
Low-Resource Open Vocabulary Keyword Search Using Point Process Models

Chunxi Liu,1 Aren Jansen,1,2 Guoguo Chen,1 Keith Kintzley,1 Jan Trmal,1 Sanjeev Khudanpur1,2

1Center for Language and Speech Processing & Department of Electrical and Computer Engineering,
2Human Language Technology Center of Excellence
The Johns Hopkins University, Baltimore, MD USA

{chunxi, aren, guoguo, kintzley, yenda, khudanpur}@jhu.edu

Abstract
The point process model (PPM) for keyword search is a whole-
word parametric modeling framework based on the timing of
phonetic events rather than the evolution of frame-level pho-
netic likelihoods. Recent progress in PPM training and decod-
ing algorithms has yielded state-of-the-art phonetic search per-
formance in high-resource settings, both in terms of accuracy
and computational efficiency. In this paper, we consider PPM
application to low-resource settings where the amount of tran-
scribed speech is severely limited and the pronunciation dic-
tionary is incomplete. By using (i) state-of-the-art deep neu-
ral network acoustic models to generate phonetic events and
(ii) grapheme-to-phoneme conversion to generate pronuncia-
tions for out-of-vocabulary (OOV) keywords, we find the PPM
system reaches state-of-the-art OOV search performance at a
small computational cost. Moreover, due to their complemen-
tary methodologies, combining PPM outputs with the LVCSR
baseline produces average relative ATWV improvements of 7%
and 50% for in-vocabulary and OOV keywords, respectively
(16% overall).
Index Terms: keyword search, point process model, OOV key-
words, system combination

1. Introduction
The primary goal of the IARPA Babel Program is to develop
scalable multi-lingual keyword search (KWS) capabilities with
limited access to the typical linguistic resources that state-of-
the-art speech recognition technologies strongly rely on. The
dominant mode of the program’s research thus far has been
adapting the high-resource LVCSR-based keyword search sys-
tems that were developed for the NIST 2006 STD evaluation to
this low-resource setting. However, with the present restricted
availability of transcribed speech for language model estimation
and highly incomplete pronunciation lexicons producing high
keyword OOV rates, the main strengths of LVCSR for search
are substantially handicapped. These programmatic constraints
thus provide an opening for previous-generation lightweight
phonetic search methods to play a continued role.

Originally presented in [1], the point process model (PPM)
for keyword search is a whole-word acoustic modeling and
search technique. The PPM is founded on the hypothesis that
the timing of robustly identifiable phonetic events provides suf-
ficient cues to decode the underlying linguistic message, which
in the present case are occurrences of a given keyword. The
PPM trades pronunciation-derived hidden Markov modeling of
frame-level phonetic likelihoods for inhomogeneous Poisson
process rate parameters characterizing the likelihoods of pho-
netic event arrivals throughout the keyword. Past studies have

demonstrated that sparse phonetic event-driven PPMs permit
unprecedented speeds in search collection indexing [2] and im-
proved robustness to noise [3]. Moreover, the PPM was demon-
strated to outperform competing phonetic fast lattice search
methods in both search speed and accuracy [2].

In this paper, we consider the application of PPM-based
keyword search technology to the low-resource multilingual
setting of the Babel program. To participate in this challenge
space, we consider multiple extensions to the basic framework.
First, like hidden Markov model (HMM) based lexical models,
the PPMs require a frame-level phonetic acoustic model to gen-
erate the phonetic event streams. Thus, we evaluate PPM per-
formance in conjunction with a truly state-of-the-art deep neural
network (DNN) acoustic model tailored to the present low re-
source setting. Second, the original PPM framework required
keyword training examples to estimate Poisson rate parameters,
while the recently proposed MAP estimation technique allows
back-off to a dictionary-derived prior [4]. Given the present
preponderance of out-of-vocabulary keywords (which are also
out-of-training), we evaluate the use of a grapheme-to-phoneme
conversion tool to seed dictionary-based PPMs. Finally, to eval-
uate LVCSR search complementarity, for the first time we con-
sider the system combination potential of our PPM keyword
search system.

Incorporating the above PPM extensions, we perform a
comprehensive keyword search evaluation on five Babel lan-
guages: Haitian, Lao, Zulu, Assamese, and Bengali. Our base-
line is the Kaldi LVCSR-based keyword search system devel-
oped by the Johns Hopkins University Babel team [5], which
is outfitted with the identical DNN acoustic model we use for
the PPM. We decompose search performance into in-vocabulary
(IV) and out-of-vocabulary keyword sets, comparing OOV per-
formance against a recently proposed state-of-the-art technique
called proxy keyword search [6], which derives putative hits
from word lattices. For completeness, we begin with a brief
review of the point process model for keyword search. In Sec-
tion 3, we describe the three components of our low-resource
PPM recipe. Finally, in Section 4, we describe our experimen-
tal setup and present the results of our evaluation.

2. Point Process Models for KWS
The PPM framework for keyword search first transforms in-
put speech acoustic features into a phone posteriorgram rep-
resentation. Phonetic events are subsequently selected as the
local maxima of the smoothed posterior trajectories exceed-
ing a threshold [7], which distills dense frame-level phonetic
likelihood estimates into a minimal set of discrete phonetic se-
quences in time. This collection of events provides the index
of the search collection. Given the phonetic pronunciation of

each keyword, a PPM can be constructed entirely based on the
phonetic pronunciation provided by a dictionary [4]. The arrival
of phonetic events during the course of a given word utterance
is modeled as a collection of inhomogeneous Poisson process,
one per phone. By modeling each time-varying Poisson rate
function as a mixture of Gaussians, we can employ maximum a
posteriori (MAP) estimation of the means, variances, and mix-
ture weights. This MAP estimate functions to fold in observed
event timing patterns of any available word exemplars present
in the training corpus [4]. The PPM also requires a background
model for likelihood normalization; here, we assume that out-
side the keyword of interest, phonetic events are generated by
a homogeneous Poisson process governed by a single indepen-
dent rate parameter for each phone.

For a given keyword w and candidate keyword occurrence
time t, we denote the set of events arriving in the interval
(t, t + T] by Ot,T . The PPM framework makes the assump-
tion that the phonetic event timing distributions are independent
of the candidate word duration T , and linearly scales all arrival
times in (t, t+ T] onto the interval (0, 1] to generate the trans-
formed event set O′t,T . The keyword detection function dw(t),
which indicates the presence of the keyword starting at time t
with arbitrary duration, is defined as the log-likelihood ratio of
phonetic events as described under the keyword and background
model. This takes the form

dw(t) = log

»
P (Ot,∞|θw)

P (Ot,∞|θbg)

–
= log

»Z ∞

0

P (O′t,T |T, θw)P (T |θw)

T |O(t)|P (Ot,T |T, θbg)
dT

–
,

(1)

where θw denotes the set of keyword-specific inhomogeneous
Poisson rate parameters, and θbg denotes background homoge-
neous rate parameters. Here, the keyword duration T serves as a
latent variable with P (T |θw) modeled by a gamma distribution.

3. Extension to Low-Resource Settings
3.1. Deriving Phonetic Events from Low-Resource DNNs

Over the past few years, DNN-HMM hybrid acoustic modeling
has become the de facto standard in state-of-the-art speech rec-
ognizers. In the context of the Babel program, several groups
have attempted to specialize their neural network architectures
for limited acoustic training data scenarios [8]. One of our
present goals is to evaluate these next-generation acoustic mod-
els in the PPM framework based on the assumption that the
published word error rate reductions will translate into more
accurate phone posterior estimates and, in turn, more accurate
phonetic event streams. Now, one of the primary innovations
relative to earlier waves of neural networks for ASR is the use
of context-dependent HMM state targets. To use these DNNs in
the PPM framework, we need to derive monophone posterior-
grams to enable the extraction of the requisite phonetic events.
This is easily accomplished by summing together the posterior
trajectories of HMM states corresponding to the same context-
independent center phone. While we use the DNN trained in the
context of an LVCSR system, once we derive monophone pos-
teriorgrams our processing diverges completely from the HMM
models and finite state machine based decoders.

Compared with the past neural network phonetic acoustic
models [7, 2] evaluated in the PPM framework, our implemen-
tation introduces three new components. First, our DNN is
trained on top of acoustic features that are speaker adapted with

constrained maximum likelihood linear regression (CMLLR),
also known as feature-space MLLR (fMLLR) [9]. Note that
during training, fMLLR transform estimation is done through
computing training alignments using a standard GMM-based,
speaker adaptively trained model; in decoding, fMLLR trans-
forms are obtained through first-pass decoding. Thus, for both
training alignments and first-pass decoding, the entire knowl-
edge of phonetic context-dependency, pronunciation lexicon
and word-level grammar will be integrated, which the single
phone recognition system fails to consider.

Second, in addition to basic perceptual linear prediction
(PLP) features, we add pitch and probability of voicing (POV)
features based on the pitch extraction algorithm described
in [10]. Experiments in [10] demonstrate that these pitch and
POV features give substantial performance improvements on
both tonal and non-tonal languages for LVCSR system, which
also contributes to better estimation of phone posteriors. Fi-
nally, given the recent success of generalized maxout nonlin-
ear activation functions in DNN modeling, we rely on a DNN
acoustic model with p-norm activations [8] of the form y =

‖x‖p = (
P

i |xi|p)
1
p , where x represents a group of neuron in-

puts. Experiments in [8] demonstrate that DNNs using p-norm
units with p = 2 perform consistently better than various other
nonlinearities evaluated in speech recognition tasks, especially
in low-resource conditions.

3.2. Searching for Out-of-Vocabulary Keywords

We consider the KWS task in which keywords are provided
in written form in the native orthography and a pronunciation
lexicon is given with fixed vocabulary. However, in the low-
resource setting a typical condition is that the pronunciation of
a given keyword is not covered in the available lexicon. In this
case, for the phonetic-based KWS system one standard solu-
tion is to predict the pronunciation of OOV keywords by using
grapheme-to-phoneme (G2P) conversion [11]. Thus, all OOV
keywords become IV and the updated lexicon would contain the
phonetic composition of all keywords. However, in the Babel
evaluation framework, redecoding the search collection is not
allowed after the keywords are known, so other means are re-
quired to search using these new predicted pronunciations. Re-
cently, a novel OOV processing technique called proxy keyword
search [6] was demonstrated to produce state-of-the-art perfor-
mance for the task. This method uses the G2P pronunciations
of OOV keywords to generate a list of likely-confusable proxy
words from the vocabulary. Using a cascade of weighted finite
state transducer compositions with the original LVCSR lattice
produces putative hits of the OOVs along with lattice posterior
confidence scores. Proxy keyword search serves as the baseline
OOV method in our experiments.

Using the MAP estimation framework of [4] and given
a phonetic pronunciation for an OOV keyword produced by
the G2P system, we can construct the dictionary prior PPM.
Since we have no examples to estimate the Gaussian parameters
within an OOV keyword, we can either assign Gaussian means
at equal intervals with fixed variance (based on the simplifying
assumption that all phones within the word have equal dura-
tion) [4], or estimate the Gaussian parameters for each phone
using average phone durations [12]. In this paper, we limit our
evaluation to the simple uniform approach, though we would
expect the incorporation of average phone duration statistics to
provide marginal gains. We further introduce additional Gaus-
sians of likely confused phones that are not in dictionary form
using a confusion matrix estimated across entire corpus. More-

over, we apply the Monte Carlo sampling approach explained
in [2] to estimate Gamma distribution parameters of each key-
words duration model for unseen words. In this way, we can
construct a reasonably accurate estimate of PPM rate and word
duration parameters without any training exemplars.

3.3. System Combination

We evaluate the combination of the LVCSR and PPM search
results by merging the respective putative hit lists. Both sys-
tem use the identical DNN acoustic model but generate search
ranked lists using completely different lexical models and de-
coding methodologies. The LVCSR system applies HMM lex-
ical models on top of DNN-derived emission likelihoods in a
WFST-based decoder that uses a language model. It generates
deep word-based lattices that form the search index used for
both IV and OOV keywords. The PPM system processes pos-
teriors into an extremely sparse phonetic index and performs
a linear-time search. Thus, the system combination evaluation
serves to measure the complementarity of these techniques af-
ter the acoustic processing stages. The resulting putative hit
lists from two systems are combined by the following proce-
dure. First, we perform separate score normalization for each
using the term-specific threshold technique in [13]. Second, we
merge the hits from the two lists that begin and end with less
than 0.5 second difference. The combined score for merged hits
smerge is computed as

smerge = (w1s
1/r
1 + w2s

1/r
2)r,

where s1 and s2 are the individual system scores,w1 andw2 are
the weights assigned to each system such thatw1+w2 = 1, and
r is a power factor between 1 and 10. The parameters {wi} and
r are optimized per language on a development set. Note that
given 0-1 normalized input scores, this nonlinear combination
rule will produce 0-1 normalized combination scores. Finally,
we apply score normalization to the merged hit list.

4. Experiments
4.1. Evaluation Design

We evaluate our PPM KWS performance in the IARPA Babel
Program (IARPA-BAA-11-02) framework, which has released
conversational telephone speech corpora for several languages.
In this study, we measure our system performance on Haitian1,
Lao2, Assamese3, Bengali4 and Zulu5. For each language there
are two resource conditions: the full language pack (FullLP)
contains approximately 80 hours of transcribed speech audio
along with a pronunciation dictionary that covers all word types
it contains; the limited language pack (LimitedLP) contains a
10 hour subset of FullLP. Language model text and pronuncia-
tion dictionary entries for LimitedLP are restricted to those that
occur in the given 10 hours. In this paper we only consider Lim-
itedLP, which simulates low-resource conditions for a diverse
set of languages. For each language a 10-hour development-
testing search collection is also provided to evaluate system per-
formance. Keyword sets are the official development lists gen-
erated by Babel participants for use before the evaluation pe-
riod, which consist of approximately 2000 multi-word queries

1Language collection release IARPA-babel201b-v0.2b.
2Language collection release IARPA-babel203b-v3.1a.
3Language collection release IARPA-babel102b-v0.5a.
4Language collection release IARPA-babel103b-v0.4b.
5Language collection release IARPA-babel206b-v0.1e.

for each language. We use two KWS scoring metrics. First,
Actual Term-Weighted Value (ATWV) [14] is given by

ATWV =1− 1

K

KX
w=1

„
NMiss(w)

NTrue(w)
+β

NFA(w)

T−NTrue(w)

«
,

whereK is the total number of keywords,NMiss(w) is the num-
ber of missed detection of keyword w, NFA(w) the number
of false alarms of w, NTrue(w) the number of reference oc-
currences of w. ATWV requires scores to be both normalized
across keyword such that a single global threshold can be set,
as well as well calibrated against the true posterior probabil-
ity of correctness such that the global threshold is 0.5. Sec-
ond, Oracular Term-Weighted Value (OTWV) is defined assum-
ing the keyword-specific optimal threshold is used instead of
0.5. Since OTWV does not require scores to be normalized
across keyword, it is a measure only of ranked list quality. The
NIST F4DE scoring tool is used for reference alignment, and
YES/NO decisions are made based on posterior scores.

4.2. System Implementation Details

The state-of-the-art DNN infrastructure of the Kaldi toolkit is
used as the input phonetic acoustic model. Here, we first train
a standard GMM-based, speaker adaptively trained model to
obtain HMM-state alignments and fMLLR feature transforms.
Next, we train a 5-layer DNN of p-norm units with p = 2 [8].
The basic input features are 13-dimensional PLP augmented
with 3-dimensional pitch and POV features, and spliced by 3
frames; then the 48-dimensional feature is reduced to 40 dimen-
sions using linear discriminant analysis (LDA). Adaptation with
maximum likelihood linear transforms with semi-tied covari-
ance (MLLT/STC) and fMLLR is applied, and 9-frame context
windows are stacked to represent the center frame. Thus, the re-
sulting inputs to the DNN are 360 dimensions, and the outputs
are posteriors over context dependent HMM-states where the
number and identity depend on the language. The current PPM
framework operates on monophone posteriorgrams, which are
derived by summing posterior dimensions corresponding to the
same center phone.

To obtain pronunciations for OOV keywords, we use the
Sequitur G2P toolkit [11], a data-driven G2P converter based on
joint-sequence models. We use each language’s LimitedLP lex-
icon with pairwise examples of word and pronunciations to train
a G2P model, and use the trained model to generate the pronun-
ciation for a given OOV keyword. Each dictionary-based PPM
is synthesized according to the prescription given in [4]. For
multi-word keywords, we construct the dictionary-based PPM
for each unigram in the multi-word keyword, update each uni-
gram PPM if training exemplars for that unigram are available,
and then concatenate unigram PPM into a multi-word PPM, as
described in [2].

For OTWV calculation, we can use the PPM likelihood ra-
tio detection function directly without tuning any score normal-
ization parameters. However, for the ATWV calculation we
must provide confidence scores normalized across keywords.
Following [2], we use a simple two-parameter logistic regres-
sion (slope and bias) to map PPM detection function scores
to posterior probability estimates and apply the term-specific
thresholding technique described in [13]. Following [5], we es-
timate these logistic regression parameters using a 2 hour subset
of the 10 hour development set we use for testing. Separately,
we performed cross-validation experiments to confirm that this
minor train-on-test violation did not unfairly impact our results.

Table 1: LVCSR, PPM, and combined search performance for
the five languages, along with relative gain from combination
over the LVCSR baseline alone. Averages are over the corre-
sponding individual language fields.

OTWV ATWV ATWV ATWV
Language System (All) (All) (IV) (OOV)

Haitian

LVCSR 0.54 0.44 0.49 0.23
PPM 0.36 0.21 0.20 0.25
Comb 0.60 0.48 0.51 0.35

% Gain 11.1 9.1 4.0 52.2

Lao

LVCSR 0.51 0.41 0.43 0.22
PPM 0.32 0.16 0.17 0.12
Comb 0.57 0.44 0.47 0.26

% Gain 11.8 7.3 9.3 18.2

Zulu

LVCSR 0.28 0.17 0.30 0.09
PPM 0.27 0.11 0.06 0.14
Comb 0.41 0.24 0.32 0.19

% Gain 46.4 41.2 6.7 111.1

Assamese

LVCSR 0.37 0.25 0.31 0.10
PPM 0.21 0.08 0.08 0.07
Comb 0.42 0.28 0.34 0.14

% Gain 13.5 12.0 9.7 40.0

Bengali

LVCSR 0.38 0.27 0.35 0.13
PPM 0.22 0.10 0.10 0.09
Comb 0.43 0.30 0.37 0.17

% Gain 13.2 11.1 5.7 30.8

Averages

LVCSR 0.42 0.31 0.38 0.15
PPM 0.28 0.13 0.12 0.14
Comb 0.49 0.35 0.40 0.22

% Gain 19.2 16.1 7.1 50.5

4.3. Results

Table 1 shows the LimitedLP KWS results on the five languages
using the Kaldi LVCSR and PPM systems, as well as the combi-
nation of the two. Also listed are the relative fusion gains over
the baseline, as well as average performance values over the
five languages. Consisten with the results in [2], we find that
LVCSR-based search dominates ATWV, with the PPM achiev-
ing on average only 42% of the baseline performance. How-
ever, we find that PPM search gives much more competitive re-
sults on OTWV performance, a metric that evaluates the qual-
ity of the ranked list independent of the consistency of confi-
dence scores across keywords. This OTWV-ATWV divergence
is a consequence of the PPM’s suboptimal score normalization,
which is performed using a simple logistic regression applied to
the likelihood ratio detection score of Eq. 1. Indeed, the LVCSR
search system computes true lattice posterior scores, which nor-
malize each lattice arc likelihood by all the other words that
might have accounted for the same acoustic observations. This
is a much more powerful normalization scheme, but it does
come at the larger computational cost of decoding the whole vo-
cabulary at indexing time. For keyword applications that do not
require score normalization, the PPM system provides on aver-
age 66% of LVCSR baseline OTWV performance with a much
smaller index processing time and size (see [2] for details).

If we consider OOV keyword search ATWV in isolation,
we can see that the dictionary-based PPM achieves compa-
rable results with the state-of-the-art WFST-based proxy key-
word search. The PPM outperforms on Haitian and Zulu, while
falling short on Lao, Assamese and Bengali, so it interesting to
consider what language-specific properties may be driving this

variation. For Zulu, an agglutinative language with a unusually
high keyword OOV rate, the PPM system achieves much closer
overall KWS performance with LVCSR, indicating PPM’s ad-
vantage for truly low-resource settings with woefully incom-
plete pronunciation dictionaries. Note that the PPM usually
gives comparable or even higher OOV ATWV results than IV,
since we find that PPM search is more sensitive to keyword
length and OOV keywords tend to be longer.

Given the distinct lexical modeling strategies employed
in the LVCSR baseline and PPM search systems, as well as
the substantial relative performance variation across language,
some degree of complementarity is to be expected. Even though
the PPM overall performance substantially trails the LVCSR
baseline on all five languages, we measured a 16% average
relative improvement of both ATWV and OTWV in combi-
nation. Moreover, the comparable performance of PPMs and
proxy keyword search for OOVs combine to produce an aver-
age ATWV relative increase of 50% over proxies alone. While
in-vocabulary PPM performance lags LVCSR the most, we still
post an average relative gain of 7% in fusion.

In terms of runtime comparison between proxy keyword
search and PPM OOV search on the 10 hour development set,
we compare the average runtime of five languages for the three
stages of operation, in terms of CPU time (in seconds). First,
for indexing time on the 10 hour search collection, proxy key-
word search takes 5,736 seconds to make an inverted index from
decoding lattices, while the PPM system takes 256 seconds to
extract phonetic events from monophone posteriorgrams. Sec-
ond, for model construction, it takes 2.4 seconds to generate
word proxies for each keyword, while it takes 0.01 seconds to
construct one dictionary prior PPM. Finally, for searching the
index, proxy search takes 0.55 seconds for each keyword, while
the PPM search takes 0.08 seconds (computed using the bench-
mark information provided in [2]). In all three categories, we
find that OOV search with PPMs is significantly more efficient
in time than proxy keyword search. It does require an addi-
tional phone event index, but as demonstrated in [2], the index
construction time and size are negligible.

5. Conclusions
We have demonstrated that the point process model framework
provides a viable keyword search platform for low-resource set-
tings. It is highly complementary with state-of-the-art LVCSR
techniques, posting substantial fusion gains for every language
evaluated. On its own, it provides state-of-the-art handling
of OOV keywords, but also produces dramatics gains when
combined with proxy keyword search outputs. However, as
evidenced by comparatively large gaps between ATWVs and
OTWVs, the substandard score normalization achievable with
PPMs remains a major challenge. Thus, the incorporation of
competing hypotheses and contextual constraints into the PPM
search is the main avenue for future progress.

6. Acknowledgments
The authors were supported in part by IARPA Babel contract
No. W911NF-12-C-0015. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of
DARPA, IARPA, DoD/ARL or the U.S. Government.

7. References
[1] Aren Jansen and Partha Niyogi, “Point process models for

spotting keywords in continuous speech,” Audio, Speech,
and Language Processing, IEEE Transactions on, vol. 17,
no. 8, pp. 1457–1470, 2009.

[2] Keith Kintzley, Aren Jansen, and Hynek Hermansky,
“Featherweight phonetic keyword search for conversa-
tional speech,” in ICASSP, 2014.

[3] Aren Jansen and Partha Niyogi, “Detection-based speech
recognition with sparse point process models,” in Acous-
tics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on. IEEE, 2010, pp. 4362–4365.

[4] Keith Kintzley, Aren Jansen, and Hynek Hermansky,
“MAP estimation of whole-word acoustic models with
dictionary priors,” in INTERSPEECH, 2012.

[5] Guoguo Chen, Sanjeev Khudanpur, Daniel Povey, Jan Tr-
mal, David Yarowsky, and Oguz Yilmaz, “Quantifying
the value of pronunciation lexicons for keyword search in
lowresource languages,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Confer-
ence on. IEEE, 2013, pp. 8560–8564.

[6] Guoguo Chen, Oguz Yilmaz, Jan Trmal, Daniel Povey,
and Sanjeev Khudanpur, “Using proxies for OOV
keywords in the keyword search task,” in Automatic
Speech Recognition and Understanding (ASRU), 2013
IEEE Workshop on. IEEE, 2013, pp. 416–421.

[7] Keith Kintzley, Aren Jansen, and Hynek Herman-
sky, “Event selection from phone posteriorgrams using
matched filters.,” in INTERSPEECH, 2011, pp. 1905–
1908.

[8] Xiaohui Zhang, Jan Trmal, Daniel Povey, and Sanjeev
Khudanpur, “Improving deep neural network acoustic
models using generalized maxout networks,” in ICASSP,
2014.

[9] Mark JF Gales, “Maximum likelihood linear transfor-
mations for HMM-based speech recognition,” Computer
speech & language, vol. 12, no. 2, pp. 75–98, 1998.

[10] Pegah Ghahremani, Bagher BabaAli, Daniel Povey, Ko-
rbinian Riedhammer, Jan Trmal, and Sanjeev Khudanpur,
“A pitch extraction algorithm tuned for automatic speech
recognition,” in ICASSP, 2014.

[11] Maximilian Bisani and Hermann Ney, “Joint-sequence
models for grapheme-to-phoneme conversion,” Speech
Communication, vol. 50, no. 5, pp. 434–451, 2008.

[12] Keith Kintzley, Aren Jansen, and Hynek Hermansky,
“Text-to-speech inspired duration modeling for improved
whole-word acoustic models,” in INTERSPEECH, 2013.

[13] David RH Miller, Michael Kleber, Chia-Lin Kao, Owen
Kimball, Thomas Colthurst, Stephen A Lowe, Richard M
Schwartz, and Herbert Gish, “Rapid and accurate spoken
term detection.,” in INTERSPEECH, 2007, pp. 314–317.

[14] NIST, “The Spoken Term Detection (STD) 2006 Eval-
uation Plan,” http://www.nist.gov/speech/
tests/std/, 2006.

