two different LMs (columns), one hour of Levantine and 10 hours of 

MSA have about the same strength (WER) when used as an AM. 

Similarly, 10 hours of Levantine and 1400 hours of MSA are of the 
same strength. BN MSA is a poor acoustic match to CTS Levantine. 
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The goal of adaptation is to decrease the starting WER of 

70% to as close to 50% as possible by adapting both the 

acoustic and language model. We decoded 100 hours of 

Levantine data and retrained new acoustic and language 

models from these highly inaccurate automatic transcripts. In 

addition to having only the MSA data available, we also 

experimented with different strength LMs quantifying the 

value of in-domain transcription or better LM techniques. Of 

course, if we had ten hours of data to use for language 

modeling, we would build an acoustic model as well. But we 

instead wanted to simulate the power of a language model of 

similar strength as 10 or 45 hours of in-domain transcripts. 

 To measure the success of self-training, we use WER 

Recovery. Given the WER of the initial model (I), the self-

trained model (U) and the supervised model, (S), we measure 

the fraction of the gain from supervised training recovered by 

self-training. A recovery of 100% implies that self-training is 

as effective as manual training. A negative recovery means 

that the self-trained model is worse than the initial model. 

 

 
              

          
          

 (1) 

5. Levantine AM Self-Training 

We used one hour of Levantine to build an acoustic model 

and then three different LMs of varying strengths. Even with 

a weak LM trained on one hour of speech (7K words), we 

still reduced WER by 8% and achieve 32% of the total 

possible gain for improving the acoustic model. Even very 

weak LMs can be effective for self-training. Stronger LMs 

improved both WER and recovery, achieving 53% of the gain 

for manual transcription, similar to previous results [3].  

 

AM LM Initial Unsup. Sup. Recov. 

1hr 1hr 79.0 71.3 55.0 32% 

1hr 10hr 76.9 66.7 52.9 42% 

1hr 45hr 75.2 61.9 50.5 53% 

Table 4 – Levantine Self-Training Results. Using one hour of manual 

Levantine transcripts and three different LMs (rows 2-4) we decoded 

100 hours of unlabeled data. The initial WER (col. 3) was improved 
after two iterations of self-training (col. 4). The gain for self-training 

was compared to the gain for manual transcription of the audio (col. 

5) to give the WER Recovery (col. 6). We see WER reductions of 
8%+ even with a poor one hour LM, but stronger LMs both reduced 

the initial WER and improve the effectiveness of AM self-training.  

6. Adapting from MSA to Levantine 

Since we assumed a vocabulary list of Levantine was given 

to us and used graphemic pronunciations, the two 

unsupervised tasks were adapting the MSA language and 

acoustic models. We used the best MSA system, with 1400 

hours of transcripts, to decode our data. We also 

experimented with weaker MSA systems of 10 and 100 hours 

to gauge success at different operating points. So as not to 

conflate results, we only improve the LM or the AM, leaving 

the other model fixed during self-training. 

6.1. Language Model Self-Training 

Previous works showed that building an LM on automatic 

transcripts can improve performance, but is very sensitive to 

the WER [3]. We decoded the 100 hours of Levantine audio 

with the MSA models and built an LM using n-gram counts 

weighted by the product of individual word confidences. 

Despite only 12% of the bigram tokens being correct and 6% 

of trigrams, interpolating this LM with the 1400hr MSA LM 

reduced WER by 2% from 69.8% to 67.9%. If we instead had 

manual transcripts for the 100 hours, the WER would be 

61%, resulting in a WER Recovery of (69.8 – 67.9) / (69.8 – 

61.1) = 21%. This low recovery is in line with the previous 

LM self-training results [3], but still encouraging. Self-

training increased the likelihood of the common Levantine 

filler words (e.g. yeah, uh-huh) not present in BN transcripts. 

Attempts at extracting Levantine LM text in the MSA 

transcripts were unsuccessful. We ranked each MSA 

utterance by the OOV rate using the Levantine vocabulary 

and built LMs at various thresholds. None of these 

outperformed training on all the MSA data. As a final oracle 

test, we extracted from the MSA only those n-grams (up to 

trigrams) which appeared in the 100 hours of manual 

Levantine transcription. This still had higher perplexity than 

using all the MSA data. Even though each extracted n-gram 

was uttered by a Levantine speaker, the relative frequencies 

of these n-grams are poor estimates of Levantine speech.  

6.2. Acoustic Model Self-Training 

We first tried standard adaptation techniques of MAP and 

MLLR but saw little success. Adapting 1400 hours of MSA 

with 100 hours of automatically decoded Levantine (with 

70% WER) reduced WER by only 0.1%. MAP showed no 

gains. While previous work showed great gains with manual 

transcripts, the automatic transcripts were of little value. 

We then ran self-training on three different MSA AMs - 

10, 100, and 1400 hours. These different strength MSA AMs 

reflect different operating points of available BN 

transcription, as not all languages will have 1000+ hours of 

acoustic transcription. For comparison, we also included one 

and ten hour Levantine AMs as we expect the one hour to 

have the highest WER Recovery while ten will be fairly low. 

 We paired these five AMs with two different language 

models: a fair LM trained on 1400 hours of MSA transcripts 

and an LM trained on 45 hours of Levantine manual 

transcripts. This reflects the best case scenario for self-

training, as in most previous work. All experiments decoded 

100 hours of Levantine audio held out from any supervised 

data. Additionally, all experiments used the same vocabulary. 

 Figure 1 details the experimental results for each of the 

ten conditions. Self-training with the best MSA system (col. 

4) does not improve WER and in fact increases WER by 2%. 

The two weaker MSA models show small gains as well. One 

explanation for these negative results is the relatively small 

amount of 100 hours of Levantine. 

 During self-training, the original MSA data were not 

included when training new acoustic models. The MSA 

acoustic features would overwhelm the Levantine data. So 

the self-trained model only had 100 hours of training data, 

which could not improve over the 1400 hour baseline (col. 4). 

It did, however, improve over the 10 hour MSA starting 

condition (col. 2). More unlabeled audio would reduce the 

self-trained WER and give positive WER Recovery.  

 The negative results are not solely due to the MSA LM as 

it does have some value for AM self-training. The one hour 

Levantine and ten hour MSA models have positive, but 

small, recovery (cols. 1 and 2). With a strong in-domain LM, 

results were much more promising. All models reduced in 

WER and in this case, the 100 hours of Levantine 

outperforms the 1400 hour MSA AM (col 9). Not only does a 

strong in-domain LM reduce initial WER, but also improves 

the effectiveness of self-training by compensating for errors 

made by the acoustic model. 
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7. Analysis and Conclusions 

In Section 4, we noted the equivalent strengths between one 

hour of Levantine and ten hours of MSA as well as ten hours 

of Levantine and 1400 hours of MSA. However, the 

experiments in Section 6 showed that for pairs with similar 

initial WER, WER recovery was lower for the MSA models. 

To understand why, we measured the bias of the acoustic 

models. For each AM, we produced a phonetic confusion 

matrix of the Levantine test set between the reference and 

hypothesis. Since these systems were graphemic, this was 

simply a character-level alignment. We then computed 1) the 

KL divergence of the unigram distribution of the hypothesis 

phonemes to the reference phonemes and 2) the mutual 

information (MI) between the hypothesis and reference 

phone given a recognition error (off the diagonal).  

Each cell in the matrix is the joint probability of 

recognizing phone A when the reference was B. We also 

have the marginal probabilities of the reference, letting us 

compute the conditional probability of hypothesis A given 

reference B. We compute MI off the diagonal to control for 

model accuracy. An unbiased model should 1) have low 

divergence to the reference unigram distribution and 2) have 

low mutual information, since errors would be equally likely. 

We make the following conclusions in Table 5. First, MI 

correlates very well with overall WER Recovery, with a 

coefficient of -0.83 across all eight conditions. As the bias 

increases, the effectiveness of self-training decreases. 

Compare columns 4 and 5. KL divergence does not correlate 

well, with a coefficient of -0.23. However, for a given pair of 

models with similar initial WER, lower KL divergence 

implies higher WER Recovery. Compare the initial WER 

and resulting Recovery for each pair of rows. Finally, initial 

WER is a poor predictor of WER Recovery, with a 

correlation coefficient of 0.26. 

Since self-training effectiveness depends much more 

strongly on model bias than model accuracy, future work 

could consider techniques to trade reductions in model bias 

for an increase in error rate. Such techniques could 

potentially reduce the extreme mismatch between MSA and 

Arabic dialects. Despite both being labeled Arabic, they are 

different languages and it is clear that while acoustics need 

not be in-domain, a strong LM is still vitally important. 

 

 

AM LM WER Recov. MI KL 

1 Lev Lev 75.2 53% .277 .058 

10 MSA Lev 75.3 42% .281 .107 

1 Lev MSA 84.8 25% .274 .074 

10 MSA MSA 82.5 15% .297 .136 

10 Lev Lev 60.9 17% .361 .028 

1400 MSA Lev 61.4 16% .365 .065 

10 Lev MSA 70.1 7% .345 .036 

1400 MSA MSA 69.8 -18% .383 .118 

Table 5 – Im pact of Bias on Self-Training. Model bias explains why 

four pairs of models (contrast each pair of rows) with similar initial 
WER (col 3) had very different WER Recovery (col 4). Mutual 

information between hypothesis and reference phones when there is 

an error (col 5) negatively correlates with recovery. Higher KL 

divergence of the ASR unigram phoneme statistics to the reference 

(col 6) correctly predicts which model will have lower recovery.  
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WER values displayed in the middle section. The top of each bar is the WER of the initial AM and LM. The middle split marks the WER after self-

training using 100 hours of Levantine. Finally, the bottom of each bar is the lower bound performance had the unlabeled data been transcribed. WER 

Recovery (the top section) is then the fraction of the entire bar covered by white. Column 3 has no gain and column 4 was negative. 
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