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ABSTRACT

This paper addresses the detection of OOV segments in the output
of a large vocabulary continuous speech recognition (LVCSR) sys-
tem. First, standard confidence measures from frame-based word-
and phone- posteriors are investigated. Substantial improvement is
obtained when posteriors from two systems - strongly constrained
(LVCSR) and weakly constrained (phone posterior estimator) are
combined. We show that this approach is also suitable for detec-
tion of general recognition errors. All results are presented on WSJ
task with reduced recognition vocabulary.

Index Terms— LVCSR, OOV, confidence measures.

1. INTRODUCTION

Out of vocabulary words (OOVs) are an important source of er-
ror in current large vocabulary continuous speech recognition sys-
tems (LVCSR). They areunavoidabledue to human speech con-
tains proper names, out-of-language, and invented words. They
are known to be quitedamaging, as one OOV can generate about
2 recognition errors. Because OOVs are rare, they usually donot
have large impact on the word error rate (WER) of LVCSR. On
the other hand, information theory tells us that rare and unexpected
events tend to be information rich. The working group “Recovery
from Model Inconsistency in Multilingual Speech Recognition” (in-
formally “WHAZWRONG?”) of the 2007 JHU summer workshop
concentrated on the detection of OOVs. Reliable detection of OOVs

This research was conducted under the auspice of the 2007 Johns Hop-
kins University Summer Workshop, and partially supported by the US De-
partment of Defense (Contract No H-98230-07-C-0365), National Science
Foundation (Grant No IIS-0121285) and Defense Advance Research Projects
Agency (GALE Program).
Speech@FIT researchers were partly supported by European projects
AMIDA and DIRAC, by Grant Agency of Czech Republic under project
No. 102/08/0707 and by Czech Ministry of Education under projects No.
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can lead to an automatic update of the recognizer’s vocabulary or
can help open vocabulary recognition [1, 3].

Confidence measures (CM) [11] are being routinely used to de-
tect incorrectly recognized words. Our goal is to find confidence
measures to detect OOVs. We compare our results to theCmax

measure computed from word lattices, the best performing confi-
dence measure in [11]. In this work, the use of frame-based, word-
and phone- posterior probabilities (shortly “posteriors”) is investi-
gated. Frame-based posteriors have already been used as CM,for
example in [2] they served to estimate confidence of words from a
hybrid NN/HMM system.

By comparing posteriors fromtwo systems: strongly con-
strained (LVCSR, word-based, with language model) andweakly
constrained(only phones) (Fig. 1), we aim to detect both where the
recognizer is unsure (which is the task for confidence estimation) and
where the recognizer is sure about wrong thing. The mismatchbe-
tween LVCSR-posteriors and posteriors generated by a weakly con-
strained system has a chance to reveal the OOV, although the LVCSR
itself is quite sure of its output. Preliminary work in this direction
was done by Ketabdar and Hermansky [7], however the results were
obtained on a small connected-digit recognition task.

The paper is organized as follows: the following section 2
presents the posteriors and their comparison. Section 3 defines the
experimental setup and 4 follows with the results. Section 5con-
cludes the paper.

2. POSTERIORS AND THEIR COMPARISON

All posteriors used in our work areframe-basedand are denoted
p(u|t), whereu is the respective unit (word, phone) andt is time in
frames.

2.1. Posteriors from the strongly constrained system

LVCSR output is represented as a recognition lattice with arcs rep-
resenting hypothesized wordsw

j
i , wherewi is the word identity and

j is the occurrence of wordwi in the lattice. Eachwj
i spans a certain

time interval and has associated acoustic and LM scores. Note that
occurrences of severalw

j
i for the same wordwi can overlap in time.

Lattice arc posteriorsp(wj
i ) are estimated from the lattice using the

standard forward-backward algorithm.Frame-based word-posterior
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Fig. 1. General scheme.

p(wi|t) is given by summing allp(wj
i ) active at the given timet.

Word entropyfor time t is estimated as:

H(t) = −
X

i

p(wi|t) log2 p(wi|t), (1)

and, in the case ofCmax confidence measure, the confidence of hy-
pothesized wordwi spanning time(ts, te) is1

Cmax(wi, ts, te) = max
t∈(ts,te)

p(wi|t). (2)

The second set of posteriors from the strongly constrained sys-
tem areLVCSR-phone posteriors. In our decoder, phones are parts
of recognition lattices [8]. It is straightforward to run the forward-
backward algorithm on the level of phones and obtainp(gj

i ), where
g

j
i denotesjth occurrence ofith phone from the alphabet. Note that

there is still a possibility to have concurrent hypotheses of the same
phone at the same time. Similar to words, the frame-based phone-
posteriorp(gi|t) is given by summing allp(gj

i ) active at the given
time t.

2.2. Phone posteriors from weakly constrained system

First, the set of “weak” posteriors was obtained from a system hav-
ing the same front-end and acoustic models as the LVCSR, but with
phones populating the vocabulary and using a simple bigram phono-
tactic model. The resulting phone lattices were processed in the
same way as above. We will call thesePhone recognizer posteri-
ors.

The second set of “weak” posteriors is generated by a phone
posterior estimator based on a neural net (NN). The NN contains the
a soft-max non-linearity in the output layer, so that its outputs can be
directly considered as frame-based posteriors. These willbe denoted
NN phone posteriors.

Weak posteriors of any kind will be further denotedp(fi|t).
Note that we expect lower entropy forphone recognizer posteriors,
because of use of 3-state HMMs and phonotactic LM.

2.3. Comparison of posteriors from strong and weak systems

In order to come up with frame-based confidence measures based on
the comparison of posteriors from our strong and weak systems, we
have investigated the following three approaches:

1. fPCM: frame-by-frame posterior-based confidence measures
[2] are phone posteriors from weakly constrained system
found for the phones hypothesized by the strongly con-
strained system:

fPCM(t) = p(fi⋆(t)|t), (3)

1Wessel et al. in [11] describe special processing of silencearcs. In our
case, silences are considered as final parts of words so that no special treat-
ment is necessary.

where fi⋆(t) is the phone recognized by the strongly con-
strained system at timet.

2. KL: Kullback-Leibler divergence between the posteriors
from the strong and weak systems was evaluated. The classic
formula:

KL(t) =
X

i

p(gi|t) log
p(gi|t)

p(fi|t)
(4)

was not sufficient and some engineering was needed. First,
some of the posteriors (especially from LVCSR) tend to have
zero values, such that thresholding is necessary. Second, there
is a temporal alignment problem between the phones gener-
ated by the strong and weak systems. We solved this problem
by a soft-alignment: first, for timet, the strongest phone pos-
terior from LVCSR was detected:s⋆(t) = arg maxi p(gi|t).
A context of2N + 1 frames(t1 = t−N, t2 = t + N) from
the weak system was taken and a weighting corresponding to
the posterior ofs⋆(t) in its output was applied:

KLavg(t) =

P

t′∈(t1,t2) p(fs⋆(t)|t
′)

P

i
p(gi|t) log p(gi|t)

p(fi|t
′)

P

t′∈(t1,t2) p(fs⋆(t)|t′)

3. NN: The third and most successful approach relied directly
on the estimated posteriors. A neural network was trained to
combine posterior vectors from the strong and weak systems
and come up with frame-based confidence measure.

2.4. Post-processing of frame-based values into scores

To convert the described frame-based CM to word-based CM (or
simply “confidence measures”), several techniques were investi-
gated. Averaging over hypothesized phones normalized by the num-
ber of phones worked well for most of the measures described
above. By averaging frame-based word-entropy from Eq. 1, weob-
tain word-based CM that will be referred to asmean word entropy
in the following text. Similarly,mean posterior-based confidence
measure (MPCM)[2] can be obtained by averaging fPCMs (Eq. 3).

In some cases, it was advantageous to convert frame-based CM
to word-based CM differently. For example, variance over the hy-
pothesized word boundary worked the best for KL divergences. For
the following combination, we have selected a few well performing
post-processing methods for each frame-based CM.

2.5. Combination of word scores

The combinations of word-scores generated by the individual tech-
niques were post-processed by conditional models trained using the
maximum entropy (MaxEnt) criterion [12]. Conditional maximum
entropy models were chosen based on their history of good per-
formance for speech and language related tasks including language
modeling, parsing, etc. Besides the MaxEnt classifier, we have ex-
perimented also with NN- and SVM-fusing, with similar results.

2.6. Evaluation

The results are reported for two detection tasks:

• Detecting mis-recognized words overlapping with OOV
words

• Detecting mis-recognized words

False alarm probability and miss probability are evaluatedon a test
set and are shown in a standard detection error trade-off (DET)
curves. No one-number metrics such as EER or CER are used in the



paper as they are dependent on the ratio of correct targets tooverall
number of tokens. We leave the choice of the operating point open
by reporting the whole DET curve.

3. EXPERIMENTAL SETUP

3.1. Data

The Wall Street Journal corpus (WSJ) was used for both evaluation
and development sets. The evaluation set consists of 1243 utterances
(2.5 hours), composed from the November 1992, Hub2 5k closed
test set and the WSJ1 5k open vocabulary development test set. To
train the MaxEnt and the NN for frame-by-frame scores, we defined
a development set, consisting of 4088 utterances (7.7 hrs.)of WSJ0
si tr s/c. To introduce OOVs, we limited our vocabulary to the 4968
most frequent words from the LM training texts. We decoded the
8 kHz down-sampled utterances with our CTS LVCSR system, and
then OOVs and recognition errors were labeled. The evaluation set
has an OOV token rate of 4.95% in the reference, and in the ASR
output we had 13.95% tokens marked as mis-recognized, out ofthem
8.51% were OOV tokens (recognized words overlapping with OOV
words in the reference).

3.2. LVCSR and NN-phone posterior estimator

TheNN phone-posterior estimator was based on NN processing
long (300 ms) temporal trajectories of Mel-filter bank energies. Con-
trary to [10], we used a simple system with only one 3-layer NNwith
500 neurons in the hidden layer. The output layer of NN represents
phone-state posteriors, but these were summed for each phone to
form phone-posteriors. In [10], we have shown that phone-states in
the final layer of the NN greatly improve the accuracy, therefore we
apply this scheme as well.

TheLVCSR was a CTS system derived from AMI[DA] LVCSR
[5]. It was trained on 250 hours of Switchboard data. The decod-
ing was done in three passes, always with a simple bigram language
model. In thefirst pass, PLP+∆+∆∆+∆∆∆ features were used,
they were processed by Heteroscedastic Linear Discriminant Anal-
ysis (HLDA), and the models were Minimum-Phone Error (MPE)
trained. In thesecond pass, vocal-tract length normalization (VTLN)
was applied on the same PLP+∆+∆∆+∆∆∆ features, HLDA and
MPE were used, and in addition, constrained maximum likelihood
linear regression (CMLLR) and speaker adaptive training (SAT)
were used for speaker adaptation. Finally, thethird passwas the
same as pass 2, but PLP-based features were replaced by posterior-
features generated by the system described in the previous para-
graph, along with their deltas [4].

On WSJ0, Hub2 test from November 92, this system reached
word error rate (WER) of 2.9% using a trigram LM, on this closed-
set 5k word task.

3.3. Score estimators

When NN was used for direct estimation of frame-based scores, the
network was directly fed by posteriors from the strong and weak
systems. The NN was a 3-layer perceptron with 100 neurons in the
hidden layer and the final layer with 3 outputs: OOV, non-OOV,and
silence. Different schemes of frame-labeling for NN training were
devised, the best was to label all frames of an ASR word overlapping
with an OOV as “OOV”.

A lot of improvement was obtained when temporal context was
used in the NN input (see the following section).

4. RESULTS

The first set of DET curves in Fig. 2 show results for OOV detection
(detection of mis-recognized words overlapping with OOVs)with-
out the use of NN. Mean word entropy significantly outperformed
standardCmax confidence measure and was found to be the best
single score for this task (not considering NN-based scores).

The two remaining curves show performance obtained with
MaxEnt combination of groups of confidence measures2: “strong”
confidence measuresare based only on LVCSR output and include
Cmax, mean word posterior (related to fWER defined in [6]), mean
word entropy, word posterior and entropy from confusion networks
[9], measures related to acoustic stability [11], lattice link entropy,
number of different active words, word lattice width and acoustic
score, and LM-score and duration measures from 1-best word string.
Mean posterior-based confidence measure (MPCM) [2] based only
on LVCSR posteriors (no combination of the strong and weak sys-
tems) and mean phone entropy based on lattice from LVCSR were
also amongstrong confidence measures.

The group of“weak” confidence measuresconsisted of mean
phone entropy based on the lattice from a phone recognizer, mean
phone entropy based on NN output (both weak recognizers only),
and a group of confidence measures comparing posteriors from
strong and weak systems: KL-divergence between LVCSR and NN
posteriors, KL-divergence between LVCSR and phone recognizer
posteriors, MPCM based on NN posteriors, MPCM based on phone
recognizer posteriors, and several variations of the KL-divergence.
The weak confidence measures themselves had poor results, but
they provided a nice improvement when combined with strong con-
fidence measures.

The second set of results in Fig. 3 shows the results for the NN
detecting OOVs from the combination of strong (LVCSR-phone)
and weak (NN-phone) posteriors. Note that even the simplestNN-
based method taking into account only 1 frame ofphone posteri-
ors without any context has performance comparable to abovemen-
tioned techniques based onword posteriors.

Several experiments were done regarding the context for NN.
We found that it was optimal to take the strong and weak posteriors
from the current framet, 1 frame in past:t − 6 and 1 frame in
future: t + 6. We attribute this improvement to actually sampling
neighboring phonemes, but it deserves further investigation. The
last DET curve in Fig. 3 shows that this is the best single technique
for OOV detection.

Finally, MaxEnt classifier was used to fuse the results from
LVCSR+weak confidence measures and NN – see Fig. 4. In Fig. 5,
we present the performance of the same systems in the detection
of all recognition errors. We see that in both tasks, the NN com-
bined with LVCSR+weak confidence measures performs excellently
(we are primarily interested in the area with a low number of false
alarms, which is more relevant to practical applications).

5. CONCLUSIONS

We have shown that combination of parallel strong and weak poste-
rior streams is efficient for detection of OOVs and also for the detec-
tion of recognition errors. Different scores perform differently for
the two tasks; NN seems especially suitable for OOV detection. We
are however aware of the simplicity of the defined task, and infu-
ture we plan to test the outlined approaches on more representative
spontaneous speech data.

2Some CMs were not described in the previous text, the meaningis either
obvious, or the reader is referred to the citations.
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Fig. 2. OOV detection using strong system only and combination
of strong and weak systems.
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Fig. 3. OOV detection using NN with 1-frame and 3-frame input
(t, t − 6, t + 6).
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Fig. 4. OOV detection using combination of LVCSR+weak confi-
dence measures and NN.
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