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Motivation

• The success of all statistical and machine 
learning techniques depends on:

1. Availability of reasonable amount of training data
2. Similarity between underlying distribution of training 

and test data

• little amount of (or No) labeled data for 
new domains/genres

• Frequent scenario for Automatic Speech Recognition 
systems

• The target domain contains named entity and N-gram 
sequences unique to the domain

• Model adaptation is crucial for these scenarios
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Motivation

• In this talk, we present a general framework for 
unsupervised model adaptation

• The proposed method is based on Conditional Entropy
• The idea is to improve the performance of initial model (trained 

on out-of-domain data) by adjusting the initial decision 
boundaries on in-domain data

• Directions for using the proposed framework as a 
Semi-Supervised Learning (SSL) technique 
is also presented
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Conditional Entropy

• Entropy: Measure of uncertainty associated with a 
random variable

• definition:
H(Y ) = −

�

y

p(y) log p(y)
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• Entropy: Measure of uncertainty associated with a 
random variable

• definition:
H(Y ) = −
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y

p(y) log p(y)

H(Y |X) = EX [H(Y |X = x)] = −
�

x

p(x)
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p(y|x) log p(y|x)
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• Fano’s Inequality :

• Classification goal:

• estimate    from    with a low probability of misclassification

Classifier Performance

• Entropy needs to be low in order to have low 
probability of misclassification 

But we don’t have the true 

distribution (almost in every 

problem) !!!

Y X

Pe = P{Ŷ �= Y} ≥ H(Y|X)− 1

log |Y|
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Classifier Performance

• Entropy needs to be low in order to have low 
probability of misclassification 

Y X

• Fano’s Inequality :

• Classification goal:

• estimate    from    with a low probability of misclassification

Pe(θ) = P{Ŷ �= Y |θ} ≥ Hθ(Y|X)− 1
log |Y|
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Minimum Entropy Criterion

• Entropy Regularization 

• Maximum Likelihood on labeled data + Minimum Conditional Entropy on 
unlabeled data

• Minimum Entropy Clustering 
• Non-parametric approach which improves over k-means clustering. 

• Minimum Entropy Solution favors models which 
have their decision boundaries passing 
through low-density regions of the input 
distribution

Grandvalet and Bengio, NIPS 2004

Li, Zhang and Jiang, 2004
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 Problems with Min. Entropy Solution?

• Trivial solutions: 

• Imagine a model which classifies all the inputs 
as one class. 

• Overlapped Classes and Imbalanced priors: 

• No valid low-density regions for decision 
boundaries

Hθ(Y|X) = 0
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there is no low-density 
region at the boundary of 
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Conditional Entropy. Problems?
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Entropy Stability

• Entropy Stability:

• reciprocal of:

• Measures how stable posterior probabilities are w.r.t 
the model parameter through the following equation:

• A high value indicates regions where posterior probabilities 
are sensitive to parameters 

����

����
∂Hθ(Y|X)

∂θ

����

����
p

�����

�����

�
p(x)

�
�

y

∂pθ(y|x)
∂θ

log pθ(y|x)
�
dx

�����

�����
p
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Objective Function

• Unsupervised Model Adaptation

• Using Entropy Stability only regions close to the overlapped parts 
of the input distribution are accepted

• Then using minimum entropy criterion, we find the optimum 
solutions for the model parameters

• The Lp regularizer prevents the model parameters to get too 
deviated from initial model (supervision)

θnew = argmin
θ

�
Hθ(Y|X) + γ

����

����
∂Hθ(Y|X)

∂θ

����

����
p�

+ λ ||θ − θinit||p

�
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Speech Recognition

• Moving to speech recognition task:

•    is now sequence of words (      )

• For a given chunk of speech data, almost every       is possible 
(with different likelihoods)

• Need for compact representation of space

• Lattice is acyclic directed graph which 
represents the most likely paths (sequence of 
words)

Y

W
W

L. Mangu et al.: Finding Consensus in Speech Recognition 6
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Figure 1: Sample recognition lattice and corresponding multiple alignment represented as
confusion network.

alignment (which gives rise to the standard string edit distance WE (W, R)) with
a modified, multiple string alignment. The new approach incorporates all lattice
hypotheses7 into a single alignment, and word error between any two hypotheses
is then computed according to that one alignment. The multiple alignment thus
defines a new string edit distance, which we will call MWE (W, R). While the
new alignment may in some cases overestimate the word error between two
hypotheses, as we will show in Section 5 it gives very similar results in practice.

The main benefit of the multiple alignment is that it allows us to extract
the hypothesis with the smallest expected (modified) word error very efficiently.
To see this, consider an example. Figure 1 shows a word lattice and the corre-
sponding hypothesis alignment. Each word hypothesis is mapped to a position
in the alignment (with deletions marked by “-”). The alignment also supports
the computation of word posterior probabilities. The posterior probability of a
word hypothesis is the sum of the posterior probabilities of all lattice paths of
which the word is a part. Given an alignment and posterior probabilities, it is
easy to see that the hypothesis with the lowest expected word error is obtained
by picking the word with the highest posterior at each position in the alignment.
We call this the consensus hypothesis.

7In practice we apply some pruning of the lattice to remove low probability word hypotheses
(see Section 3.4).
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alignment (which gives rise to the standard string edit distance WE (W, R)) with
a modified, multiple string alignment. The new approach incorporates all lattice
hypotheses7 into a single alignment, and word error between any two hypotheses
is then computed according to that one alignment. The multiple alignment thus
defines a new string edit distance, which we will call MWE (W, R). While the
new alignment may in some cases overestimate the word error between two
hypotheses, as we will show in Section 5 it gives very similar results in practice.

The main benefit of the multiple alignment is that it allows us to extract
the hypothesis with the smallest expected (modified) word error very efficiently.
To see this, consider an example. Figure 1 shows a word lattice and the corre-
sponding hypothesis alignment. Each word hypothesis is mapped to a position
in the alignment (with deletions marked by “-”). The alignment also supports
the computation of word posterior probabilities. The posterior probability of a
word hypothesis is the sum of the posterior probabilities of all lattice paths of
which the word is a part. Given an alignment and posterior probabilities, it is
easy to see that the hypothesis with the lowest expected word error is obtained
by picking the word with the highest posterior at each position in the alignment.
We call this the consensus hypothesis.

7In practice we apply some pruning of the lattice to remove low probability word hypotheses
(see Section 3.4).

• Entropy (gradient of entropy) can be computed 
efficiently on the lattices using Finite-State Machines 
and First- and Second-order Semirings

• The implementation based on OpenFST will be released  

Hθ(W|X = x) ≈ Hθ(W|L)
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alignment (which gives rise to the standard string edit distance WE (W, R)) with
a modified, multiple string alignment. The new approach incorporates all lattice
hypotheses7 into a single alignment, and word error between any two hypotheses
is then computed according to that one alignment. The multiple alignment thus
defines a new string edit distance, which we will call MWE (W, R). While the
new alignment may in some cases overestimate the word error between two
hypotheses, as we will show in Section 5 it gives very similar results in practice.

The main benefit of the multiple alignment is that it allows us to extract
the hypothesis with the smallest expected (modified) word error very efficiently.
To see this, consider an example. Figure 1 shows a word lattice and the corre-
sponding hypothesis alignment. Each word hypothesis is mapped to a position
in the alignment (with deletions marked by “-”). The alignment also supports
the computation of word posterior probabilities. The posterior probability of a
word hypothesis is the sum of the posterior probabilities of all lattice paths of
which the word is a part. Given an alignment and posterior probabilities, it is
easy to see that the hypothesis with the lowest expected word error is obtained
by picking the word with the highest posterior at each position in the alignment.
We call this the consensus hypothesis.

7In practice we apply some pruning of the lattice to remove low probability word hypotheses
(see Section 3.4).

Enumerating over all the paths is intractable!

Hθ(W|X = x) ≈ Hθ(W|L)

−
�

d∈L

p(d)

Z
log

p(d)

Z
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alignment (which gives rise to the standard string edit distance WE (W, R)) with
a modified, multiple string alignment. The new approach incorporates all lattice
hypotheses7 into a single alignment, and word error between any two hypotheses
is then computed according to that one alignment. The multiple alignment thus
defines a new string edit distance, which we will call MWE (W, R). While the
new alignment may in some cases overestimate the word error between two
hypotheses, as we will show in Section 5 it gives very similar results in practice.

The main benefit of the multiple alignment is that it allows us to extract
the hypothesis with the smallest expected (modified) word error very efficiently.
To see this, consider an example. Figure 1 shows a word lattice and the corre-
sponding hypothesis alignment. Each word hypothesis is mapped to a position
in the alignment (with deletions marked by “-”). The alignment also supports
the computation of word posterior probabilities. The posterior probability of a
word hypothesis is the sum of the posterior probabilities of all lattice paths of
which the word is a part. Given an alignment and posterior probabilities, it is
easy to see that the hypothesis with the lowest expected word error is obtained
by picking the word with the highest posterior at each position in the alignment.
We call this the consensus hypothesis.

7In practice we apply some pruning of the lattice to remove low probability word hypotheses
(see Section 3.4).

Li and Eisner, EMNLP 2009

Hθ(W|X = x) ≈ Hθ(W|L)
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alignment (which gives rise to the standard string edit distance WE (W, R)) with
a modified, multiple string alignment. The new approach incorporates all lattice
hypotheses7 into a single alignment, and word error between any two hypotheses
is then computed according to that one alignment. The multiple alignment thus
defines a new string edit distance, which we will call MWE (W, R). While the
new alignment may in some cases overestimate the word error between two
hypotheses, as we will show in Section 5 it gives very similar results in practice.

The main benefit of the multiple alignment is that it allows us to extract
the hypothesis with the smallest expected (modified) word error very efficiently.
To see this, consider an example. Figure 1 shows a word lattice and the corre-
sponding hypothesis alignment. Each word hypothesis is mapped to a position
in the alignment (with deletions marked by “-”). The alignment also supports
the computation of word posterior probabilities. The posterior probability of a
word hypothesis is the sum of the posterior probabilities of all lattice paths of
which the word is a part. Given an alignment and posterior probabilities, it is
easy to see that the hypothesis with the lowest expected word error is obtained
by picking the word with the highest posterior at each position in the alignment.
We call this the consensus hypothesis.

7In practice we apply some pruning of the lattice to remove low probability word hypotheses
(see Section 3.4).

Li and Eisner, EMNLP 2009

Hθ(W|X) ≈ 1

N

N�

i=1

Hθ(W|Li)

Hθ(W|X = x) ≈ Hθ(W|L)
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First/Second Order Expectation Semirings

H(p) = −
�

d∈L

p(d)

Z
log(

p(d)

Z
)

= logZ − 1

Z

�

d∈Li

p(d) log p(d)

= logZ − r̄

Z
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First/Second Order Expectation Semirings

H(p) = −
�

d∈L

p(d)

Z
log(

p(d)

Z
)

= logZ − 1

Z

�

d∈Li

p(d) log p(d)

= logZ − r̄

Z

We need to calculate < Z, r̄ >

Element �p, r�
�p1, r1�⊗ �p2, r2� �p1p2, p1r2 + p2r1�
�p1, r1�⊕ �p2, r2� �p1 + p2, r1 + r2�

0 �0, 0�
1 �1, 0�

Table 1: First-Order (Expectation) semiring: Defining
multiplication and sum operations for first-order semir-
ings.

their corresponding posterior probabilities. Instead
we use Finite-State Transducers (FST) to represent
the hypothesis space (lattice). To calculate entropy
and the gradient of entropy, the weights for the FST
are defined to be First- and Second-Order semirings
(Li and Eisner, 2009). The idea is to use semirings
and their corresponding operations along with the
forward-backward algorithm to calculate first- and
second-order statistics to compute entropy and the
gradient of entropy respectively. Assume we are in-
terested in calculating the entropy of the lattice,

H(p) = −
�

d∈Li

p(d)
Z

log(
p(d)
Z

)

= log Z − 1
Z

�

d∈Li

p(d) log p(d)

= log Z − r̄

Z
(7)

where Z is the total probability of all the paths in
the lattice (normalization factor). In order to do so,
we need to compute �Z, r̄� on the lattice. It can
be proved that if we define the first-order semir-
ing �pe, pe log pe� (pe is the non-normalized score of
each arc in the lattice) as our FST weights and define
semiring operations as in Table. 1, then applying the
forward algorithm will result in the calculation of
�Z, r̄� as the weight (semiring weight) for the final
node.

The details for using Second-Order semirings for
calculating the gradient of entropy can be found
in (Li and Eisner, 2009). The same paper de-
scribes how to use the forward-backward algorithm
to speed-up the this procedure.

6 Language Model Adaptation

Language Model Adaptation is crucial when the
training data does not match the test data being de-
coded. This is a frequent scenario for all Automatic

Speech Recognition (ASR) systems. The applica-
tion domain very often contains named entities and
N-gram sequences that are unique to the domain of
interest. For example, conversational speech has
a very different structure than class-room lectures.
Linear Interpolation based methods are most com-
monly used to adapt LMs to a new domain. As
explained in (Bacchiani et al., 2003), linear inter-
polation is a special case of Maximum A Posterior
(MAP) estimation, where an N-gram LM is built on
the adaptation data from the new domain and the two
LMs are combined using:

p(wi|h) = λpB(wi|h) + (1− λ)pA(wi|h)
0 ≤ λ ≤ 1

where pB refers to out-of-domain (background)
models and pA is the adaptation (in-domain) mod-
els. Here λ is the interpolation weight.

Conventionally, λ is calculated by optimizing per-
plexity (PPL) or Word Error Rate (WER) on some
held-out data from target domain. Instead using
our proposed framework, we estimate λ on enough
amount of unlabeled data from target domain. The
idea is that resources on the new domain have al-
ready been used to build domain specific models
and it does not make sense to again use in-domain
resources for estimating the interpolation weight.
Since we are trying to just estimate one parameter
and the performance of the interpolated model is
bound by in-domain/out-of-domain models, there is
no need to include a regularization term in Eqn. 5.
Also

���
���∂Hθ(Y|X)

∂θ

���
���
p

= |∂Hλ(Y|X)
∂λ | because we only

have one parameter. Therefore, interpolation weight
will be chosen by the following criterion

λ̂ = argmin
0≤λ≤1

Hλ(Y|X) + γ|∂Hλ(Y|X)
∂λ

| (8)

For the purpose of estimating one parameter λ, we
use γ = 1 in the above equation

7 Experimental Setup

The large vocabulary continuous speech recognition
(LVCSR) system used throughout this paper is based
on the 2007 IBM Speech transcription system for
GALE Distillation Go/No-go Evaluation (Chen et
al., 2006). The acoustic models used in this system

< p, r >=< pe, pe log pe >

First-order Expectation 
Semiring
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polation is a special case of Maximum A Posterior
(MAP) estimation, where an N-gram LM is built on
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where pB refers to out-of-domain (background)
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Conventionally, λ is calculated by optimizing per-
plexity (PPL) or Word Error Rate (WER) on some
held-out data from target domain. Instead using
our proposed framework, we estimate λ on enough
amount of unlabeled data from target domain. The
idea is that resources on the new domain have al-
ready been used to build domain specific models
and it does not make sense to again use in-domain
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Since we are trying to just estimate one parameter
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The large vocabulary continuous speech recognition
(LVCSR) system used throughout this paper is based
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First-order Expectation 
Semiring

< Z, r̄ >
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Language Model Adaptation

• little amount of labeled data for new domain/
genre

• LM interpolation is most commonly used for adaptation:

• λ is optimized using the following criterion:
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• λ is optimized using the following criterion:

P (wi|h) = λPB(wi|h) + (1− λ)PA(wi|h)

Language Model Adaptation
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Language Model Adaptation

P (wi|h) = λPB(wi|h) + (1− λ)PA(wi|h)

out-of-domain N-grams

• little amount of labeled data for new domain/
genre

• LM interpolation is most commonly used for adaptation:

• λ is optimized using the following criterion:
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• little amount of labeled data for new domain/
genre

• LM interpolation is most commonly used for adaptation:

• λ is optimized using the following criterion:

Language Model Adaptation

P (wi|h) = λPB(wi|h) + (1− λ)PA(wi|h)

in-domain N-grams
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• little amount of labeled data for new domain/
genre

• LM interpolation is most commonly used for adaptation:

• λ is optimized using the following criterion:

Language Model Adaptation

P (wi|h) = λPB(wi|h) + (1− λ)PA(wi|h)

Interpolation weight
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• little amount of labeled data for new domain/
genre

• LM interpolation is most commonly used for adaptation:

• λ is optimized using the following criterion:

Language Model Adaptation

P (wi|h) = λPB(wi|h) + (1− λ)PA(wi|h)

λ̂ = argmin
0≤λ≤1

Hλ(Y|X) + |∂Hλ(Y|X)

∂λ
|
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Experiments

• The LVCSR system is based on the 2008 IBM Speech 
recognition system. 

• The acoustic models are state-of-the-art discriminatively trained 

• The out-of-domain LM (PB) is built on 340M words (8 
BN corpora)

• 8 hours for building target specific LM (PA)
• 8 hours for evaluation and calculation of our objective function
• 2.5 hours as development set (for supervised tuning of weight)
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Experiments
P (wi|h) = λPB(wi|h) + (1− λ)PA(wi|h)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Model Entropy
Model Entropy+Entropy-Stability

BN MITλ

• Considering only conditional entropy is not useful
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Experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Model Entropy + Entropy Stability
WER24.7%

21.1%

λ

P (wi|h) = λPB(wi|h) + (1− λ)PA(wi|h)
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Experiments
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Model Entropy + Entropy Stability
WER24.7%
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21.1%

supervised tuning

λ

P (wi|h) = λPB(wi|h) + (1− λ)PA(wi|h)

20.1%
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Experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Model Entropy + Entropy Stability
WER • The proposed unsupervised 

framework results in the same 
performance as 
supervised adaptation

• The WER trend is almost 
perfectly predicted by the 
proposed objective function
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Experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Model Entropy + Entropy Stability
WER • The proposed unsupervised 

framework results in the same 
performance as supervised 
adaptation

• The WER trend is almost 
perfectly predicted by the 
proposed objective function
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Overview

• Motivation

• Conditional Entropy based Adaptation

• Entropy Definition
• Entropy vs. Classifier Performance
• Problems
• Entropy-Stability
• Proposed Objective Function

• Speech Recognition Task

• Entropy/Gradient of Entropy for Speech Lattices
• Language Model Adaptation
• Experiment / Results / Explanation

• Future Work
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Future: Context-Dependent Weights

• The interpolation model is too simple and has 
only a global weight

• Factors such as N-gram modeling resolution, generalization, topics and 
styles can affect the contribution of sources on a local, context-
dependent basis

• As the history length grow, the number of context-dependent 
weights to be estimated increases exponentially

• Need to Cluster the history 
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Future: Context-Dependent Weights

• The interpolation model is too simple and has 
only a global weight

• Factors such as N-gram modeling resolution, generalization, topics and 
styles can affect the contribution of sources on a local, context-
dependent basis

• As the history length grow, the number of context-dependent 
weights to be estimated increases exponentially

• Need to Cluster the history 

Liu, Gales and Woodland, Interspeech 2008

p(wi|h) = λ(φ(h))pB(wi|h) + (1− λ(φ(h))pA(wi|h)
φ : h→ clusters
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Future: Context-Dependent Weights

• The interpolation model is too simple and has 
only a global weight

• Factors such as N-gram modeling resolution, generalization, topics and 
styles can affect the contribution of sources on a local, context-
dependent basis

• As the history length grow, the number of context-dependent 
weights to be estimated increases exponentially

• Need to Cluster the history 

Liu, Gales and Woodland, Interspeech 2008

λ1, λ2, · · · , λ|C|

p(wi|h) = λ(φ(h))pB(wi|h) + (1− λ(φ(h))pA(wi|h)
φ : h→ clusters
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Future: Context-Dependent Weights

Proposed Framework

1 Clustering histories using Decision Tree algorithm 

2 Training context-dependent weight using our 
unsupervised objective function

• The procedure is unsupervised
• It will also take into account, acoustic confusion

• Need to Cluster the history 

min
λ̄

�
Hλ̄(W|X) + γ

����

����
∂Hλ̄(W|X)

∂λ̄

����

����
p

�

φ1 φ2

φ3 φ4 φ5

φ6 φ7
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Future: Context-Dependent Weights

Simple Clustering:

φ(h) = φ(wi−1, wi−2, · · · , wi−N ) =
�

φ1 if C(wi−1) > 0
φ2 if C(wi−1) = 0
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Future: Context-Dependent Weights

Simple Clustering:

Optimizing using L-BFGS method:

target domain. That is,

C(h) = C(wi−1, wi−2, · · · , wi−N) = C(count(wi−1))

where wi−1 is the first word in the history h and the count is calculated on the same text data from

MIT lectures on which we also build the in-domain LM. In the first experiment, we just use two

clusters one for histories for which count(wi−1) = 0 and one for cases where count(wi−1) > 0
and we call them λ1 and λ2 respectively. Having defined these clusters, we optimize the proposed

objective function in Equation 9 by using L-BFGS method [22]. The results for WER and the

values of λs are shown in Table 3. As it can be seen from this table, the value for λ2 is much smaller

than λ1 (for histories which we have not seen on the MIT text, the model weight is in favor of the

BN specific LM) as it is expected.

Table 3: WER(%) on 8 hours of MIT Lectures data using 2 interpolation weights

(a) WER(%) on 8 hours of MIT Lec-

tures data using 2 interpolation weights

# Clusters WER%

1 (Global Weight) 20.1

2 (λ1,2) 19.9

(b) Value of the inter-

polation weights

Weight Value

λ1 0.63

λ2 0.32

7.2 Discriminative Adaptation with Pseudo-Hypothesis

The main drawback with discriminative adaptation method suggested in section 3 is it needs the

availability of transcribed speech data for the new domain. However, the amount of manually tran-

scribed speech is limited for many genres/domains. Recently, a new framework for discriminative

LM training which does not require acoustic instances and corresponding ASR hypothesis has been

proposed in [23]. The key idea of this technique is to obtain probable N-best candidate hypotheses

directly from the reference word sequences by leveraging phoneme similarities. These similarities

can be estimated from any set of acoustic models. The process of using these acoustic similarities

to generate ASR-like N-best lists is called the Pseudo-ASR process. The Pseudo-ASR process aims

at generating N- best lists which resemble the output of an ASR system, by first converting the

reference word sequence to a phoneme sequence and subsequently applying transducer operations

(which include mapping from phones to word and LM score information) to generate word se-

quences which are acoustically similar. The method for doing the discriminative training in this

paper is based on the same method referred to in section 3.1 (MCE criterion). In [24], we show

modest improvement for Japanese conversational speech and English broadcast news systems by

using the technique for generating Pseudo-ASR hypothesis and our proposed regularization and

normalization methods (without using any transcribed speech data).

Here we propose to use the same technique to first generate Pseudo-ASR hypothesis on the

target domain (using only text resources from the new domain) and then applying our discrimi-

native training method on these ASR-like N-best lists. Finally, we will interpolate the resulting

discriminative LM with the in-domain LM. Through this method we can omit the dependency of

our discriminative approach on transcribed speech data for LM adaptation.
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φ(h) = φ(wi−1, wi−2, · · · , wi−N ) =
�

φ1 if C(wi−1) > 0
φ2 if C(wi−1) = 0
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Future: Context-Dependent Weights

Simple Clustering:

Optimizing using L-BFGS method:

φ(h) = φ(wi−1, wi−2, · · · , wi−N ) =






φ1 if C(wi−1) > 50
φ2 if C(wi−1) > 0
φ3 if C(wi−1) = 0

# Clusters WER%
1 (Global Weight) 20.1

2 (λ1,2) 19.9
3 (λ1,2,3) 19.8

Weight Value
λ1 0.68
λ2 0.57
λ3 0.31
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Future: Semi-Supervised Learning (SSL)

• Using the proposed objective function as a 
regularizer for SSL: 

• As an application, we are currently working on 
Semi-supervised CRF-based Named Entity 
Recognition

N�

i=1

log pθ(yi|xi) + γ
M�

i=N+1

Hθ(Y|xi)
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Future: Semi-Supervised Learning (SSL)
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Thank You!
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