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Classical Semantic Theories

• Classical semantic theories (Montague (1974)), as well as
dynamic (Kamp and Reyle (1993)) and underspecified
(Fox and Lappin (2010)) frameworks use categorical type
systems.

• A type T identifies a set of possible denotations for
expressions in T .

• The theory specifies combinatorial operations for deriving
the denotation of an expression from the values of its
constituents.

• These theories cannot represent the gradience of semantic
properties that is pervasive in speakers’ judgements
concerning truth, predication, and meaning relations.
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Semantic Learning

• There is a fair amount of evidence indicating that language
acquisition in general crucially relies on probabilistic
learning (Clark and Lappin (2011)).

• It is not clear how a reasonable account of semantic
learning could be constructed on the basis of the
categorical type systems that either classical or revised
semantic theories assume.

• Such systems do not appear to be efficiently learnable
from the primary linguistic data (with weak learning
biases).

• There is little (or no) psychological data to suggest that
classical categorical type systems provide biologically
determined constraints on semantic learning.
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Using Probability to Model Gradience and Learning

• A semantic theory that assigns probability rather than truth
conditions to sentences is in a better position to deal with
gradience and learning.

• Gradience is intrinsic to the theory by virtue of the fact that
values are assigned to sentences in the continuum of real
numbers [0,1], rather than Boolean values in {0,1}.

• A probabilistic account of semantic learning is facilitated if
the target of learning is a probabilistic representation of
meaning.

• Both semantic interpretation and semantic learning are
characterised as reasoning under uncertainty.
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Two Strategies

• On a top-down approach one sustains classical categorical
type and model theories, and then specifies a function that
assigns probability values to the possible worlds that the
model provides.

• The probability value of a sentence relative to a model M is
the sum of the probabilities of the worlds in which it is true.

• On a bottom-up approach one defines a probabilistic type
theory.

• The probability value of a sentence is the output of a
function that encodes probabilistic semantic type
judgements associated with its predicative syntactic
constituents.
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A Top-Down Theory

• van Eijck and Lappin (2012) retain a classical type theory
and the specification of intensions for each type as
functions from worlds to extensions.

• They define a probabilistic model M as a tuple 〈D,W ,P〉
with D a domain, W a set of worlds for that domain
(predicate interpretations in that domain), and P a
probability function over W , i.e., for all w ∈W ,
P(w) ∈ [0,1], and

∑
w∈W P(w) = 1.

• An interpretation of a language L in a model M = 〈D,W ,P〉
is given in terms of the standard notion w |= φ:

[[φ]]M :=
∑

wi∈W∧wi |=φ

P(wi)
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The Probability Calculus

• This definition of a model entails that [[¬φ]]M = 1 − [[φ]]M .

• Also, if φ |= ¬ψ, i.e., if Wφ ∩Wψ = ∅, then
[[φ ∨ ψ]]M =

∑
w∈Wφ∨ψ

P(w) =∑
w∈Wφ

P(w) +
∑

w∈Wψ
P(w) =

[[φ]]M + [[ψ]]M .

• These equations satisfy the axioms of Kolmogorov’s (1950)
probability calculus.
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Advantages of the Top-Down Approach

• This theory retains classical type and model theories to
determine the value of a sentence in a world.

• Therefore, it uses well understood formal systems at both
levels of representation.

• It applies a standard probability calculus for computing the
probability value of a sentence.
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Disadvantages of the Top-Down Approach

• It requires probabilities to be assigned to entire worlds in
the model, with sentences receiving probability values
derivatively from these assignments.

• Representing worlds (maximally consistent sets of
propositions, or ultrafilters in a proof theoretic lattice of
propositions) poses serious problems of tractability (Lappin
(2014), Cooper et al. (2014)).

• The probability value of a sentence can only be computed
relative to those of the other sentences of the language
that specify the set of worlds (or possible situations).

• This holism seems to exclude the possibility of learning
individual classifiers and type judgements independently of
each other.
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A Bottom-Up Approach

• A bottom-up approach avoids the representability problem
by assigning probabilities to individual type judgements as
classifier applications.

• The probability of a sentence is determined relative to a
bounded set of situation types, which can be learned as
classifiers for situations.

• A bottom-up probabilistic semantics requires a probabilistic
type theory.

• This theory provides the basis for an account of semantic
learning in which situation type classifiers are acquired
probabilistically through sampling and observation driven
Bayesian inference.
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Austinian Propositions

• We take probability to be distributed over situation types
(Barwise and Perry (1983)).

• An Austinian proposition is a judgement that a situation is
of a particular type, and we treat it as probabilistic.

• It expresses a subjective probability in that it encodes the
belief of an agent concerning the likelihood that a situation
is of that type.

• The core of an Austinian proposition is a type judgement of
the form s : T , which is expressed probabilistically as
p(s : T ) = r , where r ∈ [0,1].
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Probabilistic TTR: Basic Types and PTypes

Our type system is based on Cooper’s (2012) Type Theory with
Records (TTR), and it includes the following types.

• Basic Types are not constructed out of other objects
introduced in the theory.

• If T is a basic type, p(a : T ) for any object a is provided by
an assignment of probabilities to judgements involving
basic types.

• PTypes are constructed from a predicate and an
appropriate sequence of arguments.

• man(john,18:10) is the type of situation where John is a
man at time 18:10.

• A probability model provides probabilities
p(e : r(a1, . . . ,an)) for ptypes r(a1, . . . ,an).

• We take both common nouns and verbs to provide the
components out of which PTypes are constructed.
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Meets and Joins

• Meets and Joins give, for T1 and T2, the meet, T1 ∧ T2
and the join T1 ∨ T2, respectively.

• a : T1 ∧ T2 just in case a : T1 and a : T2.
• a : T1∨T2 just in case either a : T1 or a : T2 (possibly both).
• The probabilities for meet and join types are defined by the

classical Kolmogorov (1950) equations.

• p(a : T1 ∧ T2) = p(a : T1)p(a : T2 | a : T1)
(equivalently, p(a : T1 ∧ T2) = p(a : T1,a : T2))

• p(a : T1 ∨ T2) = p(a : T1) + p(a : T2) − p(a : T1 ∧ T2)
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Subtypes

• Subtypes: A type T1 is a subtype of type T2, T1 v T2, just
in case a : T1 implies a : T2 no matter what we assign to
the basic types.

• If T1 v T2 then a : T1 ∧T2 iff a : T1, and a : T1 ∨T2 iff a : T2.
• Similarly, if T2 v T1 then a : T1 ∧ T2 iff a : T2, and

a : T1 ∨ T2 iff a : T1.
• If T2 v T1, then p(a : T1 ∧ T2) = p(a : T2), and

p(a : T1 ∨ T2) = p(a : T1).
• If T1 v T2, then p(a : T1) ≤ p(a : T2).
• These definitions also entail that p(a : T1 ∧ T2) ≤ p(a : T1),

and p(a : T1) ≤ p(a : T1 ∨ T2).
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Generalized Probabilistic Meet
• Let

∧
p
(a0 : T0, . . . ,an : Tn) be the conjunctive probability of judgements

a0 : T0, . . . ,an : Tn.

•
∧

p
(a0 : T0, . . . ,an : Tn) =∧

p
(a0 : T0, . . . ,an−1 : Tn−1)p(an : Tn | a0 : T0, . . . ,an−1 : Tn−1)

• If n = 0,
∧

p
(a0 : T0, . . . ,an : Tn) = 1.

• Universal quantification is an unbounded conjunctive probability, which
is true if it is vacuously satisfied (n = 0) (Paris (2010)).

• Conditional Conjunctive Probabilities:∧
p
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p
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Generalized Probabilistic Join

• Let
∨p

(a0 : T0,a1 : T1, . . . ,an : Tn) be the disjunctive

probability of judgements a0 : T0,a1 : T1, . . . ,an : Tn.

•
∨p

(a0 : T0, . . . ,an : Tn) =∨p
(a0 : T0, . . . ,an−1 : Tn−1) + p(an : Tn) −

∧
p
(a0 :

T0, . . . ,an−1 : Tn−1)p(an : Tn | a0 : T0, . . . ,an−1 : Tn−1)

• If n = 0,
∨p

(a0 : T0, . . . ,an : Tn) = 0.

• Existential quantification is an unbounded disjunctive
probability, which is false if it lacks a single non-nil
probability instance (n = 0).
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Function Types

• Function Types give, for any types T1 and T2, the type
(T1 → T2).

• This is the type of total functions with domain the set of all
objects of type T1 and range included in objects of type T2.

• The probability that a function f is of type (T1 → T2) is the
probability that everything in its domain is of type T1, that
everything in its range is of type T2, and that everything not
in its domain which has some probability of being of type
T1 is not, in fact, of type T1

• p(f : (T1 → T2)) =
∧

a∈dom(f )
p
(a : T1, f (a) : T2)(1 −

∨
a<dom(f )

p
(a : T1))
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Function Types: Example 1

• Suppose that T1 is the type of event where there is a flash
of lightning, and T2 is the type of event where there is a
clap of thunder.

• Let f map lightning events to thunder events, and and let f
have as its domain all events which have been judged to
have probability greater than 0 of being lightning events.

• Assume all putative lightning events are clear examples of
lightning and are associated by f with clear events of
thunder.

• If there are four such pairs of events, then the probability of
f being of type (T1 → T2) is (1 × 1)4 = 1.
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Function Types: Example 2

• Alternatively, suppose that for for of the four events f
associates a lightning event with a silent event.

• Then the probability of f being of type (T1 → T2) is
(1 × 1)3

× (1 × 0) = 0.

• One clear counterexample is sufficient to show that the
function is definitely not of the type (T1 → T2).
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Increasing the Size of the Domain of a Function Type

• If the probabilities of the antecedent and the consequent
type judgements are higher than 0, the probability of the
entire judgement on the existence of a functional type f will
decline in proportion to the size of dom(f ).

• If, for example that there are k elements a ∈ dom(f ), where
for each such a, p(a : T1) = p(f (a) : T2) ≥ .5.

• Every ai that is added to dom(f ) will reduce the value of
p(f : (T1 → T2)), even if it yields higher values for p(a : T1)
and p(f (a) : T2).

• This is due to the fact that we are treating the probability of
p(f : (T1 → T2)) as the likelihood of there being a function
that is satisfied by all objects in its domain.

• The larger the domain, the less probable that all elements
in it fulfill the functional relation.
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Function Type Judgements as Universally Quantified
Assertions

• We are interpreting a functional type judgement of this kind
as a universally quantified assertion over the pairing of
objects in dom(f ) and range(f ).

• The probability of such an assertion is given by the
conjunction of assertions corresponding to the
co-occurrence of each element a in f ’s domain as an
instance of T1 with f (a) as an instance of T2.

• Functions which leave out some of the objects with lower
likelihood of being of type T1 should also have a probability
of being of type (T1 → T2).

• This factor in the probability is represented by the second
element of the product in the formula.
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Negation and Instantiation of Types

• Negation: ¬T , of type T , is the function type (T → ⊥),
where ⊥ is a necessarily empty type and p(⊥) = 0.

• It follows from our rules for function types that
p(f : ¬T ) = 1 if dom(f ) = ∅, (T is empty, and 0 otherwise).

• We also assign probabilities to judgements concerning the
(non-)emptiness of a type, p(T ).

• Our account of negation entails that p(T ∨ ¬T ) = 1, and
(ii) p(¬¬T ) = p(T ).

• Therefore, we sustain classical Boolean negation and
disjunction, in contrast to Martin-Löf’s (1984) intuitionistic
type theory.
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Record Types

• Record Types are sets of ordered pairs (fields) whose first
member is a label and whose second member is an object
of some type, possibly itself a record, where records are
functional on labels (each label in a record can only occur
once in the record’s left projection).

• If T is a record type, ` is a label not occuring in T , T is a
dependent type requiring n arguments, and 〈π1, . . . , πn〉 is
an n-place sequence of paths in T , then
T ∪ {〈`, 〈T , 〈π1, . . . , πn〉〉〉} is a record type.

• r : T ∪ {〈`, 〈T , 〈π1, . . . , πn〉〉〉} just in case r : T , r .` is
defined, and r .` : T (r .π1, . . . , r .πn).
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Record Types

The probability that an object r is of a record type T :

1. p(r : Rec) = 1 if r is a record, 0 otherwise

2. p(r : T1 ∪ {〈`,T2〉}) =
∧

p
(r : T1, r .` : T2)

3. If T : (T1 → (. . .→ (Tn → Type) . . .)), then
p(r : T ∪ {〈`, 〈T , 〈π1, . . . , πn〉〉〉}) =∧

p
(r : T , r .` : T (r .π1, . . . , r .πn) | r .π1 : T1, . . . , r .πn : Tn)
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A Strategy for Computing Probability Values of
Complex Expressions

• Montague (1974) determines the denotation of a complex
expression by applying a function to an intensional
argument (as in [[ NP ]]([[ ∧VP ]])).

• We employ a variant of this general strategy by applying a
probabilistic evaluation function [[ · ]]p to a categorical
(non-probabilistic) semantic value.

• For semantic categories that are interpreted as functions,
[[ · ]]p yields functions from categorical values to
probabilities.

• For sentences it returns the probability that the sentence is
true.
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A Probabilistic Compositonal Semantics

[[ [S S1 and S2] ]]p = p(
[
e1:[[ S1 ]]
e2:[[ S2 ]]

]
)

[[ [S S1 or S2] ]]p = p(
[
e:[[ S1 ]]∨[[ S2 ]]

]
)

[[ [S Neg S] ]]p = [[ Neg ]]p([[ S ]])

[[ [S NP VP] ]]p = [[ NP ]]p([[ VP ]])

[[ [NP Det N] ]]p = [[ Det ]]p([[ N ]])

[[ [NP Nprop] ]]p = [[ Nprop ]]p

[[ [VP Vt NP] ]]p = [[ Vt ]]p([[ NP ]])

[[ [VP Vi ] ]]p = [[ Vi ]]p
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A Probabilistic Compositonal Semantics

[[ [Neg “it’s not true that”] ]]p = λT :RecType(p(
[
e:¬T

]
))

[[ [Det “some”] ]]p = λQ:Ppty (λP:Ppty (p(
[
e:some(Q, P)

]
)))

[[ [Det “every”] ]]p = λQ:Ppty (λP:Ppty (p(
[
e:every(Q, P)

]
)))

[[ [Det “most”] ]]p = λQ:Ppty (λP:Ppty (p(
[
e:most(Q, P)

]
)))

[[ [N “boy”] ]]p = λr :
[
x:Ind

]
(p(
[
e:boy(r .x)

]
))

[[ [N “girl”] ]]p = λr :
[
x:Ind

]
(p(
[
e:girl(r .x)

]
))

[[ [Adj “green”] ]]p = λP:Ppty (λr :
[
x:Ind

]
(p((
[
e:green(r .x,P)

]
)))))

[[ [Adj “imaginary”] ]]p = λP:Ppty (λr :
[
x:Ind

]
(p((
[
e:imaginary(r .x,P)

]
)))))
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A Probabilistic Compositonal Semantics

[[ [Nprop
“Kim”] ]]p = λP:Ppty (p(P(

[
x=kim

]
)))

[[ [Nprop
“Sandy”] ]]p = λP:Ppty (p(P(

[
x=sandy

]
)))

[[ [Vt
“knows”] ]]p = λP:Quant(λr1:

[
x:Ind

]
(p(P(λr2:(

[
e:know(r1.x,r2.x)

]
)))))

[[ [Vt
“sees”] ]]p = λP:Quant(λr1:

[
x:Ind

]
(p(P(λr2:(

[
e:see(r1.x,r2.x)

]
)))))

[[ [Vi
“smiles”] ]]p = λr :

[
x:Ind

]
(p(
[
e:smile(r .x)

]
))

[[ [Vi
“laughs”] ]]p = λr :

[
x:Ind

]
(p(
[
e:laugh(r .x)

]
))
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A Probability Distribution for the Fragment

A probability distribution d for this fragment, based on a set of
situations S, is such that:

pd(a : Ind) = 1 if a is kim or sandy

pd(s : T ) ∈ [0,1] if s ∈ S and T is a ptype

pd(s : T ) = 0 if s < S and T is a ptype

pd(a : [τP]) = pd(P(
[
x=a
]
))

pd(some(P,Q)) = pd ([
τP] ∧ [τQ])

pd(every(P,Q)) = pd ([
τP]→ [τQ])

pd(most(P,Q)) = min(1, pd ([
τP]∧[τQ]

θmost pd ([
τP])

)
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Probabilistic GQ Judgements

• The probability that an event e is of the type in which the
relation some holds of the properties P and Q is the
probability that e is of the conjunctive type P ∧Q.

• The probability that e is of the every type for P and Q is
the likelihood that it instantiates the functional type P → Q.

• The likelihood that e is of the type most for P and Q is the
likelihood that e is of type P ∧Q, factored by the product of
the contextually determined parameter θmost and the
likelihood that e is of type P, where this fraction is less than
1, and 1 otherwise.
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An Example

[[ [S [NP [Nprop
Kim]] [VP [Vi

smiles]]] ]]p =

λP:Ppty (p(P(
[
x=kim

]
)))(λr :

[
x:Ind

]
(
[
e:smile(r .x)

]
)) =

p(λr :
[
x:Ind

]
(
[
e:smile(r .x)

]
)(
[
x=kim

]
)) =

p(
[
e:smile(kim)

]
)
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An Example

• Suppose that pd (s1:smile(kim)) = .7, pd (s2:smile(kim)) = .3,
pd (s3:smile(kim)) = .4, and there are no other situations si
such that pd (si :smile(kim)) > 0.

• Assume that these probabilities are independent of each
other; that is, pd (s3:smile(kim)) =
pd (s3:smile(kim) | s1:smile(kim), s2:smile(kim)), and so on.

• pd (smile(kim))=∨p
d(s1 : smile(kim), s2 : smile(kim), s3 : smile(kim)) =∨p
d(s1 : smile(kim), s2 : smile(kim)) + .4 −

.4
∨p

d (s1 : smile(kim), s2 : smile(kim)) =

(.7 + .3 − .7 × .3) + .4 − .4(.7 + .3 − .7 × .3) =
.874
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An Example

• [[ α ]]pd is the result of computing [[ α ]]p with respect to the
probability distribution d .

• pd (
[
e:smile(kim)

]
) = .874.

• Hence [[ [S [NP [Nprop
Kim]] [VP [Vi

smiles]]] ]]pd = .874.
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Probabilistic Austinian Propositions

• Probabilistic Austinian propositions are records of type sit : Sit
sit-type : Type
prob : [0,1]


• They assert that the probability that a situation s is of type

Type with the value of prob.
• The definition of [[ · ]]p specifies a compositional procedure

for generating an Austinian proposition (record) of this type
from the meanings of the syntactic constituents of a
sentence.
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Observations as Type Judgements

• We assume that agents track observed situations and their
types, modelled as probabilistic Austinian propositions.

• An observation of a red object might yield the following
Austinian proposition for some a:Ind, s1:red(a)


sit =

[
ref = a
cred = s1

]
sit-type =

[
ref : Ind
cred : red(ref)

]
prob = 0.7
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Computing the Probability of a Type Judgement

• When an agent A encounters a new situation s and wants
to know if it is of type T or not, he/she uses probabilistic
reasoning to determine the value of pA,J(s : T ).

• This denotes the probability that agent A assigns with
respect to prior judgements J to s being of type T .
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Priors on Type Judgements

• An agent, A, makes judgements based on a finite string of
probabilistic Austinian propositions, J.

• For a type, T , JT represents that set of Austinian
propositions j such that j .sit-type v T .

• If T is a type and J a finite string of probabilistic Austinian
propositions, then || T ||J represents the sum of all
probabilities associated with T in J (

∑
j∈JT

j .prob).
• P(J) is the sum of all probabilities in J (

∑
j∈J j .prob).

• priorJ(T ) represents the prior probability that anything is of
type T given J.

• priorJ(T ) =
||T ||J
P(J) if P(J) > 0, and 0 otherwise.
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A Type Theoretic Bayesian Rule for Conditional
Probability

• pA,J(s : T1 | s : T2) is the probability that agent A assigns
with respect to prior judgements J to s being of type T1,
given that A judges s to be of type T2.

• A computes these conditional probabilities with the
equation

pA,J(s : T1 | s : T2) =
||T1∧T2||J
||T2||J

, if || T2 ||J, 0.

Otherwise, pA,J(s : T1 | s : T2) = 0.
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Learning a TTR Bayes Classifier from Evidence

• A classifies a new situation s based on the prior
judgements J, and the evidence that A acquires about s.

• This evidence has the form

pA,J(s : Te1), . . ., pA,J(s : Ten ),

where Te1 , . . . ,Ten are the evidence types.
• The TTR Bayes classifier assumes that the evidence is

independent, in that the probability of each piece of
evidence is independent of every other piece of evidence.
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Bayes’ Rule

• Bayes’ rule of conditional probability defines the
conditional probability of a conclusion r : Tc , given
evidence r : Te1 , r : Te2 , . . . , r : Ten .

• It does this in terms of conditional probabilities of the form
p(si : Tei | si : Tc), 1 ≤ i ≤ n, and priors for conclusion and
evidence.

• We formulate Bayes’ rule of conditional probability as

pA,J(r : Tc | r : Te1 , . . . , r : Ten) =

priorJ(Tc)
pA,J(s:Te1 |s:Tc)...pA,J(s:Ten |s:Tc)

priorJ(Te1 )+...+priorJ(Ten )
=

priorJ(Tc)

||Te1∧Tc ||J
||Tc ||J

...
||Ten∧Tc ||J
||Tc ||J

priorJ(Te1 )+...+priorJ(Ten )
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The Posterior Probabilities of Conclusions

• We also want the posterior probability of the judgement
above (the probability of the judgement in light of the
evidence.)

• We obtain the posterior probabilities of the different
possible conclusions by factoring in the probabilities of the
evidence.

pA,J(r : Tc) =
pA,J(r : Tc | r : Te1 , . . . , r : Ten)pA,J(r : Te1) . . . pA,J(r : Ten)
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Defining the Classifier Function

• Associated with the classifier is a collection of evidence
types Te1 ,Te2 , . . . ,Ten and a collection of possible
conclusion types Tc1 ,Tc2 , . . . ,Tcm

• We define a TTR Bayes classifier as a function from a
situation s to a set of probabilistic Austinian propositions,
defining a probability distribution over the possible
conclusion types.
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Defining the Classifier Function

• The classifier function is specified as follows.

κ: Sit→ Set(
 sit : Sit

sit-type : Type
prob : [0,1]

)
such that if s:Sit then

κ(s)= {


sit = s
sit-type = T
prob = pA,J(s : T | s : Te1 , . . . , s : Ten )

pA,J(s : Te1 ) . . . pA,J(s : Ten )

| T ∈ 〈Tc1 , . . . ,Tcm〉}

• A appends this set to J as a result of observing and
classifying s.

• The probabilities are then available for subsequent
probabilistic reasoning.
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Bayes Classifiers and Bayesian Networks

• We are using a type theoretic variant of the standard
Bayesian formula for conditional probabilities:
p(A | B) = |A&B|

|B| .
• Instead of counting categorical instances, we sum the

probabilities of judgements, because our “training data”
consists of probabilistic observational type judgements.

• By using an observer’s previous type judgements as the
prior for the rule that computes the probability of a new
event being of a given type, we have, in effect, compressed
information that properly belongs in a Bayesian network
(Pearl (1990)) into our specification of a TTR Bayes
classifier.

• Our classifier outputs a probability distribution over
possible conclusions, rather than a categorical judgement
for the conclusion with the highest probability
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Conclusions

• Our probabilistic formulation of a rich type theory with
records provides the basis for a compositional semantics in
which functions apply to categorical semantic objects in
order to return functions from categorical interpretations to
probabilistic judgements.

• For sentences, the rules generate probabilistic Austinian
propositions.

• This framework differs from classical model theoretic
semantics, inter alia, in that the basic types and type
judgements at the foundation of the type system
correspond to perceptual judgements concerning objects
and events in the world, rather than to entities in a model
and set theoretic constructions defined on them.
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Conclusions
• We have offered a schematic view of semantic learning in

which observations of situations in the world support the
acquisition of Bayes Classifiers.

• The basic probabilistic types of our type theoretical
semantics are extracted from these classifiers.

• The proposed type theory specifies the interface between
observation-based learning of classifiers for objects and
situations, and the computation of complex semantic
values for the expressions of a natural language.

• Our general model of interpretation achieves a highly
integrated bottom-up treatment of linguistic meaning and
perceptually-based cognition.

• It situates meaning in learning how to make observational
judgements concerning the likelihood of situations
obtaining in the world.
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Future Work

• Bayesian reasoning from observation provides the
incremental basis for learning and refining predicative
types.

• In future work we will explore implementations of our
learning theory in order to study the viability of our
probabilistic type theory as an interface between
perceptual judgement and compositional semantics.

• We hope to show that, in addition to its cognitive and
theoretical interest, our proposed framework will yield
results in robotic language learning, and dialogue
modelling.
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