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Abstract

In this paper we evaluate the WER improvement from model-
ing pronunciation probabilities and word-specific silence prob-
abilities in speech recognition. We do this in the context of
Finite State Transducer (FST)-based decoding, where pronun-
ciation and silence probabilities are encoded in the lexicon (L)
transducer. We describe a novel way to model word-dependent
silence probabilities, where in addition to modeling the proba-
bility of silence following each individual word, we also model
the probability of each word appearing after silence. All of these
probabilities are estimated from aligned training data, with suit-
able smoothing. We conduct our experiments on four com-
monly used automatic speech recognition datasets, namely Wall
Street Journal, Switchboard, TED-LIUM, and Librispeech. The
improvement from modeling pronunciation and silence proba-
bilities is small but fairly consistent across datasets.
Index Terms: automatic speech recognition, pronunciation
probability, silence probability

1. Pronunciations and Inter-Word Silence
A key component of an automatic speech recognition (ASR)
system is the pronunciation lexicon, which rewrites each word
in a potentially large vocabulary in terms of a relatively small
number of phonetic units. Such lexicons contain a single pro-
nunciation for most words, even though it is widely recog-
nized that everyday speech contains significant deviations from
canonical pronunciations [1]. Some, including [2], have ar-
gued for explicit pronunciation modeling through a data-driven
expansion of the lexicon. Others have argued that such pro-
nunciation variation should be modeled implicitly via context-
dependent acoustic models [3].

Explicit pronunciation modeling entails creating multiple
pronunciations for each (or most) word(s) in the lexicon. In [4],
the acoustic model training corpus is decoded with an automatic
phone recognizer to obtain frequent alternative pronunciations
of frequent words. In [5] and [6], phonological rules are used to
generate alternative pronunciations of words, while in [7] and
[8], statistical decision trees for the same purpose. Another as-
pect of explicit pronunciation modeling is the estimation of the
probabilities of alternative pronunciations. In [9] and [10] pro-
nunciation probabilities are estimated according to their rela-
tive frequency in the training data, while in [11] pronunciation
probabilities depend on dynamic features such as speaking rate,
segment durations, pitch, etc.
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Implicit pronunciation modeling relies on the underlying
acoustic-phonetic models to account for pronunciation varia-
tions, and therefore removes the necessity to explicitly deter-
mine and represent them in the lexicon. In some methods,
acoustic model parameters of a phoneme (e.g., Gaussian den-
sities) are tied with those of its alternative realizations, thus
capturing alternative pronunciations [3, 12, 13]. Others view
pronunciations as a bundle of features, and pronunciation vari-
ation is viewed as feature-change or asynchrony [14, 15].

While variability in the pronunciation of individual words
has been studied extensively, relatively little has been studied
about inter-word silence and its dependence on the prosodic and
syntactic structure of the utterance. In [3, 10], for instance, three
types of silence are permitted following each pronunciation in
the lexicon: a zero-silence, a short pause and a long silence. It is
demonstrated empirically that permitting such options for inter-
word silence improves ASR performance. But there is no mech-
anism to predict, for instance, that zero-silence is less likely to
follow the word White in “Gandalf the White said,” than in “The
White House said.”

We propose to explicitly model the probability of inter-
word silence. As a first approximation, we will ignore syntactic
and prosodic structure, and condition the probability of inter-
word silence on only the identities of the surrounding words.
We will estimate this probability from data.

We make three contributions through this paper. We re-visit
the use of pronunciation probabilities in the lexicon [3, 9, 10],
and demonstrate empirically on multiple datasets that it is con-
sistently beneficial. We then propose a novel word-dependent
estimate of the probability of inter-word silence. Finally, we
propose a method to incorporate the inter-word silence proba-
bilities in a finite state transducer (FST) framework, permitting
easy implementation in an FST-based decoder, and demonstrate
further improvement in ASR performance from it.

The remainder of this paper is organized as follows. We
briefly describe the generation of training data for pronuncia-
tion and silence modeling in Section 2. We then explain how
we estimate pronunciation probabilities in Section 3 and word-
dependent inter-word silence probabilities in Section 4. We de-
scribe how we encode pronunciation and silence probabilities
via an FST in Section 5. The experimental setup is detailed in
Section 6, and results are provided in Section 7. Finally we
reiterate our main claims in Section 8.

2. Training Data Alignment
We estimate the pronunciation probabilities and word-
dependent silence probabilities using the acoustic model train-
ing data. The original lexicon (without pronunciation probabil-
ities) is used to train an early stage triphone system, with which



we align all the data. Bigram-like counts are collected for word-
pronunciation pairs, including word-specific counts of (an op-
tional) silence following each pronunciation. These will be used
to estimate pronunciation probabilities and word-dependent si-
lence probabilities, as described in Sections 3 and 4.

3. Pronunciation Probability Estimation
3.1. Pronunciation probabilities

We estimate the pronunciation probabilities for a word with
multiple pronunciations via simple relative frequency [3, 9, 10].
Let w.pi be the ith pronunciation of word w, 1 ≤ i ≤ Nw, and
Nw is the number of different baseform pronunciations of word
w in the lexicon. LetC(w,w.pi) be the count of “w w.pi” pairs
in the aligned training data. The probability of a pronunciation
w.pi given the word w is simply

π(w.pi|w) =
C(w,w.pi) + λ1∑Nw

i=1(C(w,w.pi) + λ1)
, (1)

where λ1 is a smoothing constant that we typically set to 1.

3.2. Max-normalization

An undesirable consequence of (1) is that a word with sev-
eral equiprobable pronunciations is unfairly handicapped w.r.t
words that have a single pronunciation: e.g. the past tense of
“read” w.r.t the color read “red.” Max-normalization, whereby
the pronunciation probabilities are scaled so that the most likely
pronunciation of each word has “probability” 1, has been found
helpful in speech recognition [7]. This suggests using

π′(w.pi|w) =
π(w.pi|w)

max1≤i≤Nw π(w.pi|w)
. (2)

We do max-normalization for pronunciation probabilities in all
our experiments. The quantity π′(w.pi|w) is of course not a
well defined probability any more. It will later be encoded into
the lexicon FST in the form of cost, as described in Section 5.

4. Silence Probability Estimation
We next explain how we model the probability of inter-word
silence. Recall that inter-word silence is not handled by the
language model, because language model training data largely
comes from text sources. So the model must be estimated from
acoustic model training data, as noted in Section 2.

Let <s>=w1 w2 . . . wN−2=</s> denote an N -length
word sequence, including the utterance boundary markers,<s>
and </s> . We will take the view that either a silence token
s or non-silence token n is stochastically produced by speak-
ers between each pair of consecutive words. Furthermore, we
will assume that speakers first generate the word sequence, and
then decide where to place inter-word silence, so that the prob-
ability of observing an s between wi and wi+1 may be con-
ditioned on the utterance context. However, rather than dwell
on prosodic and syntactic phrasing, we will (as a practical first
approximation) model inter-word silence as a local decision
that depends on only the two surrounding words. For exam-
ple, the probability of w1 n w2 s w3 n w4 given the word se-
quence w1 w2 w3 w4 will be P (n |w1, w2)× P (s |w2, w3)×
P (n |w3, w4).

Furthermore, for words that admit multiple pronunciations,
we permit the probability of silence to be dependent on the spe-
cific pronunciation that is chosen. Therefore, the generative

process above is further refined whereby we assume that speak-
ers first generate the word sequence, then decide which pronun-
ciation to use for each word, and then decide whether to place
inter-word silence between each pair of words: with probability
P (s |w.pi, w′.pj).

In a final practical approximation, we implement
P (s |w.pi, w′.pj) as a product of the probability (i) of silence
sr following w.pi, and (ii) of silence sl preceding w′.pj given
w.pi, and we marginalize the latter probability over w.pi.
Much less training data is needed to estimate P (sr |w.pi)
and P (sl |w′.pj) separately than P (s |w.pi, w′.pj) jointly.
Crucially, this final approximation enables encoding inter-word
silence probabilities directly into the lexicon.

4.1. Probability of silence to the right of a word

We use theP (sr|w.p) to denote the probability of inter-word si-
lence following the pronunciation w.p, and P (nr|w.p) to mean
the complementary probability of non-silence following w.p.
We compute P (sr|w.p) from training data counts as

P (sr|w.p) =
C(w.p s) + λ2P (s)

C(w.p) + λ2
, (3)

where C(w.p s) is the count of the sequence “w.p s” in the
training data, C(w.p) is the count of pronunciation w.p in the
training data, P (s) = C(s)/(C(s)+C(n)) is the overall prob-
ability of inter-word silence, and λ2 is a smoothing constant that
we set to 2 for experiments reported here.

4.2. Probability of silence to the left of a word

Our analysis of English conversational speech alignments sug-
gests that the identity of the following word is often a better pre-
dictor of inter-word silence (i.e. silence before that word) than
of the word preceding the potential inter word silence. Rather
than use “trigram” counts C(w s w′) to estimate a joint model
of inter-word silence, which cannot be encoded into a lexicon
via pronunciation probabilities, we propose a corrective model
F (sl |w′.pj) that makes P (sr |w.pi) × F (sl |w′.pj) a good
approximation to the joint model P (s |w.pi, w′.pj).

Specifically, a simple product of the separate empirical es-
timates of the type P̂ (sr |w.pi) × P̂ (sl |w′.pj) will double-
count the occurrence (or lack thereof) of inter-word silence. Yet
we still wish to capture via w′.pj whatever effect is not already
modeled by w.pi. To this end, we compute the smoothed cor-
rection terms

F (sl|w′.p) =
C(s w′.p) + λ3

C̃(s w′.p) + λ3

, and (4)

F (nl|w′.p) =
C(n w′.p) + λ3

C̃(n w′.p) + λ3

, (5)

where C̃(s w′.p) and C̃(n w′.p) are the “mean” counts of si-
lence or non-silence preceding w′.p, estimated according to

C̃(s w′.p) =
∑
v

C(v ∗ w′.p)P (sr|v), (6)

where the sum is over all pronunciations v in the lexicon, the
symbol ∗ in C(v ∗ w′.p) denotes either s or n, and P (sr|v) is
computed using Equation (3). λ3 is a smoothing constant that
we set to 2 for experiments reported here.



4.3. Putting it all together

The net result of the steps described above are the two context-
dependent estimates of inter word silence (or lack thereof):

P (s |w.pi, w′.pj) ≈ P (sr |w.pi)× F (sl |w′.pj), and
P (n |w.pi, w′.pj) ≈ P (nr |w.pi)× F (nl |w′.pj).

Note that these may not sum to unity. We accept that as the price
of being able to easily incorporate inter-word silence probabili-
ties in an FST implementation of a lexicon, as described next.

5. Lexicon Finite-State Transducer
In the context of weighted finite-state transducer (WFST)-based
speech recognition, lexicons are represented as FSTs, which
map a sequence of phones to a sequence of words. Figure
1 gives a basic lexicon FST (L1) that allows two vocabulary
words: yes→ [y eh s] and am→ [ae m].

Figure 1: Basic lexicon FST (L1)

Incorporating pronunciation probabilities into the lexicon
FST is trivial, as they can be encoded as arc weights in the FST.
Figure 2 illustrates the simplified version of lexicon FST (L2)
used in our pronunciation probability modeling experiments,
where negated log-probabilities of pronunciations are added as
weights. Note that L2 also allows optional silence between
words. Comparing L2 with L1, three more states are added:
a start state 0 that represents the beginning of the sentence, a
silence state 2 that inserts silence between words, and a dis-
ambiguation state 1 adding disambiguation symbol (#0) after
inserting silence, which keeps the lexicon FST determinizable
[16].

Figure 2: Lexicon FST with optional silence and pronunciation
probabilities (L2)

Figure 3 shows the simplified version of lexicon FST (L3)
used in our silence probability modeling experiments. In Figure
3, optional silence is inserted between words by introducing two

special states designated for silence (state 1) and non-silence
(state 2), and word-dependent silence probabilities described in
Section 4 are encoded as weights (using negated logarithm) of
arcs that go into and out from these two special states. Note
that in L3 we add pronunciation cost (negated log probability
of pronunciation) in addition to silence cost when we transit
from these two special states to words, so that L3 also models
the pronunciation probabilities computed in Section 3. Gener-
ally, if the current state is the beginning of the sentence, or the
end of some words, then the lexicon FST has to transit either to
silence state 1 or to non-silence state 2 first, with the cost that
corresponds to the silence probabilities estimated in Section 4.1.
It then has to transit back to another word, or to the end of the
sentence, with the cost that corresponds to the silence probabil-
ities described in Section 4.2 as well as the pronunciation prob-
abilities described in Section 3. It worth mentioning that in L3

we avoid the necessity of the disambiguation state by inserting
disambiguation symbol (#0) whenever we transit back to the
non-silence state 2.

Figure 3: Lexicon FST with word-dependent silence probabili-
ties (L3)

6. Experimental Setup
This section describes how we conduct our experiments. We
use the open source speech recognition toolkit Kaldi [17] for all
our implementation and experiments.

6.1. Baseline System

We use Kaldi’s online version of time delay neural network
(TDNN) recipe as our baseline. For more details readers are
referred to [18, 19].

6.2. Datasets

Since previous work on pronunciation modeling usually yields
modest gains [12], we decide to run our experiments over multi-
ple datasets, to minimize the affect of noise. We conduct our ex-
periments on four commonly used speech recognition datasets,
namely the Wall Street Journal (WSJ) corpus [20], the Switch-
board (SWBD) corpus [21], the TED-LIUM corpus [22] and the
Librispeech corpus [23]. Note that for Librispeech only the 100
hour subset is used in our experiments.



dataset pron / word ratio % of multi-pron words
WSJ 1.077 7.2

SWBD 1.024 1.7
TED-LIUM 1.051 4.5
Librispeech 1.033 3.0

Table 1: Lexicon statistics for different datasets

We use the default lexicon in Kaldi recipes for each dataset.
The pronunciation statistics of the lexicons are shown in Ta-
ble 1. From the above table we can see that all lexicons have
words with more than one pronunciations, especially for the
WSJ lexicon, where 7% of the words have multiple pronunci-
ations. None of the default lexicons comes with pronunciation
probabilities.

7. Results
Below we show the performance of the proposed model. For
the WER experiments, we search for the best word insertion-
penalty as well as the best acoustic scale in decoding. This is
important to show improvements from silence modeling, be-
cause our previous model assigned a probability of 0.5 to si-
lence and 0.5 to non-silence between each pair of words, which
acted as a crude insertion penalty.

7.1. Preliminary results
model1 model2 model3 model4

WSJ dev93 0.598 0.704 0.697 0.759
SWBD eval2000 0.538 0.621 0.642 0.686
TED-LIUM dev 0.619 0.610 0.653 0.632

Librispeech dev clean 0.600 0.704 0.696 0.768

Table 2: Geometric average probability of inter-word
silence/non-silence with four different silence models on held-
out set (including BOS and EOS symbols)

model1 model2 model3 model4
WSJ dev93 0.678 0.733 0.720 0.744

SWBD eval2000 0.629 0.656 0.662 0.661
TED-LIUM dev 0.671 0.691 0.686 0.700

Librispeech dev clean 0.673 0.723 0.719 0.749

Table 3: Geometric average probability of inter-word
silence/non-silence with four different silence models on held-
out set (excluding BOS and EOS symbols)

model1: global silence probability
model2: silence probability depending on the preceding word
model3: silence probability depending on the following word
model4: combined model in this paper

We first compare the performance of the above four si-
lence models, parameters of the four models are estimated from
training alignments. Since the WER differences of different
silence models are usually too small to see clearly, we com-
pare the four models using average probability of inter-word
silence/non-silence on heldout set. Table 2 shows the perfor-
mance of the four models with BOS and EOS symbols included
in the calculation, and Table 3 shows gives the performance ex-
cluding BOS and EOS symbols. In both tables, we can see that
our proposed model usually gives the best probability.

7.2. Impact of retraining

The updated lexicon FST encoded with pronunciation probabil-
ities or word-dependent silence probabilities are typically used

baseline +pron model +sil model

no-retrain swbd 20.1 20.0 19.6
eval2000 26.9 26.9 26.7

retrain swbd 20.1 19.9 19.5
eval2000 26.9 27.0 26.7

Table 4: WER performance of not retraining and retraining
the acoustic models with the updated lexicon FST (SWBD SAT
system)

for decoding, as done in [19]. They of course can also be used
in training, which may improve the alignment and thus reduce
WER. Before we run into the full experiments, we first con-
duct an analysis experiment on SWBD SAT system. Results
in Table 4 suggest that retraining or not retraining the acoustic
models will not make much a difference. Therefore, in the rest
of our experiments, we only use pronunciation probabilities and
word-dependent silence probabilities for decoding.

7.3. WER performance on TDNN systems

Table 5 shows the WER performance of using pronunciation
probabilities and word-dependent silence probabilities on all the
four corpora. As we can see from the table, modeling pronunci-
ation probabilities generally helps to reduce the WER, but at a
very modest amount (usually 0.1−0.2%, absolute). This is con-
sistent with the conclusions from previous work [12]. Model-
ing word-dependent inter-word silence probabilities in addition
to pronunciation probabilities, which is new, usually brings fur-
ther improvements. It improves on top of pronunciation prob-
abilities across datasets, except for TED-LIUM and the clean
evaluation condition of Librispeech.

baseline +pron model +sil model

WSJ dev93 6.90 6.68 6.49
eval92 4.11 3.99 3.95

SWBD swbd 13.7 13.6 13.1
eval2000 20.5 20.4 20.0

TED-LIUM dev 20.0 19.8 19.8
test 18.1 17.9 17.9

Librispeech

dev clean 5.9 5.8 5.8
dev other 21.3 21.3 21.0
test clean 6.6 6.6 6.6
test other 22.9 22.7 22.5

Table 5: WER performance of using pronunciation probabili-
ties and word-dependent silence probabilities (TDNN system)

8. Conclusion
We have re-visited the modeling of pronunciation probabilities,
including the context-dependent probability of (optional) inter-
word silence between specific pronunciations. Experiments on
multiple datasets suggest that explicitly modeling pronuncia-
tion probabilities usually improves ASR performance in terms
of WER, though the gain is modest. Empirical results also
show that modeling word-dependent silence improves recogni-
tion performance further on top of the pronunciation probability
modeling, and the improvement is fairly consistent across mul-
tiple datasets.

This paper is also a small step towards joint acoustic-
prosodic modeling: the presence of inter-word silence is con-
nected to prosodic phrasing, which in turn is useful for the syn-
tactic analysis of spoken utterances. Syntax in turn is a bridge
between spoken words and semantics.
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