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Motivation 
•  Speech features can be characterized as lying on 

a low dimensional embedded manifold  
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•  Performance Measure: Departure from 
assumptions about assumed underlying manifold 
•  Analyze features to determine if local neighbor 

relationships or local shape assumptions are violated 
 

•  Knowing what we don’t know about speech 
•   Try to know something about the manifold properties 
 

•  Manifolds can be highly nonlinear subspaces but 
have nice locally linear properties 
•  Euclidean distances in local neighborhoods 
•  Local curvature in differentiable manifolds 
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Manifold Constraints in ASR 
•  Manifold learning and linear dimensionality 

reducing transformations in ASR 
•  Preserving manifold based locality constraints 
•  Preserving class separability along a manifold 
•  Incorporating noise robust kernels 
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•  Manifold based regularization 
•  Manifold regularized DNN training 
•  Manifold regularized speaker adaptation 
•  Regularized least squares classifier for spoken term 

detection 

 

•  Efficient graph embedding   
•  Locality sensitive hashing (LSH): Reduce nearest 

neighbor computations for neighborhood graphs 
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Linear  
Transformation 

 

Frame 
Concatenation 

Linear Dimensionality Reducing Transforms for ASR 

•  Model super-segmental spectral dynamics in speech by 
concatenating static feature vectors: 
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Frame 
Concatenation 

Linear  
Transformation 

 yt = P
T xt

yt

 
 

Trans.  
Features 

•  Dimensionality reducing linear transformation,                      
from high dimensional,    , to low dimensional,   , feature 
space [Soan et al, 2000]: 
 

P ∈ℜd×m

yt = P
T xt

Concat.  
Features 

m d
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Optimization Criteria for Dimensionality Reduction 

•  Linear discriminant analysis (LDA): Class separability in a 
Euclidean space [Soan et al, 2000] 
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•  Locality preserving discriminant analysis (LPDA): 
Discriminative manifold learning [Cai et al, 2007][Tomar and 
Rose, 2012] 
•  Maximize class separability between class-specific sub-manifolds 
•  Preserve local relationships on sub-manifolds 

•  Locality preserving projections (LPP): Preserve local 
relationships among feature vectors in the transformed 
space [He et al, 2002][Tang and Rose, 2008] 
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Preserving Local Relationships Along a Manifold 
Assumption:  High 
dimensional data can be 
considered as a set of 
geometrically related points 
resting on or close to the 
surface of a lower 
dimensional manifold 
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Intrinsic Graphs:             
Nodes are data points and 
weights are evaluated over 
nearest neighbor kernels 

 

Gint={X,Wint}

wij =
exp
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!xi −
!x j
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Locality: Manifold 
constraints among feature 
vectors can be applied by 
exploiting local class 
dependent neighborhood 
relationships  

 
C(!xi ) =C(

!x j )
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Discriminative Manifold Learning 

Discriminative Criteria:  
Relies on a measure of 
discriminability across 
classes on a manifold 
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Class 1 
 

Class 2 
 

Locality: 
Penalize local 
neighborhood relationships 
between data vectors 
across classes  

 
C(xi ) ≠C(

x j )

wij =
exp

−
xi −
x j
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Penalty Graphs: 
Inter-class weights are 
evaluated over nearest 
neighbor kernels: 

 

G pen= X,Wpen{ }
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•  Identify matrix,       , where                  , to maximize …   

 Discriminative Manifold Learning: Locality Preserving 
Discriminative Projections (LPDA) 

•  Define intrinsic graph,                       ,and penalty graph,  
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F(Plpda ) =
Fpen (P)
Fint (P)

=
PTX(Dpen −Wpen )X

TP
PTX(Dint −Wint )X

TP

yt = Plpda
T xtPlpda

Gint= X,Wint{ } G pen= X,Wpen{ }

•  Optimum         is the solution to generalized eigen equation [Cai et al, 
2007]  

Plpda

… where        are columns of  

X(Dpen −Wpen )X
T plpda

j = λX(Dint −Wint )X
T plpda

j

plpda
j Plpda
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Estimate 
Linear  

Transformation 

Estimate  
Intrinsic and  

Penalty  
Weight Matrices 

Discriminative Manifold Learning 
•  Manifold constraints for discriminative linear projection matrix: 
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X = x1,…,
xT{ }

Features Estimate  
Intrinsic and  

Penalty  
Weight Matrices 

Estimate 
Linear  

Transformation LPDA 
Transformation 

•  Intrinsic / Penalty Weights: 
•  Intrinsic Graph – Within-class 

neighborhoods 
•  Penalty Graph – Between-

class neighborhoods 
 

Wint Plpda

exp
d(xi,

x j )
ρ
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Nearest Neighbor 
Kernel  

Intrinsic / 
Penalty 
Weights 

Optimization  
Criterion  

•  Optimization Criterion: 
•  Preserve locality in the 

transformed space 
•  Maintains class 

separability 
 

Wpen

F(Plpda ) =
Fpen (P)
Fint (P)

T = t1,…, tT{ }
Class Labels 

Complexity:  
Edge weight 
computation – 
O(T2) operations 
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Disc. Linear  
Transformation 

 
Frame 

Concatenation 

Performance Evaluation – Manifold-Based LPDA 
•  Estimate dimensionality reducing transformations using LPDA and 

LDA criteria and compare ASR performance on speech-in-noise task  

10 

•  Aurora-4 Task: Noise corrupted WSJ utterances [Parthar and Picone, 
2002] 
•  Training (14 hours): Mixed noise recordings   
•  Test: Six sets of utterances from six noise types at noise levels 

ranging from 5 dB to 20 dB SNR 


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
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Frame 
Concatenation 

Disc. Linear  
Transformation 

 
yt = P

T xt

yt

 
 

Trans.  
Features 

Concat.  
Features 

•  Discriminative Transformation             : 
•   Classes: 121 monophone clustered states  
•      Input dimensionality: 117,     Output dimensionality: 39 

yt
xt

yt = P
T xt
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Performance Evaluation – Manifold-Based LPDA 

ASR Performance on Aurora-4 Task  WER (WER Reduction) 

Noise Type 
Technique 

Baseline LDA LPDA 
Clean 15.34 15.09 13.97 (7.44) 
Car 15.90 16.34 14.53 (11.08) 

Babble 26.62 25.37 21.56 (15.02) 
Restaurant 28.28 28.77 24.51 (14.81) 

Street 31.59 29.87 27.46 (8.07) 
Airport 23.65 23.65 18.96 (19.83) 

Train Stn. 32.08 29.96 28.60 (4.54) 
Average 24.78 24.15 21.37 (11.51) 

•  Good:  LPDA reduces WER by as much as 20% relative to LDA 

•  Bad: LPDA requires much higher computational complexity than LDA 
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Manifold Constraints in ASR 
•  Manifold learning and linear dimensionality reducing 

transformations in ASR 
•  Preserving manifold based locality constraints 
•  Preserving class separability along a manifold 
•  Incorporating noise robust kernels 
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•  Manifold based regularization 
•  Manifold regularized DNN training 
•  Manifold regularized speaker adaptation 
•  Regularized least squares classifier for spoken term detection 

 

•  Efficient graph embedding   
•  Locality sensitive hashing (LSH): Reduce nearest 

neighbor computations for neighborhood graphs 
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Locality Sensitive Hashing –  
Reducing Complexity of Manifold Based Techniques  
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•  Complexity Reduction: Apply LSH to fast computation of 
neighborhood graphs  

•  Locality Sensitive Hashing (LSH): A randomized algorithm for 
hashing vectors into bins such that adjacent vectors are more likely to 
fall into the same bin [Pauleve et al, 2010][Datar et al, 2004][Jansen et al, 
2011][Tomar and Rose, 2013] 

•  Problem: Estimating Affinity weight matrices                     requires 
computational complexity of  
•     ranges from ~1 M to ~1 B frames for speech training corpora 

W = wi, j
!" #$T×TO T 2( )

T

•  Goal: Reduce complexity with minimum impact on ASR performance 
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Locality Sensitive Hashing – Creating Hash Tables 

Intervals on a 
Real Line 

 x ∈ Rd

h1(
x) hk (

x)

w w


Random 
Projections 

hk (
x) =

ak,
x + bk
w

!

"
!

#

$
#

Random 
Projections 

•  Hash vectors to integer values or “buckets” using random projections: 

 Bkt 1  Bkt 2  Bkt n1  Bkt 1  Bkt 2  Bkt nL
Table 1 


Table L 

•  Multiple Hash Tables: Increase probability of finding nearest neighbor: 

 Bkt 1  Bkt 2  Bkt nBins (Buckets) 

Hash into 
Buckets  
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Locality Sensitive Hashing – Nearest Neighbor Search 

 Bkt 1  Bkt 2  Bkt n1

 Bkt 1  Bkt 2  Bkt nL

Table 1 


Table L 

 x ∈ Rd Union of Vectors 
in Buckets 

Candidate 
Neighbors  

Query 
Vector 

•  Hash query point to a bucket in each of L tables 

•  Obtain candidate K-nearest neighbors for    from union of vectors 
assigned to buckets    

 x
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LSH – Complexity vs. Performance  
for Estimating Affinity Matrices 

•  Order of magnitude reduction in complexity with negligible impact on 
ASR word error rate  

LSH Parameterization 
 
Vector dimension: d=117 
Nearest Neighbors: K = 200 
Tables: L=6 
Projections: k = 3,…,10 
 

Task Domain 
 
Aurora 2: 3 noise types 
Training Data: 8440 utt. 
Training Frames: T = 1.47 M 
 

Ave. WER for 3 Noise Types on Aurora 2 Task 
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Manifold Constraints in ASR 
•  Manifold learning and linear dimensionality reducing 

transformations in ASR 
•  Preserving manifold based locality constraints 
•  Preserving class separability along a manifold 
•  Incorporating noise robust kernels 
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•  Manifold based regularization 
•  Manifold regularized DNN training  
 

•  Efficient graph embedding   
•  Locality sensitive hashing (LSH): Reduce nearest neighbor 

computations for neighborhood graphs 
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Manifold Regularized Deep Neural Network Training 
18 

•  Lots of recent work dealing with local optima in DNN training [Glorot and 
Bengio, 2010] 
•  Layer-by-layer generative pre-training [Dahl et al, 2012] 
•  Discriminative pre-training [Seide et al., 2011] 
•  Rectified Linear Units (ReLU) and Drop-out [Dahl et al, 2013] 

 
•  Feature spaces with strong local constraints lead to improved learning for 

DNNs [Mohamed et al., 2012] 
•  Manifold learning can be used to “enforce” locality constraints 

•  Manifold regularization has already been applied in other applications 
•  Learning in multilayer perceptrons (MLPs) [Weston et al, 2008] 
•  Regularized least squares (RLS) classifiers [Belkin et al, 2006] 
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Manifold Regularization for DNN Training 

•  Motivation:  
•  Enforce explicit locality constraints in hidden layers of DNN 
•  Provide alternative to pre-training based regularization strategies 

Q(θ ) = Vθ yi, ti( )+γ ωij
int yi − yj

2
+κ θ

j=1

K

∑
#
$
%

&%

'
(
%

)%i=1

T

∑

•  Locality Constraints - Modified cross-entropy objective function:  

Cross 
Entropy 

Manifold 
Constraints 

Norm  
Regularizer 

•  Locality / Discriminative Constraints: 

Cross 
Entropy 

Intrinsic 
Manifold 

Norm  
 

Penalty 
Manifold 

Q(θ ) = Vθ yi, ti( )+γ ωij
int yi − yj

2
+ξ ωij

pen yi − yj
2
+

j=1

K

∑  κ θ
j=1

K

∑
#
$
%

&%

'
(
%

)%i=1

T

∑
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Implications of Manifold Regularized DNN Training 

20 

•  Constrains the DNN outputs to lie along an embedded 
manifold 
•  Preserves local relationships among speech feature vectors at 

the output of the DNN 

 •  Increase in computational cost 
•  High cost of computing nearest neighbors - locality sensitive 

hashing 
•  High cost of computing gradients of manifold regularized 

objective function to incorporate nearest neighbors 
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Performance – Manifold Regularization DNN 
•  Aurora-2 Task: Noise corrupted digit utterances (~4 hours training)  

•  MFCC: Baseline mel-frequency cepstrum coefficients 
•  DNN: DNN with no pre-training or regularization 
•  MRDNN: Manifold Regularized DNN 

•  WER Reduction: Consistent (~20%) reduction relative to 
unregularized DNN over a range of SNRs 

•  Complexity: Computation for back propagation weight estimation 
increased by a factor of K (number of nearest neighbors)  

Ave. WER Over 4 Noise Types for Aurora-2 
Conditions 

Features 
Noise Level - SNR (dB) 

Clean 20 15 10 5 
Subway, 

Exhibition, Babble, 
and Car 

Noise Types 

MFCC 1.87 3.10 3.89 6.57 13.75 
DNN 0.98 1.17 1.87 3.17 7.65 

MRDNN 0.71 0.98 1.52 2.67 6.73 
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Performance: Manifold Regularized DNN 

ASR Performance on Aurora-4 Task  WER (WER Reduction) 

Noise Type 
Technique 

MFCC DNN MRDNN 
Clean 13.10 9.10 8.07 
Car 14.44 11.45 10.63 

Babble 25.63 18.23 17.52 
Restaurant 27.26 22.10 20.96 

Street 30.62 21.15 20.87 
Airport 22.59 17.43 16.87 

Train Stn. 31.23 21.91 20.12 

•  Aurora-4: Noise corrupted WSJ utterances [Parthar and Picone, 2002] 
•  Training (14 hours): Mixed noise recordings   
•  Test: Six sets of utterances from six noise types at noise levels 

ranging from 5 dB to 20 dB SNR 

•  Consistent WER reduction relative to unregularized DNN over a 
range of noise types 
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Implications of Manifold Regularized DNN Training 
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•  Constrains the DNN outputs to lie along an embedded 
manifold 
•  Preserves local relationships among speech feature vectors at 

the output of the DNN 

 •  Increase in computational cost 
•  High cost of computing nearest neighbors - locality sensitive 

hashing 
•  High cost of computing gradients of manifold regularized 

objective function to incorporate nearest neighbors 
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Review: Parameter Updates in DNN Training 
•  Gradient is estimated for cross entropy objective function: 

∇θl,m
Q(θ ) = − yi,m − ti,m( ) zi,l

zi,l
yi,1

yi,m
yi,D

!zi
!yi

Q(θ ) = Vθ
!yi,
!
ti( ){ }

i=1

T

∑

… where outputs,    , are obtained from inputs,    , by forward 
propagation: 

… and parameters are updated by gradient descent:  

yi,m = f θm,lzi,l
l
∑
"

#
$

%

&
'

θl,m
new =θl,m

old +η∇θl,m
Q(θ )

!yi
!zi
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θ1

Q Θ( )

θ2

∇θl,m
Q(θ ) = − yi,m − ti,m( ) zi,l

Original point in 
parameter space 

Updated point in    
parameter space 

θ new θ old

Review: Parameter Updates in DNN Training 
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Parameter Updates in MRDNN Training 
•  Estimate gradient for manifold regularized objective function: 

∇θl,m
Q(θ ) = − yi,m − ti,m( ) zi,l −

2γ
K

ωi, j yi,m − yj,m( )
j=1

K

∑ ∂yi,m
∂θl,m

−
∂yj,m
∂θl,m

%

&
''

(

)
**

zj,l
yj,1

yj,m
yj,D

zk,l
yk,1

yk,m
yk,D

!zj
!yj

!zk
!yk

Q(θ ) = Vθ yi, ti( )+γ wij
int yi − yj

2

j=1

K

∑
#
$
%

&%

'
(
%

)%i=1

T

∑

zi,l
yi,1

yi,m
yi,D

!zi
!yi

•  During DNN Training: Forward Propagate    and its K NNs                      : 
!zi

!zj : e(
!zi,
!zj ) =1{ }

!zi

!zj : e(
!zi,
!zj ) =1{ }

•  Prior to DNN Training: Estimate manifold affinity matrix weights: 
K-nearest neighbors: 

Affinity weights: ωij = exp −
!zi −
!zj

2
/ ρ( )
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Parameter Updates in MRDNN Training 

θ1

Q Θ( )

θ2

∇θl,m
Q(θ ) = − yi,m − ti,m( ) zi,l −

γ
K

ωi, j yi,m − yj,m( )
j=1

K

∑ ∂yi,m
∂θl,m

−
∂yj,m
∂θl,m

%

&
''

(

)
**

θ new θ old

•  K nearest neighbors of     contribute to estimate of gradient: 
!zi
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Comparisons with Other DNN Regularization Approaches 

•  Generative Pre-training of DNNs  
•  Has shown no improvement in our task domains over random 

network initialization  

Q(θ ) = Vθ yi, ti( )+κ θ{ }
i=1

T

∑

•  L2 Parameter Norm Regularization - Modified cross-entropy objective 
function:  

Cross 
Entropy 

Norm  
Regularizer 

… Found to have limited impact on WER for our task 

•  Rectified Linear Units (ReLU):  
•  Replace logistic non-linear units in DNN  
•  Current work is to apply manifold regularization in ReLU networks 

f (x) =max(0, x)
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Performance – L2 Regularized DNN 

•  Results: Aurora-2 Task (~4 hours training)  
•  DNN: DNN with no pre-training or regularization 
•  MRDNN: Manifold Regularized DNN 

Ave. WER Over 4 Noise Types for Aurora-2 
Conditions 

Features 
Noise Level - SNR (dB) 

Clean 20 15 10 5 
Subway, 

Exhibition, Babble, 
and Car 

Noise Types 

MFCC 1.87 3.10 3.89 6.57 13.75 
DNN 0.98 1.17 1.87 3.17 7.65 

MRDNN 0.71 0.98 1.52 2.67 6.73 

L2-DNN 0.91 1.16 1.63 3.01 7.03 

Ave. WER Over 4 Noise Types for Aurora-2 
Conditions 

Features 
Noise Level - SNR (dB) 

Clean 20 15 10 5 
Subway, 

Exhibition, Babble, 
and Car 

Noise Types 

MFCC 1.87 3.10 3.89 6.57 13.75 
DNN 0.98 1.17 1.87 3.17 7.65 

MRDNN 0.71 0.98 1.52 2.67 6.73 

… L2-DNN: L2 Norm Regularized DNN 
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Summary 
•  Discriminative Manifold Learning: Up to 20% 

reduction in WER relative to LDA for noise 
corrupted Wall Street Journal Utterances (Aurora 4) 

30 

•  Efficient Graph Embedding: Using locality 
sensitive hashing (LSH) for estimating 
neighborhood graphs provides an order of 
magnitude reduction in computation time with 
negligible impact on WER  (Aurora 2) 

•  Manifold Based Regularization: Preliminary 
results show that manifold regularization of DNN 
training for tandem bottleneck features reduces 
WER by up to 30% - 40% (Aurora 2) 


