LIBRISPEECH: AN ASR CORPUS BASED ON PUBLIC DOMAIN AUDIO BOOK S

Vassil Panayotov, Guoguo ChenDaniel Povey, Sanjeev Khudanptir

*Center for Language and Speech Processing & Human Langeapadlogy Center of Excellence
The Johns Hopkins University, Baltimore, MD 21218, USA

{vassi | . panayot ov, dpovey}@nmuai | . com {guoguo, khudanpur }@ hu. edu

ABSTRACT

This paper introduces a new corpus of read English speeitabkau
for training and evaluating speech recognition systemse Mib-
riSpeech corpus is derived from audiobooks that are pahek.ib-
riVox project, and contains 1000 hours of speech samplefl kHz.
We have made the corpus freely available for download, alatty
separately prepared language-model training data antduiitdan-
guage models. We show that acoustic models trained on lgee&h
give lower error rate on the Wall Street Journal (WSJ) tetst than
models trained on WSJ itself. We are also releasing Kaldptscr
that make it easy to build these systems.

Index Terms— Speech Recognition, Corpus, LibriVox

1. INTRODUCTION

The rapid increase in the amount of multimedia content orlrthe
ternet in recent years makes it feasible to automaticallgciodata
for the purpose of training statistical models. This isjcatarly true
when the source data is already organized into well curatedhine
readable collections. The LibriVox projécta volunteer effort, is
currently responsible for the creation of approximatelp@@ublic
domain audio books, the majority of which are in English. Mafs
the recordings are based on texts from Project GuteAbalsp in
the public domain.

Although the use of audio books for building synthetic vsife
2] has previously been investigated, we are not aware of r@yyf
available read speech corpus in English that is suitabléréiming
and testing speech recognition systems, and which is asdaede as
the one we present here. The volunteer-supported spe&ubrigg

the language models, which we make available with this corpis
nally in Section 5 we present experimental results on mddeised
on this data set, using both the LibriSpeech dev and testasets
Wall Street Journal (WSJ) [5] test sets.

2. AUDIO ALIGNMENT

Most acoustic model training procedures expect that thaitgdata
come in the form of relatively short utterances, usually ofetv
tens of seconds in length, each with corresponding textrefoe

we need to align the audio recordings with the correspontéirts,

and split them into short segments. We also aim to exclude seg
ments of audio that might not correspond exactly with thgredd
text. Our procedure is similar to that described in [6], andsists

of two stages. (Note: we have since become aware of a differen
phone-based approach [7]).

2.1. Text preprocessing, lexicon and LM creation

Each book’s text is normalized by converting it into uppase, re-
moving the punctuation, and expanding common abbrevist@
non-standard words [8]. Then the SRILM toolkit [9] is usedrain

a Witten-Bell [10] smoothed bigram language model on thé eéx
that book. We base our lexicon on CMUdict, from which we remov
the numeric stress markers; the pronunciations for owmsctbulary
(O0QV) words are generated with the Sequitur G2P toolkit [11]
order to avoid possible problems with recognizing excesgilong
audio recordings, the audio chapters are split into segmahtp

to 30 minutes in length. The audio is then recognized usieg th
gmm-decode-fastedecoder from the Kaldi toolkit, trained on the
VoxForge dataset. For this first decoding pass we use a tr@ho

effort Voxforge’, on which the acoustic models we used for align- model discriminatively trained with Boosted MMI [12], basen

ment were trained, contains a certain amount of LibriVoxiaulout
the dataset is much smaller than the one we present hereanwithd
100 hours of English speech, and suffers from major gendépan
speaker duration imbalances.

MFCC [13] features processed with frame-splicing over Tiea,
followed by LDA, followed by a global semi-tied covarianc®TC)
transform [14].

This paper presents the LibriSpeech corpus, which is a read 2. First alignment stage

speech data set based on LibriVox’s audio books.

The corpus

is freely availablé under the very permissive CC BY 4.0 li- We use the Smith-Waterman alignment algorithm [15] to firel th
cense [3] and there are example scripts in the open souradi Kalbest single region of alignment between the recognizecbaanti the

ASR toolkit [4] that demonstrate how high quality acoustiodals
can be trained on this data.

chapter text. This is like doing Levenshtein alignment [{cept
we do not require it to consume the whole reference or hygathe

Section 2 presents the long audio alignment procedure taat wirom the beginning to end, and it also has tunable rather fitad

used in the creation of this corpus. Section 3 describestthetsre
of the corpus. In Section 4 we describe the process we usadltb b

Lhttps://librivox.org/
2http://www.gutenberg.org
Shttp://www.voxforge.org
4http://www.opensir.org/12/

weights for the different kinds of errors. From this we tahke fargest
single region of similarity (which in most cases would be ¢mngire
chapter) and discard the rest, if any. Within that regioniwifilarity,

we mark a transcript word as being part of an “island of comiteé

if it is part of an exact match with the reference whose length?
phones or more. We now split the audio into shorter segmefts,
35 seconds or less, using a dynamic programming algorithra. W



Phone bigram |

#insl #insZL#insS #insAL#insS #insSH#ns? #ins8
WRECK A NICE BEACH
1 2 3

#del

#insO

start

_sil _sil #del _sil #del _sil #del

Fig. 1. Example grammar (G) acceptor for the second stage of theraéint algorithm

Reference:A family of ten children will be always called a fine family ...
a) Hypothesis: _sil A FAMILY OF TEN CHILDREN WILL #del ALWAY'S #ins0016_b _iy #ins0017 CALLED A FINE FAMILY _sil
Explanation: Transposition of “be” and “always”.

Reference:... upon her arm and ... | rushed towards her ...
b) Hypothesis: _sil UPON HER ARM #ins002Qs #ins0021sil AND ... | RUSHED _sil #ins0054.ay _r _ah _sh_t #ins0055 TOWARDS HER
Explanation: Reader pronounces “arms” instead of “arm” and repeats Hed%

Reference:Morning dawned before | arrived at the village of Chamounix .
¢) Hypothesis: _sil MORNING DAWNED BEFORE | ARRIVED AT THE VILLAGE OF _sil #ins0018_sh _ah_m _ow _n _iy #ins0021
Explanation: G2P error— the auto-generated dictionary entry is “CHAMOXINCH AE M UW N IH K 3, which is wrong.

Fig. 2. Examples of typical text-audio discrepancies detecteskoond stage decoding. a) Chapter 1 of “Northanger Abbey. Byusten,
read by Kara Shallenberg; b) Chapter 23 of “FrankensteinkMbyshelley, read by Hugh McGuire; c) Chapter 15 of “Frankeimstby M.
Shelley, read by Gord Mackenzie

only allow it to split on silence intervals whose length idestst 0.5  model from word-positior in the transcript, we may only return at
second and which are inside an island of confidence. Thisvallo positionz (corresponding to an insertion between words) or position
us to generate, with reasonable confidence, a candidatiotedch  xz+1 (corresponding to a substitution or deletion of a word). sThi
split piece of audio. is like a pushdown transducer that can only store one itenhen t
pushdown store.
] In this second decoding stage, we use a speaker-adapted

2.3. Second alignment stage model [18, 19] with fMLLR transforms estimated at the speake
level, based on the transcript generated by the first degqufiss.

In most cases this algorithm succeeds in detecting texbaud
mismatches, especially for native speakers. There aréraltances
of false rejections. A common problem is, for example, thesfiani-
lation” of a short, 1-2 phone word into a neighboring silepeeod,
which leads to an erroneous detection of deletion from thdoau
However, since the original amount of audio in the audiolsaslso
large, we can afford to lose a certain percentage of it. Eigishows
amples of the kinds of errors that we typically find by appithis
ethod.

The whole alignment process took approximately 65 hours on

two Amazon EC2 cc2.8xlarge instances, to produce an irséfbf
aligned audio of size approximately 1200 hours.

The goal of the second stage is to filter out segments whereathe
didate text obtained by the first stage has a high likelihobtdes
ing inaccurate. Possible sources of text-audio mismatdde in-
accuracies in Project Gutenberg texts, reader-introdircsitions,
deletions, substitutions and transpositions, and intalyrdisfluen-
cies [1, 17]. Other significant sources of mismatch that wicad
are inaccurate text normalization and grapheme-to-phenemors
in the automatically generated pronunciations. e
In this second stage of alignment, we use a custom-generat

decoding graph for each segment. The decoding graph, diaged
in Figure 1, is formed from a combination of the linear seqaen
of words in the transcript with a generic phone-level bigriam-
guage model. Our aim is to use the phone-level bigram to adiew
bitrary insertions between words in the transcript, oraepient of )
words in the transcript; we will reject any utterance whoseatling ~ 2-4. Data segmentation
shows any deviation from the transcript. We also experietntith
a single-phone filler model to model errors, but found thengho

level bi_gram was more effective at finding segments withenaate 1, 5 good likelihood of having accurate transcripts. Mexbreak
transcripts. _ . these long segments up into smaller segments. We used fieredif

The most obvious way to generate the decoding graph woulghethods for this. For training data, our rule was to split oy si-
be to include multiple copies of the phone-level bigram rapt  |ence interval longer than 0.3 seconds. For test data, weatiolved
this would lead to very large decoding graphs. Instead weause gpjits if those intervals coincided with a sentence breakiénrefer-
single copy of the bigram part of the decoding graph (FigYré@dt  gnce text. The idea was that data split at sentence breakslisto
we modify the decoder so that after entering the bigram dafi® e easier to recognize from a language modeling point of.view

The second stage of alignment, which we described aboves giv
us a subset of the audio segments of length up to 35 secorads, th



3. DATA SELECTION AND CORPUS STRUCTURE
3.1. Data selection

To select the audio recordings for inclusion into the corpesuse
LibriVox's API°® to collect information about the readers, the audio
book projects in which they participated, and the chaptétmoks
that they read. The URLs for audio files and reference texte we
obtained by matching the information from LibriVox’s APl thithe
metadata records from the Internet Archiead Project Gutenberg’s
RDF/XML files’. For a small fraction of audiobooks no exact match
for the title was found in Project Gutenberg, so to improveecage
we allowed a fuzzy matching of titles.

In order to guarantee that there was no speaker overlap betwe
the training, development and test sets, we wanted to ernbate
each recording is unambiguously attributable to a singéakgr. To
that end we exclude such LibriVox genres as, for examplea“Dr
matic Reading”, which include predominantly multi-reagerdio
chapters. As an extra precaution, in the final post-prongssiep
of the alignment processing the recordings are processtdtie
LIUM speaker diarization toolkit [20] to automatically éet multi-
speaker chapters. A custom GUI application was writter,ittekes
use of the text-audio alignment information and the spedieiza-
tion information, to allow for quick inspection and filtegrout of
the remaining multi-speaker recordings. This applicatitso made
it possible to quickly produce gender information for theaers
and to discard a small number of recordings that had exeessiv
dio quality problems.

We ensured a gender balance at the speaker level and in terms

the amount of data available for each gender.

3.2. Corpus partitions

The size of the corpus makes it impractical, or at least ineoient
for some users, to distribute it as a single large archiveusThe
training portion of the corpus is split into three subsetish&pprox-
imate size 100, 360 and 500 hours respectively. A simplenaatic
procedure was used to select the audio in the first two sets, torb
average, of higher recording quality and with accents cltz&S
English. An acoustic model was trained on WSJ'’s si-84 dabaesu
and was used to recognize the audio in the corpus, using anbigr
LM estimated on the text of the respective books. We compilted
Word Error Rate (WER) of this automatic transcript relatigeour
reference transcripts obtained from the book texts.

The speakers in the corpus were ranked according to the WER
the WSJ model’s transcripts, and were divided roughly imtigdle,
with the lower-WER speakers designated as “clean” and tjieeini
WER speakers designated as “other”. From the “clean” paodl, 2
male and 20 female speakers were drawn at random and astigned
development set. The same was repeated to form a test seta¢tor
dev or test set speaker, approximately eight minutes ofcépase
used, for total of approximately 5 hours and 20 minutes ebicie
that, as mentioned in Section 2.4, we use a different segtient
procedure for development and test data, than for trainatg.d

The rest of the audio in the “clean” pool was randomly splibin
two training sets with approximate size 100 and 360 houngees
tively. For each speaker in these training sets the amouspedch
was limited to 25 minutes, in order to avoid major imbalanites
per-speaker audio duration.

Shttps://librivox.org/apifinfo

Shttp://blog.archive.org/2011/03/31/how-archive-itegms-are-
structured/

http://www.gutenberg.org/wiki/Gutenberg:Offlir@atalogs

subset hours pgr—spk female| male | total
minutes | spkrs | spkrs | spkrs

dev-clean 5.4 8 20 20 40
test-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-other 5.1 10 17 16 33
train-clean-100| 100.6 25 125 126 251
train-clean-360| 363.6 25 439 482 921
train-other-500| 496.7 30 564 602 1166

Table 1. Data subsets in LibriSpeech

The “other” pool was similarly split into test and developrhe
sets, and a single training set of approximately 500 houes.tls
pool, however we did not choose the development and tesatets
random; instead we deliberately chose more challengina. dette
WER we computed using the WSJ models was used to rank the
speakers in order of increasing difficulty, and the speat@rshe
test and development set were randomly chosen from theghad
tile of this sorted list. Table 1 provides a summary of allsets in
the corpus.

4. LANGUAGE MODELS

To make it easy to reproduce the results we report here, wereav
I(e)ased language model training data and pre-built langoamiels
onliné®, along with the text data that we used to build the language
models. The language model training material is carefiglgcted

to avoid any overlap with the texts which appear in the tedtday
velopment sets.

The source material for these language models is Projeernsut
berg books. All books, in their entirety, on which the testl ate-
velopment sets are based were filtered out, as well as any book
whose title has cosine similarity, over letter 3-grams,atge than
0.7 with any of the titles of these books. After filtering otles,
the text of approximately 22 000 candidate books was dowdelda
from Project Gutenberg. An inverted index of all 5-gramsjwgitop
words deleted, is built for the books in the test and develgm
sets. All candidate books are then checked against thix iade
each book for which more than one percent of the 5-grams which
appear in it, appear in any of the books in the test and denedap
Sets. is removed from the candidate set. The method is ietcor
finding shared text such as, for example, popular fairy teleh
are present in more than one fairy tales collection, lonatioihs of
poems in other works, and so on. We used other heuristicsto al
filter out texts such as numeric tables, sequences from tmeadu
Genome Project, and other types of documents that were deeme
inappropriate for language model training.

After the above steps, approximately 14500 public domain
books, containing around 803 million tokens in total and Q00
unique words, remained.

To select a lexicon, the words in the corpus were ranked by fre
guency, and the 200 000 most frequent words were selectedndr
one third of these words are present in the CMU pronunciation
tionary, accounting for around 97.5% of all tokens in thel@agon
sets; we generated pronunciations for the remaining wasithgjuhe
Sequitur G2P toolkit [11]. Modified Kneser-Ney smoothed B8d a
4-grams [21, 22] are trained. The perplexity for the 3-grandet
is 170, and the out of vocabulary token rate is approximalet9o

8http://www.opensir.org/11/



on average. For the 4-gram language model the perplexitpisd dev- | test- | dev- | test-
150. Acoustic model clean | clean | other | other
SAT 100h 8.19 9.32 | 29.31 | 31.52
SAT 460h 7.26 8.34 | 26.27 | 28.11
> EXPERIMENTS Ls | _SAT960h [ 7.08 | 804 | 21.14 | 2265
In this section we present decoding results using modeisegla DNN100h | 5.93 6.59 | 20.42 | 22.52
using various amounts of LibriSpeech data, and on WSJ data, o DNN 460h | 5.27 578 | 17.67 | 19.12
both LibriSpeech and WSJ test sets. The recordings aveifednin DNN 960h | 4.90 5,51 | 12.98 | 13.97
LibriVox are not completely ideal for training acoustic nedsl for WSJ SAT si-284 | 10.87 | 12.44 | 39.44 | 41.26
other domains, because the audio is MP3-compressed andseeca DNN si-284 | 7.80 8.49 | 27.39 | 30.01

the site’s guidelines for upload recommend noise reniaadl vol-
ume normalizatioHf. These practices are not consistently enforced;rapie 3 WERs on LibriSpeech’s test sets; all results are obtained
hovyever, so thereis a;ngnlflgant fraptlon of noisy and nmegssed by rescoring with a 4-gram language model.
audio available, combined with audio that has been sulgeoctau-
tomatic noise removal.

In order to assess the performance of the acoustic models on
non-compressed audio we use the Wall Street Journal re&dtspe error rates for language models of different size. The fiastspde-
corpus [5], as a baseline. We employ language models, ttaiméhe  coding is performed using the 3-gram model pruned with tiokes
text material the WSJ corpus provides, in conjunction withustic 3 x 107 using SRILM’s pruning method; the other numbers are
models trained on the LibriSpeech data to decode WSJ'sé&st s obtained through lattice rescoring.
and compare the results with those for state-of-the-artatsdcained

on WSJ's own si-284 set (which contains 82 hours of speech).dat dev- | test- | dev- | test
The WSJ results we present in Table 2 are for the “open-vdaatiu Language model clean| clean| other!| other
(60K) test condition, using not the standard 60K word ditziey 3-gram prn. thresh. 3e-7 7.54 | 8.02 | 18.51 | 19.41
supplied with WSJ but an extended version that we built tcecov 3-gram prn. thresh. 1e-J 6.57 | 7.21 | 16.72 | 17.66
more of the words that appear in the WSJ language modelshEor t 3-gram full 514 | 5.74 | 13.89 | 14.77
language model we used a pruned version of the standardrtrigr Z-gram ful 290 | 5511 1298 13.97

language model that is distributed with the WSJ corpus. Thastic
models, referred to 8SATIn the tables, are speaker-adapted GMM
models [18, 19], and those referred toRANN, are based on deep Table 4. LM I’eSCOI’ing results for the 960 hour DNN model
neural networks with p-norm non-linearities [23], traireat tested

on top of fMLLR features. The models estimated on LibriSgesc

training data are named after the amount of audio they weife bu

on. The models marked with60hare trained on the union of the 6. CONCLUSIONS
“train-clean-100" and “train-clean-360" subsets, andsthonarked
with 960hare trained on all of LibriSpeech’s training sets. We have automatically aligned and segmented English resethp
from audiobooks with the corresponding book text, and &iteout
, , ) segments with noisy transcripts, in order to produce a cglEn-
Acoustic model eval92 | devos | eval93 glish read speech suitable for training speech recogngj@tems.
SAT 100h 5.72 10.10 9.14 We have demonstrated that models trained with our corpugtierb
SAT 460h 5.49 8.96 7.69 on the standard Wall Street Journal (WSJ) test sets thanlglodidt
LS SAT 960h 5.33 8.87 8.32 on WSJ itself — the larger size of our corpus (1000 hours ugettse
DNN 100h 4.08 7.31 6.73 82 hours of WSJ's si-284 data) outweighs the audio mismaté.
DNN 460h 3.90 6.75 5.95 are releasing this corpus onlifeand have introduced scripts into
DNN 960h 3.63 6.52 5.66 the Kaldi speech recognition toolkit so that others canlgaspli-
WSJ SAT si_—284 6.26 9.39 9.19 cate these results.
DNNsi-284 | 3.92 6.97 5.74
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