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® The success of all statistical and machine
learning techniques depends on:

|. Availability of reasonable amount of training data
2. Similarity between underlying distribution of training

and test data

¢ little amount of (or No) labeled data for
new domains/genres

* Frequent scenario for Automatic Speech Recognition

systems
* The target domain contains hamed entity and N-gram

sequences unique to the domain

e Model adaptation is crucial for these scenarios

J. Jiang, 2008 '
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Motivation

® |n this talk, we present a general framework for
unsupervised model adaptation

® The proposed method is based on Conditional Entropy

® The idea is to improve the performance of initial model (trained
on out-of-domain data) by adjusting the initial decision
boundaries on in-domain data

® Directions for using the proposed framework as a
Semi-Supervised Learning (SSL) technique
is also presented
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Conditional Entropy

® Entropy: Measure of uncertainty associated with a
random variable

® definition:

H(Y)=-> p(y)logp(y)

Y

Thursday, May 27, 2010 16



Conditional Entropy

® Entropy: Measure of uncertainty associated with a
random variable

® definition:

Zp ) log p(y

® Now, imagine you want to measure uncertainty inY
after observing X

Thursday, May 27, 2010 17



Conditional Entropy

Entropy: Measure of uncertainty associated with a
random variable

definition:

Zp ) log p(y

Now, imagine you want to measure uncertainty inY’
after observing X

® Conditional Entropy:

H(Y|X) = Ex[HY|X = z)] Zp Z (=) log p(y|z)
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Classifier Performance

® Fano’s Inequality :

P.(0) = P{Y #Y [0} >

® C(Classification goal:

® estimate Y from X with a low probability of misclassification

® Entropy needs to be low in order to have low
probability of misclassification
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Minimum Entropy Criterion

® Entrgpy Regu|arization Grandvalet and Bengio, NIPS 2004 |

® Maximum Likelihood on labeled data + Minimum Conditional Entropy on
unlabeled data

® Minimum Entropy Clustering LizZnngandjing 2004 |

® Non-parametric approach which improves over k-means clustering.
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Minimum Entropy Criterion

® Entropy Regu|arization Grandvalet and Bengio, NIPS 2004 |

® Maximum Likelihood on labeled data + Minimum Conditional Entropy on
unlabeled data

® Minimum Entropy Clustering  uizmngandjing 2004 |

® Non-parametric approach which improves over k-means clustering.

® Minimum Entropy Solution favors models which
have their decision boundaries passing
through low=-density regions of the input
distribution
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Problems with Min. Entropy Solution?

® T[rivial solutions:

® |magine a model which classifies all the inputs
as one class.

Hy(Y|X) =0
® Overlapped Classes and Imbalanced priors:

® No valid low-density regions for the decision
boundaries
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Problems with Min. Entropy Solution?
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Entropy Stability

® Entropy Stability:

reciprocal of:

HaHQ(WX)

p

Measures how stable posterior probabilities are w.r.t
the model parameter through the following equation:

I —

A high value indicates regions where posterior probabilities
are sensitive to parameters

p
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® Entropy Stability:

reciprocal of:
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Objective Function

® Unsupervised Model Adaptation

+ A0 - Qinith>

0OH YX
Opnew = argmm (Hg (Y |X) + H o(Y]
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Objective Function

® Unsupervised Model Adaptation

]+ A6 - einitup>
p/

e Using Entropy Stability only regions close to the overlapped parts
of the input distribution are accepted

Onew = argmin (HQ(Y|X) 4 ﬂ‘ 3H9(§§]X)
0

Thursday, May 27, 2010 34



Objective Function

® Unsupervised Model Adaptation

OHp(Y|X)
|| | Al = b,

/

p

Opnew = arggnin (@9 (Y|X)—|—

e Using Entropy Stability only regions close to the overlapped parts
of the input distribution are accepted

¢ Then using minimum entropy criterion, we find the optimum
solutions for the model parameters

35
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Objective Function

® Unsupervised Model Adaptation

OHy(Y|X)
K 0

0 ) + )@9 _ einit\D>

Onew = argmin (Hg (Y |X) +

e Using Entropy Stability only regions close to the overlapped parts
of the input distribution are accepted

¢ Then using minimum entropy criterion, we find the optimum
solutions for the model parameters

® The L, regularizer prevents the model parameters to get too
deviated from initial model (supervision)
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Speech Recognition

® Moving to speech recognition task:

® Y is now sequence of words (W)

® For a given chunk of speech data, almost every W is possible
(with different likelihoods)

® Need for compact representation of space

® [attice is acyclic directed graph which
represents the most likely paths (sequence of
words)
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Entropy/Gradient of Entropy for Speech Lattices
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Hy(W|X = z) ~ Hy(W|L)
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Entropy/Gradient of Entropy for Speech Lattices

Enumerating over all the paths is intractable!

B Z Z@ log p(d)
Z

A
deLl
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Entropy/Gradient of Entropy for Speech Lattices

® Entropy (the gradient of entropy) can be computed
efficiently on the lattices using Finite-State Machines
and First- and Second-order Expectation

Semiri I‘Igs Li and Eisner, EMNLP 2009

|

® The implementation based on OpenFST™ will be released

Thursday, May 27, 2010
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Entropy/Gradient of Entropy for Speech Lattices

® Entropy (the gradient of entropy) can be computed
efficiently on the lattices using Finite-State Machines
and First- and Second-order Expectation

Semirings Li and Eisner, EMNLP 2009 '

Hy(W|X) ~ ZH@ (W|L;)

=1

42
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First/Second Order Expectation Semirings
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First/Second Order Expectation Semirings
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First/Second Order Expectation Semirings

First-order Expectation
p(d p(d) iri l
Z log 7 Semlrlng

We need to calculate < Z,7 >
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First/Second Order Expectation Semirings

First-order Expectation
H(p) = — — log(7) Semiring

p(d) . p(d)
de Ll
logZ—— Zp ) log p(d <p,r >=< peapelogpe >
dEE

oo 7 r Element (p,T)
ez (P1,71) @ (p2,72) | {(P1P2, P172 + P2r1)
(p1,71) D (P2,72) | (P1+ P2, T1+72)

0 (0, 0)

1 (1,0)

We need to calculate < Z,7 >

Thursday, May 27, 2010 46



First/Second Order Expectation Semirings

First-order Expectation
Semiring

< p, 7 >=< Pe, Pe lOg pe >

Element (p,T)

(p1,71) ® (P2,72) | (P1P2, P17T2 + pP2r1)
(p1,71) D (P2, 72) | (P1+ P2, T1+72)
0 (0, 0)
1 (1,0)

Forward algorithm will return< Z,7 >
as the weight of the final node.

We need to calculate < Z,7 >
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Language Model Adaptation

e Jlittle amount of labeled data for new domain/
genre

e LM interpolation is most commonly used for adaptation:

P(w;|h) = APg(w;|h) + (1 — A) Pa(w;|h)

e A is optimized using the following criterion:

. 0H,(Y|X
A = argmin H,(Y|X) + | A(Y] )|
0<A<1 2
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Experiments

® The LVCSR system is based on the 2008 IBM Speech
recognition system.

 The acoustic models are state-of-the-art discriminatively trained

® The out-of-domain LM (Ps) is built on 340M words (8
BN corpora)
e 8 hours for building target specific LM (Pa)

e 8 hours for evaluation and calculation of our objective function
e 2.5 hours as development set (for supervised tuning of weight)

Thursday, May 27, 2010
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Experiments

P(w;|h) = APg(w;|h) + (1 — A\)Pa(w;|h)

‘O Model Entropy :
{3 Model Entropy+Entropy-Stability !

“n..n_ N
'n'ﬂ'-l:l--n-n--|:|--|:|-1:|--|:|--|:|-ﬂ’
b
4
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 I
BN A MIT

® Considering only conditional entropy is not useful
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Experiments

P(w;|h) = APg(w;|h) + (1 — \)Pa(w;|h)

O Model Entropy + Entropy Stability
24.7% -> WER

21.1%

supervised tuning

. 20.1% \

- ~y '5
P ™
Salh 20.0%
- m ™ - . (o] P
.’.-F-ﬂ~ - g <!
- < = ~'-ﬂ.'-@_-.)-
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Experiments

‘O Model Entropy + Entropy Stability

b
1
' -> WER
|
1
)
1

0O 0.l 02 03 04 05 06 0.7 08 09

® The proposed unsupervised
framework results in the same
performance as
supervised adaptation
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Experiments

‘O Model Entropy + Entropy Stability

b
1
' “> WER
|
1
)
1

0O 0.l 02 03 04 05 06 0.7 08 09

® The proposed unsupervised

framework results in the same
performance as supervised
adaptation

The WER trend is almost
perfectly predicted by the
proposed objective function
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Future: Context-Dependent VWeights

® The interpolation model is too simple and has
only a global weight

® Factors such as N-gram modeling resolution, generalization, topics and
styles can affect the contribution of sources on a local, context-

dependent basis
Liu, Gales and Woodland, Interspeech 2008 '

® As the history length grow, the number of context-dependent
weights to be estimated increases exponentially

p(wilh) = A(@(h))ps(wi|h) + (1 — A(p(h))pa(ws|h)
@ : h — clusters
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Future: Context-Dependent VWeights

® The interpolation model is too simple and has
only a global weight

® Factors such as N-gram modeling resolution, generalization, topics and
styles can affect the contribution of sources on a local, context-

dependent basis
Liu, Gales and Woodland, Interspeech 2008 '

® As the history length grow, the number of context-dependent
weights to be estimated increases exponentially

p(w;lh) =(A(¢ (wilh) + (1 = A(@(h))pa(wi|h)
qb h — Clgst TS )PB !

A1, A2, 0 A
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Future: Context-Dependent Weights

Proposed Framework

c Clustering histories using Decision Tree algorithm

a Training context-dependent weight using our
unsupervised objective function
)
® The procedure is unsupervised

e |t will also take into account, acoustic confusion

OH, W|X)

min (H/\(W|X + v H
A

1 ®2
gbg ¢4 ¢5
be Q7
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Future: Context-Dependent Weights

Simple Clustering:

Cb(h) — ¢(wi—17wi—2, e 7wi—N) — { 1 it C(wi—l) > 0

ng if C(wi_l) =0

Optimizing using L-BFGS method:

# Clusters WER % Weight | Value
1 (Global Weight) | 20.1 A 0.63
2 (A12) 19.9 Ao 0.32
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Future: Context-Dependent Weights

Simple Clustering:
q51 if C’(wi_l) > 50

¢(h) = p(wi—1,Wi—2, -+ ,Wi—N) = { P2 if C'(w;i—1) >0
¢3 it C’(wi_l) =0

Optimizing using L-BFGS method:

# Clusters WER% Weight | Value

1 (Global Weight) 20.1 A1 0.68
2 (o) 19.9 N | 057

3 (Mi2s) 19.8 Ns | 0.31
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Future: Semi-Supervised Learning (SSL)

® Using the proposed objective function as a
regularizer for SSL:
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Future: Semi-Supervised Learning (SSL)

® Using the proposed objective function as a
regularizer for SSL:

0 (S nis Ho(Y o) )
00

N M
> logpa(yilz:) +v Y Ho(Yl|z) + A
—1 i=N+1

p

® As an application, we are currently working on
Semi-supervised CRF-based Named Entity
Recognition
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