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estimate likelihoods p(x|Wi), where Wi are constituents of W (speech sounds)

w eh k s oh f aa r t aa r b ei s t

stochastic search

Ŵ = argmaxW p(x|W) P(W) language model and lexicon



Multi-Layer Perceptron can emulate any nonlinear mapping 

MLP likelihood of speech sound
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Multi-Layer Perceptron can emulate any nonlinear mapping 

MLP likelihood of speech sound

(given infinite size of the MLP and an infinite amount of training data  )_
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temporal evolution of spectral energy P(w0,t) in frequency bands
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Sound elements outside a 
critical band do not 
corrupt decoding of 
elements inside the band
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Better frequency resolution 
at lower frequencies
• also seen in

• growth of loudness
• perception of 

subthreshold stimuli 

Simultaneous (frequency) masking



Linear Discriminant Analysis (LDA)

Linear 
discriminants: 
eigenvectors of
S-1

WSB

SW - within-class 
covariance matrix
SB - between class 
covariance matrix

• Needs labeled data 
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63 % 16 %

12 % 2 %

f

df=30 Hz

first 16

LDA basis
?

Cosine basis               LDA-derived basis     Critical-band filterbank

Malayath and Hermansky 2003, Valente and Hermansky 2006 

Better frequency resolution at lower frequencies is desirable



Sound elements outside a 
critical band do not 
corrupt decoding of 
elements inside the band
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conventional

processing

HOW LONG ?

Better frequency 
resolution at lower 
frequencies 



Masking in Time

• suggests ~200 ms buffer in auditory system

– also seen in perception of loudness, detection of short stimuli, gaps in 

tones, auditory afterimages, binaural release from masking, …..

• Sound elements outside this buffer do not affect detection of signal 
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LDA on temporal trajectories of spectral energies

impulse responses
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RASTA

Environmental mismatch in training and in test 

matched mismatched

conventional 2.8 % error 60.7% error

RASTA 2.2 % error 2.9 % error
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• pass modulations between 1-15 Hz

Filter each critical band 
output by a band-pass filter

spectrogram from RASTA
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Lesson From History

Ptolemy

Galileo



Ear is frequency selective 

NOT in order to derive spectrum of the 

signal 

but

in order to yield frequency-localized 

temporal patterns. 



Frequency Domain Linear Prediction (FDLP)
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• means for all-pole estimation of Hilbert envelopes (instantaneous spectral energies) 
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classifier
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Deep, Long, and Wide Neural Nets

up to 1000 ms

many 
processing

layers

(transformed)
posterior

probabilities
of speech

sounds
in the center

of the window

fusion
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Information in speech is coded hierarchically (deep)
in temporal dynamics (long)
and in many redundant dimensions  (wide)
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Labels

Long, wide and deep ANN estimates

thanks Tetsuji Ogawa



posterior
probabilities

of speech
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smart
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Information in speech is coded in many redundant dimensions.
Not all dimensions get corrupted at the same time. 

Smart fusion – alleviates unreliable processing streams

Probability estimator, which knows when it does not know



clean

corrupted by -20 dB SNR 1 kHz sinusoidal signal

performance monitoring selecting less corrupted parts of the signal

thanks Tetsuji Ogawa



Multi-stream speech recognition
Variani, Li and Hermansky 2013 
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clean

(matched training and test)

31 % 29 % 24 %

TIMIT with car noise  at 0 dB SNR

(training on clean)

54 % 35 % 30 %

RATS data 

(Channel E – matched training and test)

70 % 54 % 49 %

Phoneme recognition error rates 



Conclusions

• Inputs to each local Deep Neural Net 
(DNN) should be frequency localized

• Data to each local  DNNs should cover 
larger than 200-300 ms time spans

• Fusion from local DNNs should be done 
in a way that alleviates unreliable 
processing on local DNN levels



spectral
analysis

Hilbert envelopes 
in spectral bands
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