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Abstract

In this paper we propose a novel general
framework for unsupervised model adapta-
tion. Our method is based on entropy which
has been used previously as a regularizer in
semi-supervised learning. This technique in-
cludes another term which measures the sta-
bility of posteriors w.r.t model parameters, in
addition to conditional entropy. The idea is to
use parameters which result in both low con-
ditional entropy and also stable decision rules.
As an application, we demonstrate how this
framework can be used for adjusting language
model interpolation weight for speech recog-
nition task to adapt from Broadcast news data
to MIT lecture data. We show how the new
technique can obtain comparable performance
to completely supervised estimation of inter-
polation parameters.

1 Introduction

All statistical and machine learning techniques for
classification, in principle, work under the assump-
tion that

1. A reasonable amount of training data is avail-
able.

2. Training data and test data are drawn from the
same underlying distribution.

In fact, the success of statistical models is cru-
cially dependent on training data. Unfortunately,
the latter assumption is not fulfilled in many appli-
cations. Therefore, model adaptation is necessary
when training data is not matched (not drawn from

same distribution) with test data. It is often the case
where we have plenty of labeled data for one specific
domain/genre (source domain) and little amount of
labeled data (or no labeled data at all) for the de-
sired domain/genre (target domain). Model adapta-
tion techniques are commonly used to address this
problem. Model adaptation starts with trained mod-
els (trained on source domain with rich amount of la-
beled data) and then modify them using the available
labeled data from target domain (or instead unla-
beled data). A survey on different methods of model
adaptation can be found in (Jiang, 2008).

Information regularization framework has been
previously proposed in literature to control the la-
bel conditional probabilities via input distribution
(Szummer and Jaakkola, 2003). The idea is that la-
bels should not change too much in dense regions
of the input distribution. The authors use the mu-
tual information between input features and labels as
a measure of label complexity. Another framework
previously suggested is to use label entropy (condi-
tional entropy) on unlabeled data as a regularizer to
Maximum Likelihood (ML) training on labeled data
(Grandvalet and Bengio, 2004).

Availability of resources for the target domain cat-
egorizes these techniques into either supervised or
unsupervised. In this paper we propose a general
framework for unsupervised adaptation using Shan-
non entropy and stability of entropy. The assump-
tion is that in-domain and out-of-domain distribu-
tions are not too different such that one can improve
the performance of initial models on in-domain data
by little adjustment of initial decision boundaries
(learned on out-of-domain data).



2 Conditional Entropy based Adaptation

In this section, conditional entropy and its relation
to classifier performance are first described. Next,
we introduce our proposed objective function for do-
main adaptation.

2.1 Conditional Entropy
Considering the classification problem where X and
Y are the input features and the corresponding class
labels respectively, the conditional entropy is a mea-
sure of the class overlap and is calculated as follows

H(Y|X) = EX[H(Y|X = x)] =

−
∫
p(x)

(∑
y

p(y|x) log p(y|x)

)
dx (1)

Through Fano’s Inequality theorem, one can see
how conditional entropy is related to classification
performance.

Theorem 1 (Fano’s Inequality) Suppose
Pe = P{Ŷ 6= Y} where Ŷ = g(X) are the
assigned labels for the data points, based on the
classification rule. Then

Pe ≥
H(Y|X)− 1

log(|Y| − 1)

where Y is the number of possible classes and
H(Y |X) is the conditional entropy with respect to
true distibution.

The proof to this theorem can be found in (Cover and
Thomas, 2006). This inequality indicates that Y can
be estimated with low probability of error only if the
conditional entropy H(Y|X) is small.

Although the above theorem is useful in a sense
that it connects the classification problem to Shan-
non entropy, the true distributions are almost never
known to us1. In most classification methods, a spe-
cific model structure for the distributions is assumed
and the task is to estimate the model parameters
within the assumed model space. Given the model

1In fact, Theorem 1 shows how relevant the input features
are for the classification task by putting a lower bound on the
best possible classifier performance. As the overlap between
features from different classes increases, conditional entropy in-
creases as well, thus lowering the performance of the best pos-
sible classifier.

structure and parameters, one can modify Fano’s In-
equality as follows,

Corollary 1

Pe(θ) = P{Ŷ 6= Y |θ} ≥ Hθ(Y|X)− 1

log(|Y| − 1)

(2)

where Pe(θ) is the classifier probability of error
given model parameters, θ and

Hθ(Y|X) =

−
∫
p(x)

(∑
y

pθ(y|x) log pθ(y|x)

)
dx

Here, Hθ(Y|X) is the conditional entropy imposed
by model parameters.

Eqn. 2 indicates the fact that models with low
conditional entropy are preferable. However, a low
entropy model does not necessarily have good per-
formance (this will be reviewed later on) 2

2.2 Objective Function
Minimization of conditional entropy as a framework
in the classification task is not a new concept and
has been tried by researchers. In fact, (Grandvalet
and Bengio, 2004) use this along with the maxi-
mum likelihood criterion in a semi-supervised set
up such that parameters with both maximum like-
lihood on labeled data and minimum conditional en-
tropy on unlabeled data are chosen. By minimiz-
ing the entropy, the method assumes a prior which
prefers minimal class overlap. Entropy minimiza-
tion is used in (Li et al., 2004) as an unsupervised
non-parametric clustering method and is shown to
result in significant improvement over k-mean, hier-
archical clustering and etc.

These methods are all based on the fact that mod-
els with low conditional entropy have their decision
boundaries passing through low-density regions of
the input distribution, P (X). This is consistent with
the assumption that classes are well separated so that
one can expect to take advantage of unlabeled exam-
ples (Grandvalet and Bengio, 2004).

In many cases shifting from one domain to an-
other domain, initial trained decision boundaries (on

2Imagine a model which classifies any input as class 1.
Clearly for this model Hθ(Y|X) = 0.



out-of-domain data) result in high conditional en-
tropy for the new domain, due to mismatch be-
tween distributions. Therefore, there is a need to
adjust model parameters such that decision bound-
aries goes through low-density regions of the distri-
bution. This motivates the idea of using minimum
conditional entropy criterion for adapting to a new
domain. At the same time, two domains are often
close enough that one would expect that the optimal
parameters for the new domain should not deviate
too much from initial parameters. In order to formu-
late the technique mentioned in the above paragraph,
let us define Θinit to be the initial model parame-
ters estimated on out-of-domain data (using labeled
data). Assuming the availability of enough amount
of unlabeled data for in-domain task, we try to min-
imize the following objective function w.r.t the pa-
rameters,

θnew = argmin
θ

Hθ(Y|X) + λ ||θ − θinit||p

(3)

where ||θ − θinit||p is an Lp regularizer and tries to
prevent parameters from deviating too much from
their initial values3.

Once again the idea here is to adjust the param-
eters (using unlabeled data) such that low-density
separation between the classes is achieved. In the
following section we will discuss the drawback of
this objective function for adaptation in realistic sce-
narios.

3 Issues with Minimum Entropy Criterion

It is discussed in Section 2.2 that the model param-
eters are adapted such that a minimum conditional
entropy is achieved. It was also discussed how this is
related to finding decision boundaries through low-
density regions of input distribution. However, the
obvious assumption here is that the classes are well
separated and there in fact exists low-density regions
between classes which can be treated as boundaries.
Although this is a suitable/ideal assumption for clas-
sification, in most practical problems this assump-
tion is not satisfied and often classes overlap. There-
fore, we can not expect the conditional entropy to be

3The other reason for using a regularizer is to prevent trivial
solutions of minimum entropy criterion

convex in this situation and to achieve minimization
w.r.t parameters (other than the trivial solutions).

Let us clarify this through an example. Consider
X to be generated by mixture of two 2-D Gaus-
sians (each with a particular mean and covariance
matrix) where each Gaussian corresponds to a par-
ticular class ( binary class situation) . Also in order
to have linear decision boundaries, let the Gaussians
have same covariance matrix and let the parameter
being estimated be the prior for class 1, P (Y = 1).
Fig. 1 shows two different situations with over-
lapping classes and non-overlapping classes. The
left panel shows a distribution in which classes are
well separated whereas the right panel corresponds
to the situation where there is considerable overlap
between classes. Clearly, in the later case there is
no low-density region separating the classes. There-
fore, as we change the parameter (here, the prior on
the class Y = 1), there will not be any well defined
point with minimum entropy. This can be seen from
Fig. 2 where model conditional entropy is plotted
vs. class prior parameter for both cases. In the case
of no-overlap between classes, entropy is a convex
function w.r.t the parameter (excluding trivial solu-
tions which happens at P (Y = 1) = 0, 1) and is
minimum at P (Y = 1) = 0.7 which is the true prior
with which the data was generated.

We summarize issues with minimum entropy cri-
terion and our proposed solutions as follows:

• Trivial solution: this happens when we put de-
cision boundaries such that both classes are
considered as one class (this can be avoided us-
ing the regularizer in Eqn. 3 and the assump-
tion that initial models have a reasonable solu-
tion, e.g. close to the optimal solution for new
domain )

• Overlapped Classes: As it was discussed in
this section, if the overlap is considerable then
the entropy will not be convex w.r.t to model
parameters. We will address this issue in
the next section by introducing the entropy-
stability concept.

4 Entropy-Stability

It was discussed in the previous section that a mini-
mum entropy criterion can not be used (by itself) in
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Figure 1: Mixture of two Gaussians and the corresponding Bayes decision boundary: (left) with no class overlap
(right) with class overlap
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Figure 2: Condtional entropy vs. prior parameter, P (Y =
1)

situations where there is a considerable amount of
overlap among classes. Assuming that class bound-
aries happen in the regions close to the tail of class
distributions, we introduce the concept of Entropy-
Stability and show how it can be used to detect
boundary regions. Define Entropy-Stability to be the
reciprocal of the following∣∣∣∣∣∣∣∣∂Hθ(Y|X)

∂θ

∣∣∣∣∣∣∣∣
p

=∣∣∣∣∣∣
∣∣∣∣∣∣
∫
p(x)

∂
(∑

y pθ(y|x) log pθ(y|x)
)

∂θ
dx

∣∣∣∣∣∣
∣∣∣∣∣∣
p

(4)

Recall: since θ is a vector of parameters, ∂Hθ(Y|X)
∂θ

will be a vector and by using Lp norm Entropy-
stability will be a scalar.

The introduced concept basically measures the
stability of label entropies w.r.t the model parame-
ters. The idea is that we prefer models which not
only have low-conditional entropy but also have sta-
ble decision rules imposed by the model. Next, we
show through the following theorem how Entropy-
Stability measures the stability over posterior prob-
abilities (decision rules) of the model.

Theorem 2∣∣∣∣∣∣∣∣∂Hθ(Y|X)

∂θ

∣∣∣∣∣∣∣∣
p

=∣∣∣∣∣
∣∣∣∣∣
∫
p(x)

(∑
y

∂pθ(y|x)

∂θ
log pθ(y|x)

)
dx

∣∣∣∣∣
∣∣∣∣∣
p

where the term inside the parenthesis is the weighted
sum (by log-likelihood) over the gradient of poste-
rior probabilities of labels for a given sample x

Proof The proof is straight forward and uses the fact
that

∑ ∂pθ(y|x)
∂θ = ∂(

∑
pθ(y|x))
∂θ = 0 .

Using Theorem 2 and Eqn. 4, it should be clear
how Entropy-Stability measures the expected sta-
bility over the posterior probabilities of the model.
A high value of

∣∣∣∣∣∣∂Hθ(Y|X)
∂θ

∣∣∣∣∣∣
p

implies models with

less stable decision rules. In order to explain how
this is used for detecting boundaries (overlapped



regions) we once again refer back to our mixture
of Gaussians’ example. As the decision boundary
moves from class specific regions to overlapped re-
gions (by changing the parameter which is here class
prior probability) we expect the entropy to continu-
ously decrease (due to the assumption that the over-
laps occur at the tail of class distributions). How-
ever, as we get close to the overlapping regions the
added data points from other class(es) will resist
changes in the entropy. resulting in stability over the
entropy until we enter the regions specific to other
class(es).

In the following subsection we use this idea to
propose a new objective function which can be used
as an unsupervised adaptation method even for the
case of input distribution with overlapping classes.

4.1 Better Objective Function
The idea here is to use the Entropy-Stability con-
cept to accept only regions which are close to the
overlapped parts of the distribution (based on our
assumption, these are valid regions for decision
boundaries) and then using the minimum entropy
criterion we find optimum solutions for our parame-
ters inside these regions. Therefore, we modify Eqn.
3 such that it also includes the Entropy-Stability
term

θnew = argmin
θ

(
Hθ(Y|X) + γ

∣∣∣∣∣∣∣∣∂Hθ(Y|X)

∂θ

∣∣∣∣∣∣∣∣
p′

+ λ ||θ − θinit||p
)

(5)

The parameter γ and λ can be tuned using small
amount of labeled data (Dev set).

5 Speech Recognition Task

In this section we will discuss how the proposed
framework can be used in a speech recognition task.
In the speech recognition task, Y is the sequence
of words and X is the input speech signal. For a
given speech signal, almost every word sequence is
a possible output and therefore there is a need for
a compact representation of output labels (words).
For this, word graphs (Lattices) are generated dur-
ing the recognition process. In fact, each lattice is
an acyclic directed graph whose nodes correspond

to particular instants of time, and arcs (edges con-
necting nodes) represent possible word hypotheses.
Associated with each arc is an acoustic likelihood
and language model likelihood scores. Fig. 3 shows
an example of recognition lattice 4 (for the purpose
of demonstration likelihood scores are not shown).L. Mangu et al.: Finding Consensus in Speech Recognition 6

(a) Input lattice (“SIL” marks pauses)
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(b) Multiple alignment (“-” marks deletions)
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Figure 1: Sample recognition lattice and corresponding multiple alignment represented as
confusion network.

alignment (which gives rise to the standard string edit distance WE (W, R)) with
a modified, multiple string alignment. The new approach incorporates all lattice
hypotheses7 into a single alignment, and word error between any two hypotheses
is then computed according to that one alignment. The multiple alignment thus
defines a new string edit distance, which we will call MWE (W, R). While the
new alignment may in some cases overestimate the word error between two
hypotheses, as we will show in Section 5 it gives very similar results in practice.

The main benefit of the multiple alignment is that it allows us to extract
the hypothesis with the smallest expected (modified) word error very efficiently.
To see this, consider an example. Figure 1 shows a word lattice and the corre-
sponding hypothesis alignment. Each word hypothesis is mapped to a position
in the alignment (with deletions marked by “-”). The alignment also supports
the computation of word posterior probabilities. The posterior probability of a
word hypothesis is the sum of the posterior probabilities of all lattice paths of
which the word is a part. Given an alignment and posterior probabilities, it is
easy to see that the hypothesis with the lowest expected word error is obtained
by picking the word with the highest posterior at each position in the alignment.
We call this the consensus hypothesis.

7In practice we apply some pruning of the lattice to remove low probability word hypotheses
(see Section 3.4).

Figure 3: Lattice Example

Since lattices contain all the likely hypotheses
(unlikely hypotheses are pruned during recognition
and will not be included in the lattice), conditional
entropy for any given input speech signal, x, can be
approximated by the conditional entropy of the lat-
tice. That is,

Hθ(Y|X = xi) = Hθ(Y|Li)

whereLi is the corresponding decoded lattice (given
speech recognizer parameters) of utterance xi.

For the calculation of entropy we need to
know the distribution of X because Hθ(Y|X) =
EX [Hθ(Y|X = x)] and since this distribution is not
known to us, we use Law of Large Numbers to ap-
proximate it by the empirical average

Hθ(Y|X) ≈ − 1

N

N∑
i=1

∑
y∈Li

pθ(y|Li) log pθ(y|Li) (6)

Here N indicates the number of unlabeled utter-
ances for which we calculate the empirical value of
conditional entropy. Similarly, expectation w.r.t in-
put distribution in entropy-stability term is also ap-
proximated by the empirical average of samples.

Since the number of paths (hypotheses) in the lat-
tice is very large, it would be computationally infea-
sible to compute the conditional entropy by enumer-
ating all possible paths in the lattice and calculating

4The figure is adopted from (Mangu et al., 1999)



Element 〈p, r〉
〈p1, r1〉⊗ 〈p2, r2〉 〈p1p2, p1r2 + p2r1〉
〈p1, r1〉⊕ 〈p2, r2〉 〈p1 + p2, r1 + r2〉

0 〈0, 0〉
1 〈1, 0〉

Table 1: First-Order (Expectation) semiring: Defining
multiplication and sum operations for first-order semir-
ings.

their corresponding posterior probabilities. Instead
we use Finite-State Transducers (FST) to represent
the hypothesis space (lattice). To calculate entropy
and the gradient of entropy, the weights for the FST
are defined to be First- and Second-Order semirings
(Li and Eisner, 2009). The idea is to use semirings
and their corresponding operations along with the
forward-backward algorithm to calculate first- and
second-order statistics to compute entropy and the
gradient of entropy respectively. Assume we are in-
terested in calculating the entropy of the lattice,

H(p) = −
∑
d∈Li

p(d)

Z
log(

p(d)

Z
)

= logZ − 1

Z

∑
d∈Li

p(d) log p(d)

= logZ − r̄

Z
(7)

where Z is the total probability of all the paths in
the lattice (normalization factor). In order to do so,
we need to compute 〈Z, r̄〉 on the lattice. It can
be proved that if we define the first-order semir-
ing 〈pe, pe log pe〉 (pe is the non-normalized score of
each arc in the lattice) as our FST weights and define
semiring operations as in Table. 1, then applying the
forward algorithm will result in the calculation of
〈Z, r̄〉 as the weight (semiring weight) for the final
node.

The details for using Second-Order semirings for
calculating the gradient of entropy can be found
in (Li and Eisner, 2009). The same paper de-
scribes how to use the forward-backward algorithm
to speed-up the this procedure.

6 Language Model Adaptation

Language Model Adaptation is crucial when the
training data does not match the test data being de-
coded. This is a frequent scenario for all Automatic

Speech Recognition (ASR) systems. The applica-
tion domain very often contains named entities and
N-gram sequences that are unique to the domain of
interest. For example, conversational speech has
a very different structure than class-room lectures.
Linear Interpolation based methods are most com-
monly used to adapt LMs to a new domain. As
explained in (Bacchiani et al., 2003), linear inter-
polation is a special case of Maximum A Posterior
(MAP) estimation, where an N-gram LM is built on
the adaptation data from the new domain and the two
LMs are combined using:

p(wi|h) = λpB(wi|h) + (1− λ)pA(wi|h)

0 ≤ λ ≤ 1

where pB refers to out-of-domain (background)
models and pA is the adaptation (in-domain) mod-
els. Here λ is the interpolation weight.

Conventionally, λ is calculated by optimizing per-
plexity (PPL) or Word Error Rate (WER) on some
held-out data from target domain. Instead using
our proposed framework, we estimate λ on enough
amount of unlabeled data from target domain. The
idea is that resources on the new domain have al-
ready been used to build domain specific models
and it does not make sense to again use in-domain
resources for estimating the interpolation weight.
Since we are trying to just estimate one parameter
and the performance of the interpolated model is
bound by in-domain/out-of-domain models, there is
no need to include a regularization term in Eqn. 5.
Also

∣∣∣∣∣∣∂Hθ(Y|X)
∂θ

∣∣∣∣∣∣
p

= |∂Hλ(Y|X)
∂λ | because we only

have one parameter. Therefore, interpolation weight
will be chosen by the following criterion

λ̂ = argmin
0≤λ≤1

Hλ(Y|X) + γ|∂Hλ(Y|X)

∂λ
| (8)

For the purpose of estimating one parameter λ, we
use γ = 1 in the above equation

7 Experimental Setup

The large vocabulary continuous speech recognition
(LVCSR) system used throughout this paper is based
on the 2007 IBM Speech transcription system for
GALE Distillation Go/No-go Evaluation (Chen et
al., 2006). The acoustic models used in this system



are state-of-the-art discriminatively trained models
and are the same ones used for all experiments pre-
sented in this paper.

For LM adaptation experiments, the out-of-
domain LM (pB , Broadcast News LM) training
text consists of 335M words from the follow-
ing broadcast news (BN) data sources (Chen et
al., 2006): 1996 CSR Hub4 Language Model
data, EARS BN03 closed captions, GALE Phase
2 Distillation GNG Evaluation Supplemental Mul-
tilingual data, Hub4 acoustic model training tran-
scripts, TDT4 closed captions, TDT4 newswire, and
GALE Broadcast Conversations and GALE Broad-
cast News. This language model is of order 4-gram
with Kneser-Ney smoothing and contains 4.6M n-
grams based on a lexicon size of 84K.

The second source of data is the MIT lectures data
set (J. Glass, T. Hazen, S. Cyphers, I. Malioutov, D.
Huynh, and R. Barzilay, 2007) . This serves as the
target domain (in-domain) set for language model
adaptation experiments. This set is split into 8 hours
for in-domain LM building, another 8 hours served
as unlabeled data for interpolation weight estimation
using criterion in Eqn. 8 (we refer to this as unsuper-
vised training data) and finally 2.5 hours Dev set for
estimating the interpolation weight w.r.t WER (su-
pervised tuning) . The lattice entropy and gradient
of entropy w.r.t λ are calculated on the unsupervised
training data set. The results are discussed in the
next section.

8 Results

In order to optimize the interpolation weight λ based
on criterion in Eqn. 8, we devide [0, 1] to 20 differ-
ent points and evaluate the objective function (Eqn.
8) on those points. For this, we need to calculate
entropy and gradient of the entropy on the decoded
lattices of the ASR system on 8 hours of MIT lecture
set which is used as an unlabeled training data. Fig.
4 shows the value of the objective function against
different values of model parameters (interpolation
weight λ). As it can be seen from this figure just
considering the conditional entropy will result in a
non-convex objective function whereas adding the
entropy-stability term will make the objective func-
tion convex. For the purpose of the evaluation, we
show the results for estimating λ directly on the tran-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Model Entropy
Model Entropy+Entropy-Stability

BN-LM MIT-LMλ

Figure 4: Objective function with and without including
Entropy-Stability term vs. interpolation weight λ on 8
hours MIT lecture unlabeled data

scription of the 8 hour MIT lecture data and compare
it to estimated value using our framework. The re-
sults are shown in Fig. 5. Using λ = 0 and λ = 1
the WERs are 24.7% and 21.1% respectively. Us-
ing the new proposed objective function, the optimal
λ is estimated to be 0.6 with WER of 20.1% (Red
circle on the figure). Estimating λ w.r.t 8 hour train-
ing data transcription (supervised adaptation) will
result in λ = 0.7 (green circle) andWER of 20.0%.
Instead λ = 0.8 will be chosen by tuning the inter-
polation weight on 2.5 hour Dev set with compara-
ble WER of 20.1%. Also it is clear from the figure
that the new objective function can be used to pre-
dict the WER trend w.r.t the interpolation weight
parameter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Model Entropy + Entropy Stability
WER24.7%

20.0%

21.1%

supervised tuning

λ

Figure 5: Estimating λ based on WER vs. the
information-theoretic criterion

Therefore, it can be seen that the new unsuper-



vised method results in the same performance as su-
pervised adaptation in speech recognition task.

9 Conclusion and Future Work

In this paper we introduced the notion of entropy
stability and presented a new criterion for unsu-
pervised adaptation which combines conditional en-
tropy minimization with entropy stability. The en-
tropy stability criterion helps in selecting parameter
settings which correspond to stable decision bound-
aries. Entropy minimization on the other hand tends
to push decision boundaries into sparse regions of
the input distributions. We show that combining
the two criterion helps to improve unsupervised pa-
rameter adaptation in real world scenario where
class conditional distributions show significant over-
lap. Although conditional entropy has been previ-
ously proposed as a regularizer, to our knowledge,
the gradient of entropy (entropy-stability) has not
been used previously in the literature. We presented
experimental results where the proposed criterion
clearly outperforms entropy minimization. For the
speech recognition task presented in this paper, the
proposed unsupervised scheme results in the same
performance as the supervised technique.

As a future work, we plan to use the proposed
criterion for adapting log-linear models used in
Machine Translation, Conditional Random Fields
(CRF) and other applications. We also plan to ex-
pand linear interpolation Language Model scheme
to include history specific (context dependent)
weights.
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