Hill Climbing on Speech Lattices: A New Rescoring Framework

Ariya Rastrow, Markus Dreyer, Abhinav Sethy, Sanjeev Khudanpur, Bhuvana Ramabhadran and Mark Dredze

- Availability of large amounts of training data and computational resources
 - building more complex models with sentence level knowledge and longer dependencies is the active area of research for ASR
- Many of these complex and sophisticated models can not be integrated into the first pass decoding
- They can not be represented as weighted finitestate automata (WFSA)
 - difficult to even incorporate them in a **lattice-rescoring** pass

- Instead, N-best rescoring strategy is employed
 - Enumerating over the list of N best hypotheses (w.r.t the initial model)
- N-best rescoring suffers from known deficiencies and inefficiencies

N-best rescoring is not a smart strategy!

N needs to be increased to get closer to the optimal solution. But

Our Solution:

Use the more complex model to aid hypotheses selection, as opposed to considering the N hypotheses chosen by the simpler model

Our Solution:

Our Solution:

Hill Climbing on speech lattices

Our Solution:

• An iterative improvement search strategy:

- i. Starts with an *initial solution* in the search space
- ii. Examines a *neighborhood* of the initial point and steps to the best point in the *neighborhood* (objective function is increasing most steeply)
- iii. Iterates the procedure for the new selected point
- iv. Stops when the current solution can not be further improved
- For a broad class of problems, hill climbing is guaranteed to reach a *local maximum* solution

• The search space consists of set of word-sequences

- It is natural to define the neighborhood function using the edit-distance function
- Specifically, the neighborhood set is defined by editing at specific position *i* of word sequence W
 - This neighborhood is represented by $\mathcal{N}(W,i)$
 - deleting, substituting or inserting a word to the left of w_i
- How to generate $\mathcal{N}(W, i)$ efficiently? (will be explained later)

• In this work, we use hill climbing for LM rescoring

- The lattice-generating LM is replaced with a long-span/complex LM
- We gradually climb the search space (word-sequences in the lattice) to maximize:

 $g(X, W; \Lambda, \Gamma_{\text{new}}) = \alpha \log P(X|W, \Lambda) + \log P(W|\Gamma_{\text{new}})$

Initialization: the highest scoring word sequence (the *viterbi* path) is selected from the initial lattice

Initialization: the highest scoring word sequence (the viterbi path) is selected from the initial lattice

Neighborhood Generation: for a selected position *i*, all paths in the lattice corresponding to word-sequences are extracted.

 $W' \in \mathcal{N}(W, i)$

Initialization: the highest scoring word sequence (the viterbi path) is selected from the initial lattice

Neighborhood Generation: for a selected position *i*, all paths in the lattice corresponding to word-sequences are extracted. $W' \in \mathcal{N}(W, i)$

Neighborhood Rescoring: evaluating all the word sequences in the neighborhood set, and selecting the word sequence with maximum score for the next step.

 $g(X, W'; \Lambda, \Gamma_{\text{new}}) = \alpha \log P(X|W', \Lambda) + \log P(W'|\Gamma_{\text{new}})$

Initialization: the highest scoring word sequence (the *viterbi* path) is selected from the initial lattice

Neighborhood Generation: for a selected position *i*, all paths in the lattice corresponding to word-sequences are extracted. $W' \in \mathcal{N}(W, i)$

Neighborhood Rescoring: evaluating all the word sequences in the neighborhood set, and selecting the word sequence with maximum score for the next step.

$$g(X, W'; \Lambda, \Gamma_{\text{new}}) = \alpha \log P(X|W', \Lambda) + \log P(W'|\Gamma_{\text{new}})$$

Initialization: the highest scoring word sequence (the viterbi path) is selected from the initial lattice

Neighborhood Generation: for a selected position *i*, all paths in the lattice corresponding to word-sequences are extracted. $W' \in \mathcal{N}(W, i)$

Neighborhood Rescoring: evaluating all the word sequences in the neighborhood set, and selecting the word sequence with maximum score for the next step.

$$g(X, W'; \Lambda, \Gamma_{\text{new}}) = \alpha \log P(X|W', \Lambda) + \log P(W'|\Gamma_{\text{new}})$$

The evaluation method of the new LM is called

Initialization: the highest scoring word sequence (the *viterbi* path) is selected from the initial lattice

Neighborhood Generation: for a selected position *i*, all paths in the lattice corresponding to word-sequences are extracted. $W' \in \mathcal{N}(W, i)$

Neighborhood Rescoring: evaluating all the word sequences in the neighborhood set, and selecting the word sequence with maximum score for the next step.

 $g(X, W'; \Lambda, \Gamma_{\text{new}}) = \alpha \log P(X|W', \Lambda) + \log P(W'|\Gamma_{\text{new}})$

$\left(\right)$	

Initialization: the highest scoring word sequence (the *viterbi* path) is selected from the initial lattice

Neighborhood Generation: for a selected position *i*, all paths in the lattice corresponding to word-sequences are extracted.

Neighborhood Rescoring: evaluating all the word sequences in the neighborhood set, and selecting the word sequence with maximum score for the next step.

Stop: until all the positions are visited and there is no change to the current word-sequence

Initialization: the highest scoring word sequence (the *viterbi* path) is selected from the initial lattice

Neighborhood Generation: for a selected position *i*, all paths in the lattice corresponding to word-sequences are extracted.

Neighborhood Rescoring: evaluating all the word sequences in the neighborhood set, and selecting the word sequence with maximum score for the next step.

Stop: until all the positions are visited and there is no change to the current word-sequence

- The set of all word sequences that can be generated from W with one deletion, insertion or substitution can be represented by a FSA.
 - Let us call this machine LC(W, i)
- We will illustrate how LC(W, i) can be constructed through an example

 $W = w_1 w_2 w_3 w_4 w_5$

 $W = w_1 w_2 w_3 w_4 w_5$

LC(W, 2)

 $W = w_1 w_2 w_3 w_4 w_5$

LC(W, 2)

 $W = w_1 w_2 w_3 w_4 w_5$

LC(W, 2)

 $W = w_1 w_2 w_3 w_4 w_5$

 $W = w_1 w_2 w_3 w_4 w_5$

• Due to the arbitrary decision to insert only to the left of a position, we also define LC(W, n+1) which permits insertions to the right of the last word

 $W = w_1 w_2 w_3 w_4 w_5$

insertions (at the end)

• To restrict the neighboring set to word sequences in the lattice (our search space), LC(W, i) is intersected with a weighted FSA representation of the lattice, L_{acoustic} :

 $LN(W, i) \leftarrow LC(W, i) \circ L_{\text{acoustic}}$

• To restrict the neighboring set to word sequences in the lattice (our search space), LC(W, i) is intersected with a weighted FSA representation of the lattice, L_{acoustic} :

$$LN(W, i) \leftarrow LC(W, i) \circ L_{\text{acoustic}}$$

Acoustic scores are needed to be combined with the new LM score, according to our rescoring Eqn.

• To restrict the neighboring set to word sequences in the lattice (our search space), LC(W, i) is intersected with a weighted FSA representation of the lattice, L_{acoustic} :

Local Maxima

- Our algorithm is not guaranteed to find the global maximum and may get stuck in a local maximum solution
 - This is true in general for hill climbing algorithms which are applied to non-convex space
- Two common solutions to overcome this problem:
 - **I. Random-restart hill climbing:** hill climbing is carried out using different random starting points
 - Simulated Annealing: unlike hill climbing it is possible to accept random moves from the neighborhood.

S. Kirkpatrick and et. al, Science 1983

Local Maxima

- In this work, we consider random-restart technique
 - This is true in general for hill climbing algorithms which are applied to non-convex space
- Our hill climbing algorithm is **repeated** *M* times, each time with a different initial word sequence
 - We will have *M* different stoping paths along with their corresponding scores (under the new model)
 - The path with the maximum score is selected as the final output of the algorithm
- The initial paths are selected by **sampling** the initial lattices
 - We make sure sampled paths are not repeated
 - For the first iteration, we always start with viterbi path

Experimental Setup

- The ASR system is based on the 2007 IBM speech transcription system for GALE
- The initial lattices are generated using a 3-gram LM with Kneser-Ney smoothing
 - It has about 2.4M N-grams and is built on 400M broadcast news LM training text
- We use two different models for rescoring experiments:
 - 4-gram LM with about 64M N-grams
 - Model *M* shrinking based exponential LM

S.F. Chen, NAACL-HLT 2009

- Results are reported on the following sets:
 - rt04 on which the WER of initial lattices is 15.51% (using 3-gram LM)
 - dev04f with initial WER of 17.03%

Evaluation of the Efficacy

• We evaluate two different aspects of our proposed algorithm:

Evaluation of the Efficacy

• We evaluate two different aspects of our proposed algorithm:

Comparison of the proposed hill climbing method and *N*best rescoring based on the average number of **sentence level evaluations** needed for both methods to get to a particular WER

Evaluation of the Efficacy

• We evaluate two different aspects of our proposed algorithm:

Comparison of the proposed hill climbing method and *N*best rescoring based on the average number of **sentence level evaluations** needed for both methods to get to a particular WER

The algorithms are also analyzed based on how close they can get to the WER of the optimal solution (global maximum) of the rescoring model

4-gram LM on rt04

Model *M* LM on rt04

4-gram LM on dev04f

Model M LM on dev04f

Discussion

The results show that our proposed method results in *far fewer* evaluations to reach competitive WERs, including optimal WER.

Discussion

The results show that our proposed method results in *far fewer* evaluations to reach competitive WERs, including optimal WER.

At each step the moves are selected (from neighborhood set) based on their **quality under the new model** (in contrast to *N*-best rescoring where the evaluating points are selected based on the initial model)

Discussion

The results show that our proposed method results in *far fewer* evaluations to reach competitive WERs, including optimal WER.

At each step the moves are selected (from neighborhood set) based on their **quality under the new model** (in contrast to *N*-best rescoring where the evaluating points are selected based on the initial model)

The problem with N-best rescoring (non-efficiency in terms of effective evaluations) is more severe when the **rescoring model is different/orthogonal** to the initial model

Thank you!

Tuesday, April 5, 2011