

SDP 2014 (SemEval Task 8) Broad-Coverage Semantic Dependency Parsing

Stephan Oepen

Universitetet i Oslo & Universität Potsdam

Marco Kuhlmann, Yusuke Miyao, Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina Ivanova, Yi Zhang

sdp-organizers@emmtee.net

By Way of Introduction: Semantic Dependencies

By Way of Introduction: Semantic Dependencies

A similar technique is almost impossible to apply to other crops .

By Way of Introduction: Semantic Dependencies

A2

A similar technique is almost impossible to apply to other crops .

A1

High-Level Linguistic and Formal Properties

- Core semantic predicate-argument structure, or 'Who did What to Whom?'
- argument sharing: graph re-entrancies; vacuous words: unattached nodes;
- designated *top* node (not root): semantic head, highest-scoping predicate.

Task Definition, Goals, and High Hopes

We define BROAD-COVERAGE SEMANTIC DEPENDENCY PARSING (SDP) as the task of recovering sentence-internal predicateargument relationships for ALL CONTENT WORDS, i.e. the semantic structure constituting the relational core of sentence meaning. [2014 Task Description]

Task Definition, Goals, and High Hopes

We define BROAD-COVERAGE SEMANTIC DEPENDENCY PARSING (SDP) as the task of recovering sentence-internal predicateargument relationships for ALL CONTENT WORDS, i.e. the semantic structure constituting the relational core of sentence meaning. [2014 Task Description]

Push Dependency Parsing Towards Directed Graphs

- Higher degree of abstraction: deep syntax or predicate-argument structure;
- allow shared arguments (control, relative clauses); vacuous word classes.

'Semantic Role Labeling' for All Content Words

• Argument labeling for phenomena like negation, comparatives, possessives.

DM: DELPH-IN MRS-Derived Bi-Lexical Dependencies

- DeepBank: Fresh HPSG-style annotation, including logical-form semantics;
- 'lossy' reduction of MRS meaning representations to bi-lexical dependencies.

DM: DELPH-IN MRS-Derived Bi-Lexical Dependencies

- DeepBank: Fresh HPSG-style annotation, including logical-form semantics;
- 'lossy' reduction of MRS meaning representations to bi-lexical dependencies.

PAS: Enju Predicate–Argument Structures

- Enju Treebank: Projection of (complete) PTB syntax to HPSG derivations;
- semantic analyses take form of lexicalized predicate-argument structures.

DM: DELPH-IN MRS-Derived Bi-Lexical Dependencies

- DeepBank: Fresh HPSG-style annotation, including logical-form semantics;
- 'lossy' reduction of MRS meaning representations to bi-lexical dependencies.

PAS: Enju Predicate–Argument Structures

- Enju Treebank: Projection of (complete) PTB syntax to HPSG derivations;
- semantic analyses take form of lexicalized predicate-argument structures.

PCEDT: Parts of the Prague Tectogrammatical Layer

- Include all nodes from Prague t-trees that correspond to surface tokens;
- re-attach functors of generated nodes; project dependencies to conjuncts.

DM: DELPH-IN MRS-Derived Bi-Lexical Dependencies

- DeepBank: Fresh HPSG-style annotation, including logical-form semantics;
- 'lossy' reduction of MRS meaning representations to bi-lexical dependencies.

PAS: Enju Predicate–Argument Structures

- Enju Treebank: Projection of (complete) PTB syntax to HPSG derivations;
- semantic analyses take form of lexicalized predicate-argument structures.

PCEDT: Parts of the Prague Tectogrammatical Layer

- Include all nodes from Prague t-trees that correspond to surface tokens;
- re-attach functors of generated nodes; project dependencies to conjuncts.

Sections 00–20 for Training (745,543 Tokens); Section 21 for Testing (29,808).

Token-Oriented, Tabular Data Format

id	form	lemma	pos	top	pred	arg1	arg2
#20	200002						
1	Ms.	Ms.	NNP		+	_	_
2	Haag	Haag	NNP			compound	ARG1
3	plays	play	VBZ	+	+	_	_
4	Elianti	Elianti	NNP			_	ARG2
5	•	•				_	_

Token-Oriented, Tabular Data Format

id	form	lemma	pos	top	pred	arg1	arg2
#20	200002						
1	Ms.	Ms.	NNP	_	+	_	_
2	Haag	Haag	NNP			compound	ARG1
3	plays	play	VBZ	+	+	_	_
4	Elianti	Elianti	NNP			_	ARG2
5	•	•	•	_		_	-

Token-Oriented, Tabular Data Format

- Sub-set of fields from CoNLL 2009; simplified pred column, added top;
- \rightarrow generic data format: labeled directed graphs with designated top node(s).

Quantitative Comparison of Target Representations

		DM	PAS	PCEDT
(1)	# labels	51	42	68
(2)	% singletons	22.62	4.49	35.79
(3)	# edge density	0.96	1.02	0.99
(4)	$\mathbf{\%}_g$ trees	2.35	1.30	56.58
(5)	$\mathbf{\%}_g$ projective	3.05	1.71	53.29
(6)	$\mathbf{\%}_g$ fragmented	6.71	0.23	0.56
(7)	$\boldsymbol{\%}_n$ reentrancies	27.35	29.40	9.27
(8)	$m{\%}_g$ topless	0.28	0.02	0.00
(9)	# top nodes	0.9972	0.9998	1.1237
(10)	$\boldsymbol{\%}_n$ non-top roots	44.71	55.92	4.36

Quantitative Comparison of Target Representations

		DM	PAS	PCEDT
(1)	# labels	51	42	68
(2)	% singletons	22.62	4.49	35.79
(3)	# edge density	0.96	1.02	0.99
(4)	$\mathbf{\%}_g$ trees	2.35	1.30	56.58
(5)	$\mathbf{\%}_{g}$ projective	3.05	1.71	53.29
(6)	$\mathbf{\%}_g$ fragmented	6.71	0.23	0.56
(7)	$\boldsymbol{\%}_n$ reentrancies	27.35	29.40	9.27
(8)	$m{\%}_g$ topless	0.28	0.02	0.00
(9)	# top nodes	0.9972	0.9998	1.1237
(10)	$\mathbf{\%}_n$ non-top roots	44.71	55.92	4.36

- PCEDT is most fine-grained in labels (1); also most 'tree-like' (4, 7, 10);
- PAS is most 'covering' (2) and most connected (3; ignoring singletons);
- DM has some structural red flags: fragmented and topless graphs (6, 8).

Pairwise Similarity (Unlabeled Dependency F₁)

		Directed		Undirected				
	DM	PAS	PCEDT	DM	PAS	PCEDT		
DM		.6425	.2612		.6719	.5675		
PAS	.6688	_	.2963	.6993	_	.5490		
PCEDT	.2636	.2963	—	.5743	.5630	—		

(Upper Right Diagonals: Including punctuation; Lower Left: Ignoring It)

- DM and PAS structurally much closer to each other than either to PCEDT;
- effect stronger when ignoring dependencies involving punctuation marks;
- directionality of dependencies one of the major sources of divergence.

Linguistic Comparison of Target Representations

A similar technique is almost impossible to apply to other crops .

SDP 2014: Broad-Coverage Semantic Dependency Parsing (8)

Linguistic Comparison of Target Representations

A similar technique is almost impossible to apply to other crops .

SDP 2014: Broad-Coverage Semantic Dependency Parsing (8)

Linguistic Comparison of Target Representations

A similar technique is almost impossible to apply to other crops .

A similar technique is almost impossible to apply to other crops .

SDP 2014: Broad-Coverage Semantic Dependency Parsing (8)

Different Approaches to Coordinate Structures

SDP 2014: Broad-Coverage Semantic Dependency Parsing (9)

Different Approaches to Coordinate Structures

Diverging Ambitions: Sentence vs. Speaker Meaning

Diverging Ambitions: Sentence vs. Speaker Meaning

? Meaning determined by linguistic signal alone vs. by utterance context;

• internal bracketing arguably grammaticalized, but not role interpretation.

Task Setup

Evaluation Metrics

- Labeled and unlabeled precision, recall, and F₁ of individual dependencies;
- additionally, labeled and unlabeled exact sentence accuracy (much stricter);
- identification of *top* node(s) considered additional, 'virtual' dependencies.

Closed vs. Open Tracks

- Beyond lemma and part of speech, no representation of syntax in Task data;
- investigate role of syntax in separate, 'open' track: (almost) no holds barred;
- 'companion' analyses: simplified PTB phrase structure and Stanford Basic.

Participating Teams and Approaches

Team	Track	Approach	Resources
Alpage	C & O	transition-based parsing for DAGs, logistic regres- sion, structured perceptron	companion, Brown clusters
CMU	0	edge classification by logistic regression, edge- factored structured SVM	companion
Copenhagen- Malmö	С	graph-to-tree transformation, Mate	_
In-House	0	pre-existing parsers developed by the organizers	grammars
Linköping	С	extension of Eisner's algorithm for DAGs, edge- factored structured perceptron	—
Peking	С	transition-based parsing for DAGs, graph-to-tree transformation, parser ensemble	_
Potsdam	C & O	graph-to-tree transformation, Mate	companion
Priberam	C & O	model with second-order features, decoding with dual decomposition, MIRA	companion
Turku	0	cascade of SVM classifiers (dependency recogni- tion, label classification, top recognition)	companion, syntactic n-grams, word2vec

Official Results: 'Closed' and 'Open' Tracks

		DM				PAS				PCEDT			
	LF	LP	LR	LF	LM	LP	LR	LF	LM	LP	LR	LF	LM
Peking	85.91	90.27	88.54	89.40	26.71	93.44	90.69	92.04	38.13	78.75	73.96	76.28	11.05
Priberam	85.24	88.82	87.35	88.08	22.40	91.95	89.92	90.93	32.64	78.80	74.70	76.70	09.42
Copenhagen- Malmö	80.77	84.78	84.04	84.41	20.33	87.69	88.37	88.03	10.16	71.15	68.65	69.88	08.01
Potsdam	77.34	79.36	79.34	79.35	07.57	88.15	81.60	84.75	06.53	69.68	66.25	67.92	05.19
Alpage	76.76	79.42	77.24	78.32	09.72	85.65	82.71	84.16	17.95	70.53	65.28	67.81	06.82
Linköping	72.20	78.54	78.05	78.29	06.08	76.16	75.55	75.85	01.19	60.66	64.35	62.45	04.01

- PRAGUE - 30-JUL-14 (oe@ifi.uio.no) -----

Official Results: 'Closed' and 'Open' Tracks

		DM				PAS				PCEDT			
	LF	LP	LR	LF	LM	LP	LR	LF	LM	LP	LR	LF	LM
Peking	85.91	90.27	88.54	89.40	26.71	93.44	90.69	92.04	38.13	78.75	73.96	76.28	11.05
Priberam	85.24	88.82	87.35	88.08	22.40	91.95	89.92	90.93	32.64	78.80	74.70	76.70	09.42
Copenhagen- Malmö	80.77	84.78	84.04	84.41	20.33	87.69	88.37	88.03	10.16	71.15	68.65	69.88	08.01
Potsdam	77.34	79.36	79.34	79.35	07.57	88.15	81.60	84.75	06.53	69.68	66.25	67.92	05.19
Alpage	76.76	79.42	77.24	78.32	09.72	85.65	82.71	84.16	17.95	70.53	65.28	67.81	06.82
Linköping	72.20	78.54	78.05	78.29	06.08	76.16	75.55	75.85	01.19	60.66	64.35	62.45	04.01

	DM						PA	AS		PCEDT			
	LF	LP	LR	LF	LM	LP	LR	LF	LM	LP	LR	LF	LM
Priberam	86.27	90.23	88.11	89.16	26.85	92.56	90.97	91.76	37.83	80.14	75.79	77.90	10.68
CMU	82.42	84.46	83.48	83.97	08.75	90.78	88.51	89.63	26.04	76.81	70.72	73.64	07.12
Turku	80.49	80.94	82.14	81.53	08.23	87.33	87.76	87.54	17.21	72.42	72.37	72.40	06.82
Potsdam	78.60	81.32	80.91	81.11	09.05	89.41	82.61	85.88	07.49	70.35	67.33	68.80	05.42
Alpage	78.54	83.46	79.55	81.46	10.76	87.23	82.82	84.97	15.43	70.98	67.51	69.20	06.60
In-House	75.89	92.58	92.34	92.46	48.07	92.09	92.02	92.06	43.84	40.89	45.67	43.15	00.30

Outlook: Candidate Revisions for SDP 2015

SDP 2014: Broad-Coverage Semantic Dependency Parsing (14)