

The Center For Language and Speech Processing at the Johns Hopkins University





human language technology center of excellence

# Deep, Long, and Wide Artificial Neural Networks in ASR

Hynek Hermansky





estimate likelihoods  $p(x|W_i)$ , where  $W_i$  are constituents of W (speech sounds)



stochastic search

 $\hat{W} = argmax_W p(x|W) P(W) \iff$  language model and lexicon





Multi-Layer Perceptron can emulate any nonlinear mapping



#### EXTRACTED INFORMATION (10 Hz)



STIMULUS (10 kHz)

Multi-Layer Perceptron can emulate **any** nonlinear mapping ©



(given infinite size of the MLP and an infinite amount of training data igodots )\_







### Which frequency bands ?

## Simultaneous (frequency) masking



Better frequency resolution at lower frequencies

- also seen in
  - growth of loudness
  - perception of subthreshold stimuli

Sound elements outside a critical band do not corrupt decoding of elements inside the band

## Linear Discriminant Analysis (LDA)

Linear discriminants: eigenvectors of  $\Sigma^{-1}{}_{W}\Sigma_{B}$ 

 $\Sigma_{\rm W}$  - within-class covariance matrix  $\Sigma_{\rm B}$  - between class covariance matrix

• Needs labeled data





Malayath and Hermansky 2003, Valente and Hermansky 2006

Better frequency resolution at lower frequencies is desirable

Better frequency resolution at lower frequencies Sound elements outside a critical band do not corrupt decoding of elements inside the band

#### **HOW LONG ?**



conventional



## Masking in Time



- suggests ~200 ms buffer in auditory system
  - also seen in perception of loudness, detection of short stimuli, gaps in tones, auditory afterimages, binaural release from masking, .....
- Sound elements outside this buffer do not affect detection of signal within the buffer

### LDA on temporal trajectories of spectral energies



### RASTA

attenuation [dB]

## Filter **each critical band** output by a band-pass filter

frequency response



• pass modulations between 1-15 Hz

Environmental mismatch in training and in test

| RASTA        | 2.2 % error | 2.9 % error |
|--------------|-------------|-------------|
| conventional | 2.8 % error | 60.7% error |
|              | matched     | mismatched  |

frequency



time

### Lesson From History



Ear is frequency selective NOT in order to derive spectrum of the signal

but

in order to yield frequency-localized temporal patterns.

### Frequency Domain Linear Prediction (FDLP)

FDLP

 means for all-pole estimation of Hilbert envelopes (instantaneous spectral energies) in individual frequency channels



### 200-400 ms







Information in speech is coded hierarchically (deep) in temporal dynamics (long) and in many redundant dimensions (wide)

### Deep, Long, and Wide Neural Nets



#### Labels



#### Long, wide and deep ANN estimates



thanks Tetsuji Ogawa

Information in speech is coded in many redundant dimensions. Not all dimensions get corrupted at the same time.

**Smart fusion** – alleviates unreliable processing streams

Probability estimator, which knows when it does not know



#### corrupted by -20 dB SNR 1 kHz sinusoidal signal



#### performance monitoring selecting less corrupted parts of the signal



thanks Tetsuji Ogawa

### **Multi-stream speech recognition**

Variani, Li and Hermansky 2013



#### Phoneme recognition error rates

| environment                                             | conventional | proposed | best by hand |
|---------------------------------------------------------|--------------|----------|--------------|
| clean<br>(matched training and test)                    | 31 %         | 29 %     | 24 %         |
| TIMIT with car noise at 0 dB SNR<br>(training on clean) | 54 %         | 35 %     | 30 %         |
| RATS data<br>(Channel E – matched training and test)    | 70 %         | 54 %     | 49 %         |

# Conclusions

- Inputs to each local Deep Neural Net (DNN) should be frequency localized
- Data to each local DNNs should cover larger than 200-300 ms time spans
- Fusion from local DNNs should be done in a way that alleviates unreliable processing on local DNN levels



**LONG** (200-400 ms)

#### DEEP

(hierarchical structures of multi-layer perceptrons)