
HILL CLIMBING ON SPEECH LATTICES: A NEW RESCORING FRAMEWORK

Ariya Rastrow1, Markus Dreyer1, Abhinav Sethy2, Sanjeev Khudanpur1,
Bhuvana Ramabhadran2 and Mark Dredze1

1Human Language Technology Center of Excellence, and
Center for Language and Speech Processing, Johns Hopkins University

2IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
{ariya, markus, khudanpur, mdredze}@jhu.edu {asethy, bhuvana}@us.ibm.com

ABSTRACT

We describe a new approach for rescoring speech lattices — with
long-span language models or wide-context acoustic models — that
does not entail computationally intensive lattice expansion or limited
rescoring of only an N -best list. We view the set of word-sequences
in a lattice as a discrete space equipped with the edit-distance met-
ric, and develop a hill climbing technique to start with, say, the
1-best hypothesis under the lattice-generating model(s) and itera-
tively search a local neighborhood for the highest-scoring hypothe-
sis under the rescoring model(s); such neighborhoods are efficiently
constructed via finite state techniques. We demonstrate empirically
that to achieve the same reduction in error rate using a better esti-
mated, higher order language model, our technique evaluates fewer
utterance-length hypotheses than conventional N -best rescoring by
two orders of magnitude. For the same number of hypotheses evalu-
ated, our technique results in a significantly lower error rate.

Index Terms— Rescoring, Hill Climbing, Search Algorithm

1. SHORTCOMINGS OF N -BEST RESCORING

Due to the availability of large amounts of training data and com-
putational resources, building more complex models with sentence
level knowledge and longer dependencies has been an active area of
research in automatic speech recognition (ASR) [1, 2, 3]. Yet, due to
the complexity of the speech recognition task, integration of many of
these complex and sophisticated knowledge sources into the first de-
coding pass is not feasible. Many of these long-span models cannot
be represented as weighted finite-state automata (WFSA), making it
difficult even to incorporate them in a lattice-rescoring pass. Instead,
an N -best rescoring strategy is employed to (partially) realize their
superior modeling power.

N -best rescoring, however, suffers from several known deficien-
cies and inefficiencies. As a thought experiment, one could sort all
the hypotheses in a lattice using the simpler lattice-generating mod-
els, rescore each with the more complex models and ask where the
highest-scoring word sequence ranks. N -best rescoring will suffer
from search errors ifN is smaller than this rank. But while consider-
ing a large number of hypotheses mitigates search errors, it is often
computationally expensive, especially since most of the N options
will score poorly using the complex model. The solution is to use
the more complex models to aid hypotheses selection, as opposed to
considering the N hypotheses chosen by the simpler models.

This work was partially supported by National Science Foundation Grant
No

¯
0963898 (IIS/RI). Frederick Jelinek contributed to this work and would

be a co-author if he were available and willing to give his consent.

In this paper, we propose a hill climbing technique that opera-
tionalizes this idea. Hill climbing examines a neighborhood of an
initial point, finds the direction in which the function is increasing
most steeply, moves a suitable step in this direction to reach a new
point, and iterates. For a broad class of problems, hill climbing is
guaranteed to reach a local maximum of the function. To apply hill
climbing ideas to lattice rescoring with complex models, we there-
fore need to view the alternatives in the lattice as points in a domain-
space equipped with a notion of a neighborhood. A natural domain
is to consider each word sequence in the lattice as a point, and the
edit distance between two word sequences as the metric for defining
neighborhoods. Starting with a word sequence in the lattice, we eval-
uate hypotheses in a small neighborhood with the complex model,
step to the best one, and iterate, until a hypothesis scores higher than
all the alternatives in its neighborhood.

Hill climbing for ASR has been investigated previously in [4] for
rescoring confusion networks [5], which provide posterior probabil-
ities for individual words in the hypotheses based on all the lattice-
generating models. Scores from the complex models may be com-
bined with these (total) probabilities during rescoring. The tech-
nique presented here evaluates explicit paths in the original lattice,
permitting greater flexibility, e.g. for discriminatively combining the
individual models used in lattice generation and rescoring [6].

Section 2 describes our hill climbing technique, and efficient
construction of the neighborhoods using finite-state automata (FSA)
techniques. Section 3 addresses the issue of non-convex optimiza-
tion, i.e. avoiding local maxima. Sections 4 and 5 describe our ex-
perimental setup and results.

2. HILL CLIMBING ON SPEECH LATTICES

The ASR output from the first decoding pass is typically encoded as
a lattice: a directed acyclic graph (DAG) with unique start and end
nodes, nodes time-stamped w.r.t. the speech signal X , and edges
labeled with words w. Each path in the DAG from start to end corre-
sponds to a candidate time-aligned transcripts W = w1 w2 . . . wn

of X . Each edge in the DAG is also labeled with component model
scores, e.g. log-probabilities from the acoustic model (Λ) and lan-
guage model (Γ). The DAG structure respects the conditional inde-
pendence assumptions of the component models, so that the score
g(X,W ; Λ,Γ) of an entire path is the sum of the scores of the edges
along the path.

We will investigate the replacement of the lattice-generating lan-
guage model Γ with a long-span language model Γnew. We will use
hill climbing to find the path W in the lattice that maximizes

g(X,W ; Λ,Γnew) = α logP (X|W,Λ) + logP (W |Γnew), (1)

where α is the inverse of the language model (LM) scaling factor.
In order to apply hill climbing to our problem, we need to de-

fine a neighborhood for each word sequence W in the lattice. Since
our search space consists of a set of word sequences, it is natural to
define the neighborhood function using the edit distance metric.

Specifically, we define the neighborhood of W at position i to
be all the paths in the lattice whose word sequence may be obtained
by editing — deleting, substituting or inserting a word to the left of
— wi. We will useN (W, i) to denote this “distance 1 at position i”
neighborhood of W . We explain in Section 2.1 how the set of paths
in N (W, i) can be efficiently generated from the representation of
the lattice as a finite-state automaton (FSA) using the intersection
operation.

We propose to undertake hill climbing as follows. At each step
of the algorithm, a position i in the current word sequence W is
selected. All paths in the lattice corresponding to word sequences
W ′ ∈ N (W, i) are then extracted, along with the original acoustic
scores on each edge. The new scores g(X,W ′; Λ,Γnew) are com-
puted and the hypothesis Ŵ ′(i) with the highest score becomes the
new W . A new position i in the new W is then selected1 and the
process continues, until W = Ŵ ′(1) = . . . = Ŵ ′(n). In other
words, the search terminates when W itself is the highest scoring
hypothesis in its 1-neighborhood at all positions in i.

Section 2.2 described the hill climbing algorithm formally, and
Section 2.3 discusses alternative ways of selecting the position i.

2.1. Efficient Generation of Neighborhoods

As mentioned above, we need to efficiently generate the neighbor-
hood set of a given word sequence W at a specific position i.

To this end, note that the set of all word sequences that can be
generated from W with one deletion, insertion or substitution at po-
sition i can be represented by a FSA. We will call this machine
LC(W, i). Figure 1 illustrates the construction of such a FSA. A
word sequence W = w1 w2 . . . w5 is represented as a FSA in Fig-
ure 1(a) and Figure 1(b) represents LC(W, 2), the distance 1 neigh-
bors ofW at position 2 . The ε arc (1→ 2) accounts for the neighbor
with w2 deleted, the arc with σ followed by ε (1 → 6 → 2) corre-
sponds to substituting w2 with any word, including w2 itself, i.e.
W always belongs to N (W, i), and the path with σ followed by w2

corresponds to one insertion to the left of w2. Since the decision to
insert only to the left of a position i is arbitrary, we also define the
FSA LC(W,n+ 1), which permits insertions to the right of the last
word in W . LC(W, 6) for the example above is shown in Figure
1(c).

Next, to restrict the neighboring N (W, i) of W to word se-
quences present in the lattice (our search space), LC(W, i) is inter-
sected with a weighted FSA representation of the lattice, Lacoustic

whose weights are scaled acoustic scores, α logP (X|Ŵ ,Λ), from
the initial lattice:

LN(W, i)← LC(W, i) ◦ Lacoustic. (2)

LN(W, i) therefore is a weighted FSA representation of the subset
of word sequences W ′ in N (W, i) that are also present in the ini-
tial lattice. The weights associated with the words in LN(W, i) are
the acoustic scores in the original lattice, which we will need for
combining with the new language model scores logP (W ′|Γnew)
according to (1). Note also that although Lacoustic could be a huge

1We have experimented with selecting i sequentially from left to right at
successive steps, returning to the beginning (i=1) from the end of W .

0 1 2 3 4 5
w1 w2 w3 w4 w5

(a)

0 1 2 3 4 5

6

w1

ε
w3 w4 w5

σ w2

ε

(b)

0 1 2 3 4 5 6
w1 w2 w3 w4 w5

σ

ε

(c)

Fig. 1. The FSA representation of the neighborhood set of a given
path: (a) Original path. (b) Neighborhood for a specific position. (c)
Neighborhood for the last position.

WFSA, the intersection is fast and efficient because LC(W, i) is
(practically) deterministic, and has a very small number of states.

2.2. The Hill Climbing Algorithm

We now introduce the algorithm formally using the notation devel-
oped previously. The three major steps are shown in Algorithm 1.

• Initialization where the highest scoring word sequence (the
Viterbi path) from the initial lattice is selected;

• Neighborhood Generation discussed in Section 2.1;

• Neighborhood Rescoring which involves evaluating all the
word sequences in the neighborhood set using (1), and select-
ing the word sequence with maximum score for the next step
of the algorithm.

It is worth mentioning that our algorithm is based on a variation of
hill climbing, called steepest ascent hill climbing, in which the best
possible move is made at each step, among all possible moves (in
our case the best path after rescoring by the new model among paths
in the neighborhood set). In the basic hill climbing algorithm, any
move in the neighborhood which improves the objective function
may be made, not necessarily the move with the most improvement.

2.3. Choosing Positions to Explore Via Hill Climbing

Once the neighborhood N (W, i) of the current position in W has
been explored and W has been updated, the hill climbing algorithm
has many choices for the next position (the new i) to explore. We
have made the expedient choice of i← i+ 1 in Algorithm 1, i.e. the
choice to explore the neighborhood(s) ofW sequentially from left to
right. We emphasize that this is by no means the only way to choose
i, and possibly not even the optimal choice. For the local optimality
of hill climbing, it suffices that the search terminates only if W is
the highest scoring hypothesis in all its i neighborhoods.

A possibly smarter choice of i may be based on obtaining the
lattice entropy at each wi. Positions of high entropy indicate higher
uncertainty about the choice of wi, and positions of likely errors in
W [7]. Attacking such positions first, with other positions fixed, will
likely focus the rescoring effort where it is most needed, and result
in even faster convergence to the highest scoring hypothesis.

Algorithm 1 Steepest Ascent Hill Climbing for Rescoring
Lacoustic ←WFSA of the initial lattice with weights representing
scaled acoustic scores (scaled by α).
v ← Viterbi path of the initial lattice //taking into account both
initial acoustic and LM scores
N ← length(v)
repeat
i← 0
while i ≤ N + 1 do

// Local changes for the ith position
create FSA LC(v, i)
// Neighboring paths with their acoustic scores
LN(v, i)← LC(v, i) ◦ Lacoustic

//Rescoring and Choosing the best path
v ← Best(Rescore(LN(v, i)))
N ←length(v) // new length
if DELETION then
i← i-1

end if
i← i+1

end while
until v does not change // Stopping criterion

3. MITIGATING THE EFFECTS OF LOCAL MAXIMA
Our algorithm, as true in general of hill climbing algorithms, may
yield a local maximum solution as there is no guarantee that it finds
the global maximum solution when applied to a non-convex space.
Two common solutions to overcome this problem are,

1. Random-restart hill climbing where hill climbing is carried
out using different random starting points (word sequences)

2. Simulated Annealing in which unlike hill climbing one
chooses a random move from the neighborhood (recall that
hill climbing chooses the best move from all those available,
at least when using the steepest ascent variant). If the move
results in a better word sequence (in terms of the score under
the new model) than the current word sequence then simu-
lated annealing will accept it. If the move is worse then it
will be accepted according to some probability [8].

This paper considers the random-restart technique. Algorithm 1
is repeated M times, each time with a different initial word se-
quence. At the end of each iteration, the score (under the new model)
of the resulting path is stored. Hence, we will have M different
stopping paths , (v1, v2, · · · , vM), along with their corresponding
scores, (g1, g2, · · · , gM). The path with the maximum score is se-
lected as the final output of the algorithm. The M starting paths
(word sequences) are selected by sampling the initial lattices (based
on the distribution imposed by the initial model). In addition, we
make sure that the sampled paths are not repeated and also for the
first iteration we start from the viterbi path in the lattices.

4. EXPERIMENTAL SETUP

4.1. Corpora, Baseline and Rescoring Models
The ASR system used throughout this paper is based on the 2007
IBM Speech transcription system for GALE Distillation Go/No-go
Evaluation [9]. The acoustic models used in this system are state-of-
the-art discriminatively trained models and are the same ones used
for all experiments presented in this paper. As a demonstration of
our proposed rescoring framework, we first build a 3-gram language

model with Kneser-Ney smoothing on 400M broadcast news LM
training text. This 3-gram LM has about 2.4M N -grams and is used
to generate initial lattices for all the experiments. For the rescoring
experiments, we train two different models (to make sure our algo-
rithm is applicable across different models) on the above LM text: 1)
4-gram LM with about 64M N -grams. 2) ModelM shrinking based
exponential LM [10]. The latter LM has been reported to have the
state-of-the-art performance for the broadcast news task [11]. The
evaluation set is the 2.5h rt04 evaluation set containing 45k words.
The WER of the initial 3-gram LM on this data set is 15.51%. Ad-
ditionally, we report rescoring results on dev04f using Model M to
show the generalization of our algorithm across different data sets.
The initial WER on dev04f using 3-gram LM is 17.03%.

4.2. Evaluation of the Efficacy of Hill Climbing
We evaluate two different aspects of our proposed algorithm.

First, comparison of the proposed algorithm and N -best rescor-
ing. For this, we calculate the average number of word sequence
evaluations needed for both methods to get to a particular WER (af-
ter rescoring under the new models). In our algorithm during the
rescoring phase (of the neighborhood set), we need to query the LM
score of each word sequence in the neighborhood set. In order to get
the score, we use a look-up table of previously computed scores for
word sequences, computing scores using the evaluation method for
the rescoring model only for new word sequences which are not in-
cluded in the look-up table. For each utterance, the effective number
of performed evaluations by the rescoring model can be obtained
from the size of the look-up table at the end of the hill climbing
procedure. Also, for N -best rescoring we generate a list of word
sequences in which all the paths are unique and hence the size of
the generated list is essentially the number of effective evaluations.
We observed in our experiments that for the same number of evalu-
ations, the two algorithms took the same amount of time. Therefore,
a reduction in the number of evaluations directly corresponds to a
speedup in runtime.

Second, the algorithms are analyzed based on how close they
can get to the WER of the optimal solution (global maximum) of the
rescoring model on the lattices 2.

5. RESULTS AND DISCUSSION
The results for comparing our hill climbing method toN -best rescor-
ing using 4-gram LM and Model M can be seen in Figure 2(a)
and (b), respectively. Figure 3 also illustrates rescoring results us-
ing Model M LM on dev04f. The x-axis corresponds to the average
number of effective evaluations (in log scale) calculated as described
in Section 4.2 for each method. The y-axis shows the WER of the
output of the algorithms for each experiment. For hill climbing ex-
periments, we use M = {1, 5, 10, 15, 20, 30, 40, 50, 100} starting
paths (which corresponds to the different points of solid lines in all
figures) and also we evaluate N -best rescoring with N ranging from
5 to 50000 (different points in dashed lines). In addition, the hori-
zontal dashed line in the figures shows the WER of the optimal so-
lution in the lattices using 4-gram and Model M LMs respectively.
These optimal WERs can be calculated due to the fact that the rescor-
ing models, which we used for our experiments, can be represented
as WFSA and hence be composed with the lattices to extract the best
path. However, we emphasize that this can not be done for models
with longer dependencies and syntactic information and therefore,
the need for a rescoring framework is inevitable with those models.

2For the purpose of this paper, the rescoring LMs are selected such that
exact lattice rescoring is possible; Hence, the optimal WERs can be reported.

100 101 102 103 104 10513.5

13.75

14

14.25

14.5

14.75

15

Number of Evaluations (log scale)

W
ER

(%
)

Hill Climbing
Nbest rescoring

Optimal WER% using 4 gram LM

(a)

100 101 102 103 104 10512.5

12.75

13

13.25

13.5

13.75

14

14.25

14.5

14.75

15

Number of Evaluations (log scale)

W
E

R
(%

)

Hill Climbing
Nbest rescoring

Optimal WER% using Model M LM

(b)

Fig. 2. Hill-Climbing vs. N -best rescoring on rt04: (a) 4-gram LM
(b) Model M LM

These figures show that our proposed hill climbing algorithm
results in far fewer evaluations to reach competitive WERs, includ-
ing the optimal WER, under both models. In fact, our algorithm
produces similar WER results with speedups close to two orders of
magnitude. This improvement is due to the characteristics of the hill
climbing method where at each step the moves are selected (from
neighborhood set) based on their quality under the new model (in
contrast toN -best rescoring where the evaluating points are selected
based on the initial model). An important observation, seen by com-
paring Figure 2(a) with Figure 2(b), is that the problem with N -best
rescoring (non-efficiency in terms of effective evaluations) is more
severe when the rescoring model is more different/orthogonal to the
initial model. In our case, Model M LM is capturing knowledge
which significantly differs from the initial 3-gram model, compared
to the 4-gram vs. 3-gram LM. Hence, one can see in Figure 2(b) a
large gap between the two rescoring methods in terms of number of
needed evaluations.

6. CONCLUSIONS

We have introduced a novel rescoring framework on speech lat-
tices based on hill climbing via edit-distance based neighborhoods.
We have shown that the proposed method results in far fewer full-
sentence evaluations by the complex model than conventional N -
best rescoring. Although we have used the proposed algorithm

100 101 102 103 104 10514.5

14.75

15

15.25

15.5

15.75

16

16.25

16.5

16.75

17

Number of Evaluations (log scale)

W
ER

(%
)

Hill Climbing
Nbest rescoring

Optimal WER% using Model M LM

Fig. 3. Hill-Climbing vs. N -best rescoring on dev04f using Model
M LM

to carry out only LM rescoring, we emphasize that the method is
applicable for rescoring using a new acoustic model, with multi-
ple knowledge sources and in a discriminative model combination
scenario.

7. REFERENCES

[1] S. Khudanpur and J. Wu, “Maximum entropy techniques for
exploiting syntactic, semantic and collocational dependencies
in language modeling,” Computer Speech and Language, pp.
355–372, 2000.

[2] C. Chelba and J. Frederick, “Structured language modeling,”
Computer Speech and Language, vol. 14, no. 4, pp. 283–332,
Oct. 2000.

[3] H. K. J. Kuo, L. Mangu, A. Emami, I. Zitouni, and L. Young-
Suk, “Syntactic features for Arabic speech recognition,” in
Proc. ASRU, 2009.

[4] A. Deoras and F. Jelinek, “Iterative decoding: A novel re-
scoring framework for confusion networks,” in Proc. ASRU,
2009, pp. 282–286.

[5] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus among
words: Lattice-based word error minimization,” in Sixth Euro-
pean Conference on Speech Communication and Technology,
1999.

[6] P. Beyerlein, “Discriminative Model Combination,” Proc.
ICASSP, 1998.

[7] L. Burget and et al., “Combination of strongly and weakly
constrained recognizers for reliable detection of OOVs,” in
Proc. ICASSP, 2008.

[8] S Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, pp. 671–680, 1983.

[9] S. Chen, B. Kingsbury, L. Mangu, D. Povey, G. Saon,
H. Soltau, and G. Zweig, “Advances in speech transcription at
IBM under the DARPA EARS program,” IEEE Transactions
on Audio, Speech and Language Processing, pp. 1596–1608,
2006.

[10] S. F. Chen, “Shrinking exponential language models,” in Proc.
NAACL-HLT, 2009.

[11] S. F. Chen, L. Mangu, B. Ramabhadran, and et. al, “Scaling
shrinkage-based language models,” Proc. ASRU, 2009.

