Towards a detailed understanding of images CLSP 2012 Summer Workshop

Matthew Blaschko, *École Centrale Paris* Ross B. Girshick, *University of Chicago* Juho Kannala, *University of Oulu* Iasonas Kokkinos, *École Centrale Paris* Siddharth Mahendran, *Johns Hopkins University* Subhransu Maji, *Toyota Technological Institute* Sammy Mohamed, *Stony Brook University*

Esa Rahtu, *University of Oulu* Naomi Saphra, *Carnegie Mellon University* Karen Simonyan, *University of Oxford* Ben Taskar, *University of Pennsylvania* Andrea Vedaldi, *University of Oxford* David Weiss, *University of Pennsylvania*

y

get the truth. then go.

Semantic search

Searching personal photos

Emiliy gift

cherry blossom cityscape

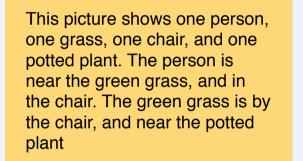
Searching press archives

Obama kneeling beach

Searching the BBC collection

John Cleese jacket and tie phone

Captioning and summarisation



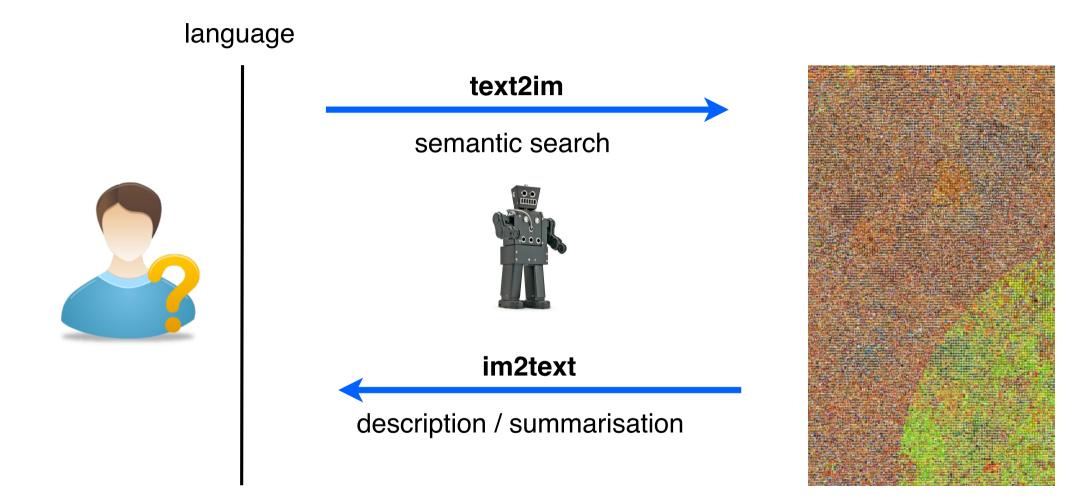
a cow with sheep with a gray sky people with boats green grass by the road

a brown cow

people at a wooden table

[Kulrani et al. 11, Mitchell et al. 12]

Human-centric machine vision



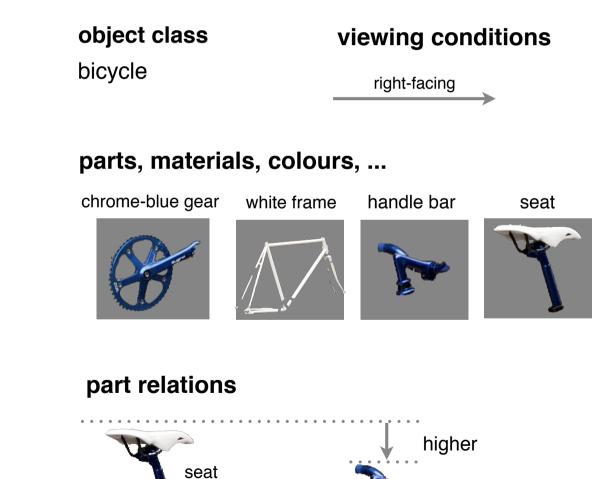
Semantic tasks in computer vision

image classification

Coarse semantics.

Beyond categories: objects in detail

Most human-centric tasks require understanding the details of objects.



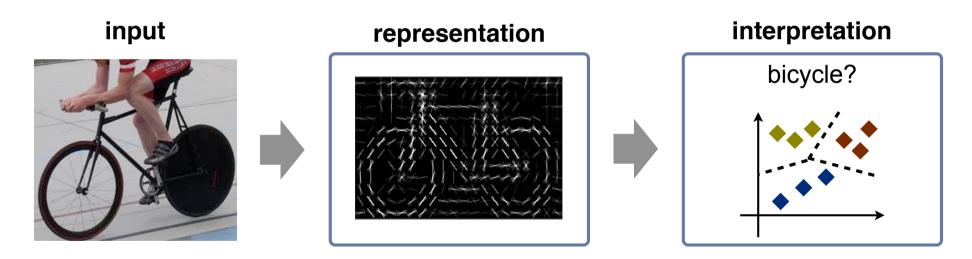
handle bar

7

Advantages of detailed understanding

Better support for human-centric tasks.

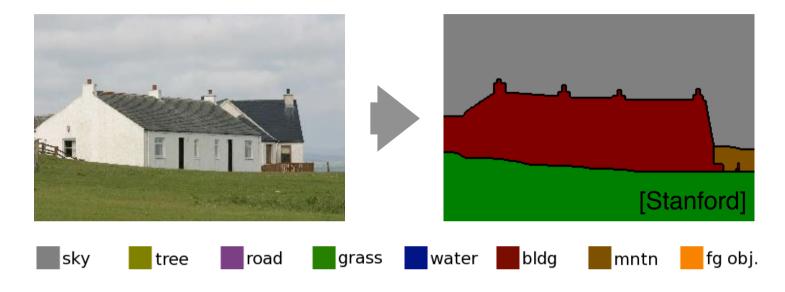
Current models are opaque, semantically shallow:

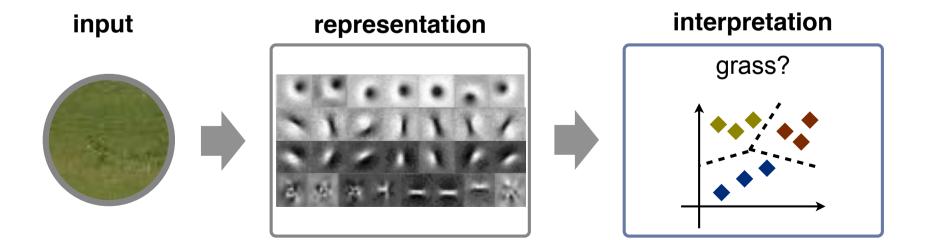


A semantically decomposed model is easier to understand, diagnose, and improve.

Not just objects: texture semantic

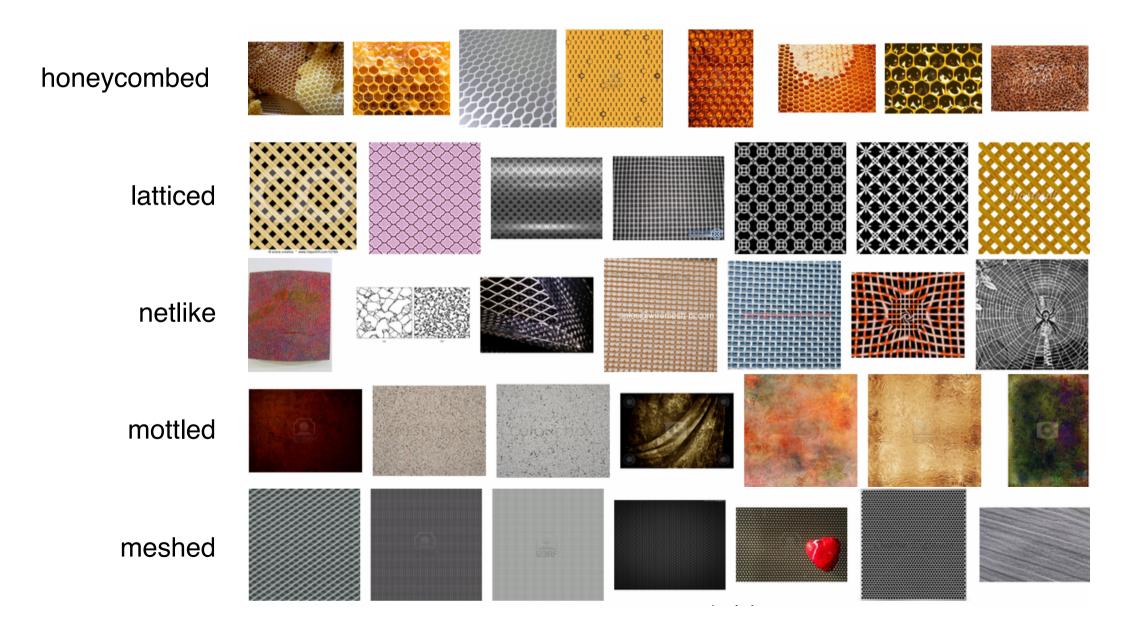
segmenting stuff





Stuff in detail

Texture models for human-centric tasks.



Opening a path to detailed semantic analysis

11

Problem	Data	Time frame	Progress
Image Classification	Caltech-101	2003-06	star models, BoW
Object Detection	PASCAL VOC	2006-12	DPMs, large scale learning
Parts & Attributes	?	2012-? ↑	?
		what can you do in six weeks?	

Overview

Objects in Detail

Parts & attributes

- A new dataset
- An object lexicon
- Localising parts
- Layouts
- Recognising attributes
- The cost of data collection

Stuff in Detail

Texture

- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

Overview

Objects in Detail

Parts & attributes

- A new dataset
- An object lexicon
- Localising parts
- Layouts
- Recognising attributes
- The cost of data collection

Stuff in Detail

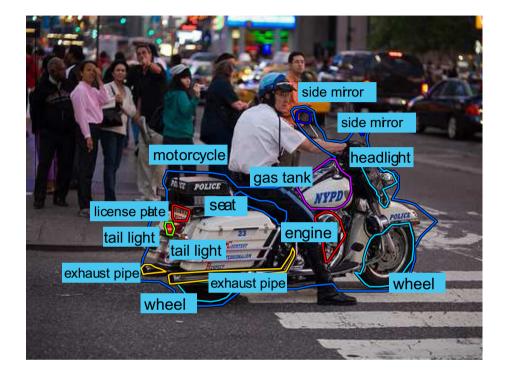
Texture

- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

The need for a dataset



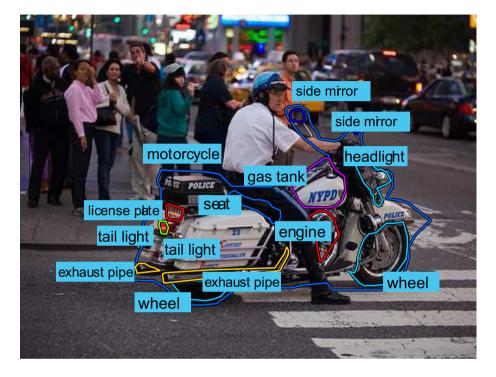
• Why annotated data:

- 1. Evaluation
- 2. Training

Detailed semantic tasks:

- which type of motorcycle is this?
- where is the right exhaust pipe?
- what is the tail-light shape?
- what is the colour of the panniers?
- is the head light visible?
- is there a rider?

The need for a new dataset



CORE Dataset [Farhadi Endres Hoiem 2010]

- ✓ Sharing of parts
- X Accurate recognition of parts and their attributes

category	# parts / object
airplane	9.49
alligator	8.90
bat	8.55
bicycle	6.62
blimp	5.29
boat	3.76
bus	11.32
camel	12.15
car	8.15
carriage	5.43
cat	11.50
COW	10.93
crow	8.08
dog	13.17
dolphin	6.17
eagle	8.01
elephant	11.97
elk	11.47
hovercraft	4.81
ietski	3.64
lizard	9.27
monkey	11.90
motorcycle	9.03
penguin	6.95
semi	11.51
ship	4.29
snowmobile	5.99
whale	4.82

Objects in Detail A new dataset of parts and attributes

MERIAL TYPE

Designing a dataset of parts & attributes

Motivation

- we know that parts & attributes are useful for sharing, etc.
- but how well can we recognise parts & attributes?

Aims of the dataset

- object recognition \rightarrow parts & attributes recognition
- benchmarking: measure and encourage progress
- inspire new technical challenges

• How

- high-quality annotations (*e.g.* PASCAL VOC)
- sufficiently large to be representative of data variability
- the object class and location is given
- define new tasks and metrics
 - part localisation
 - attribute recognition
 - joint tasks

An rich object category With parts and attributes

Wings

Hannover

A PRODUCT OF THE ALCON AND THE REPORT OF THE ALCONG THE

Spotters: an effective data source

Aircraft Spotters http://www.airliners.net/

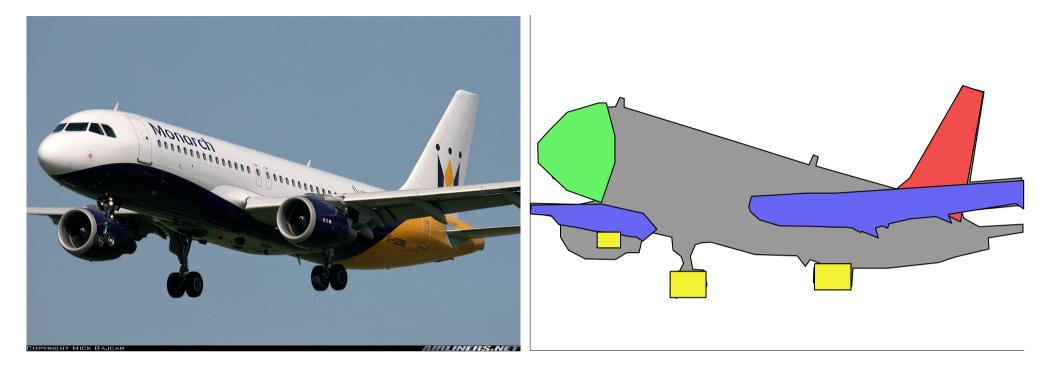
Selected about 7,500 for annotation.

Trivial extension to other classes

railways: http://railpictures.net/

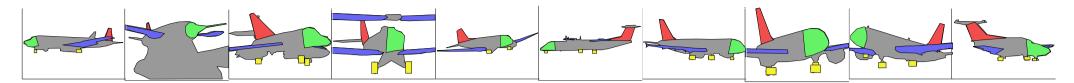
States and the fact the and the second s - 2010 - 912 - 2 C and the second and the second and the second and a loss a set the set of the set of the and the section of th

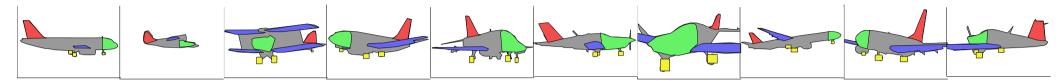
Part annotations

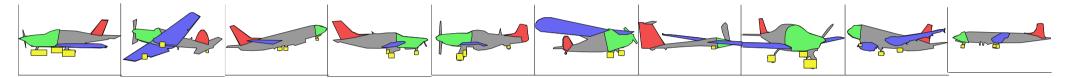


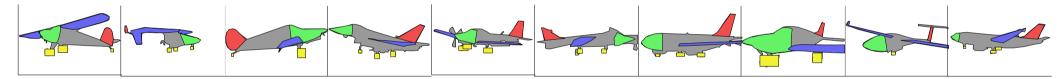
eroplane	vertical stabilis	ser no	se whee	el wing
Part	# train	# val	# test	# total
aeroplane	1,859	1,854	3,713	7,426
vertical stabiliser	1,885	1,866	3,742	7,493
nose	1,848	1,845	3,700	7,393
wing	3,007	3,047	5,958	12,012
wheel	4,919	4,958	9,917	19,794

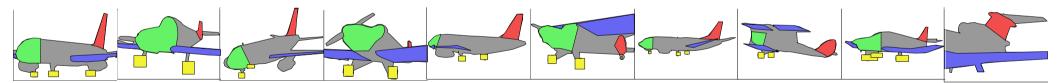
Examples

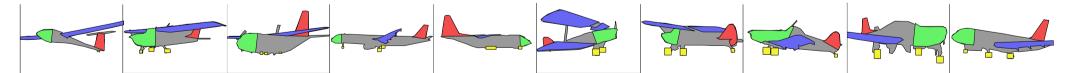


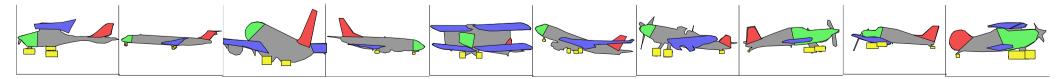


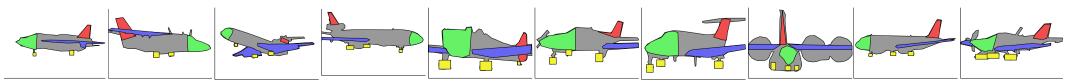












Attribute annotations

Part	Attribute	Values
aeroplane	airline	2Excel Aviation, ACE Transvalair, ATA Airlines, ATE Avic
aeroplane	model	AESL Airtourer T2, AESL Airtourer T5 Super 150, AESL Gl
aeroplane	isAirliner	yes,no
aeroplane	isCargoPlane	yes,no
aeroplane	isMilitaryPlane	yes,no
aeroplane	isPropellorPlane	yes,no
aeroplane	isSeaPlane	yes,no
aeroplane	facingDirection	E,SE,S,SW,W,NW,N,NE
aeroplane	planeLocation	on ground/water,landing/taking off,in air
aeroplane	planeSize	small plane,medium plane,large plane
wing	wingType	single wing plane,bi-plane,tri-plane
wing	wingHasEngine	1-on-bottom,1-on-top,2-on-bottom,2-on-top,3-on-bottom
vertical stabilizer	tailHasEngine	1-middle-top,2-on-sides,3-on-top-and-sides,no-engine
nose	noseHasEngineOrAntenna	has-antenna,has-engine,none
wheel	undercarriageArrangement	not visible,one-front-two-back,other,two-front-one-ba
wheel	coverType	fixed-inside,fixed-outside,fixed-outside-with-cover,r
wheel	groupType	1-wheel-1-axle,14-wheels-7-axles,2-wheels-1-axle,4-wh
wheel	location	<pre>back-left,back-middle,back-right,front-left,front-mic</pre>

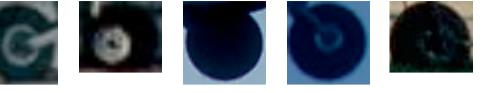
is airliner: yes

is airliner: no

METN

is military plane: yes

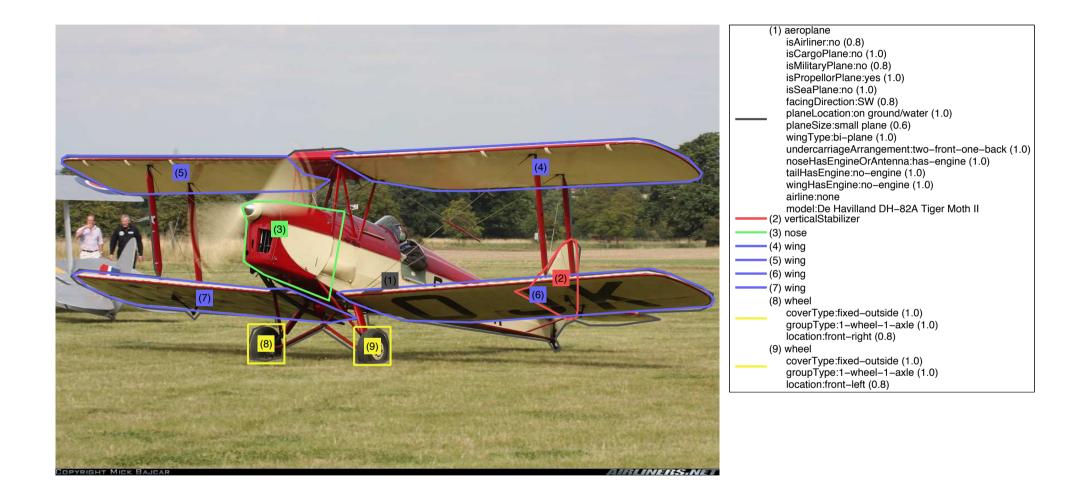
is sea plane: yes

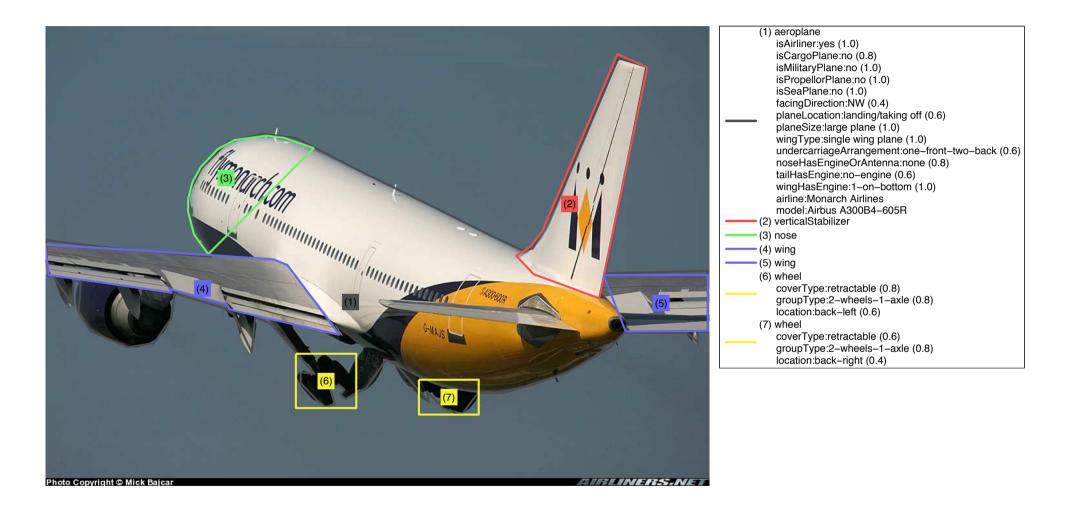


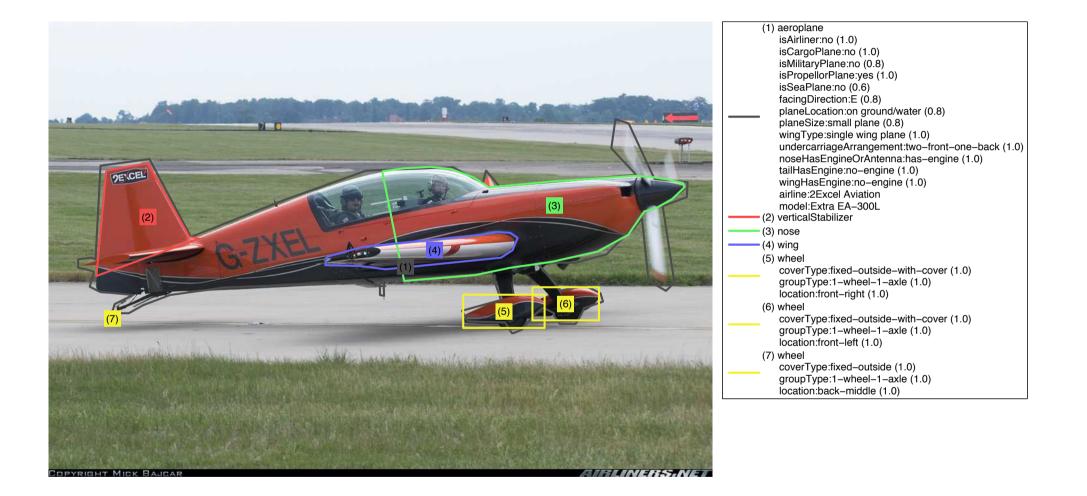
wheel - group type: 4-wheels-2-axles

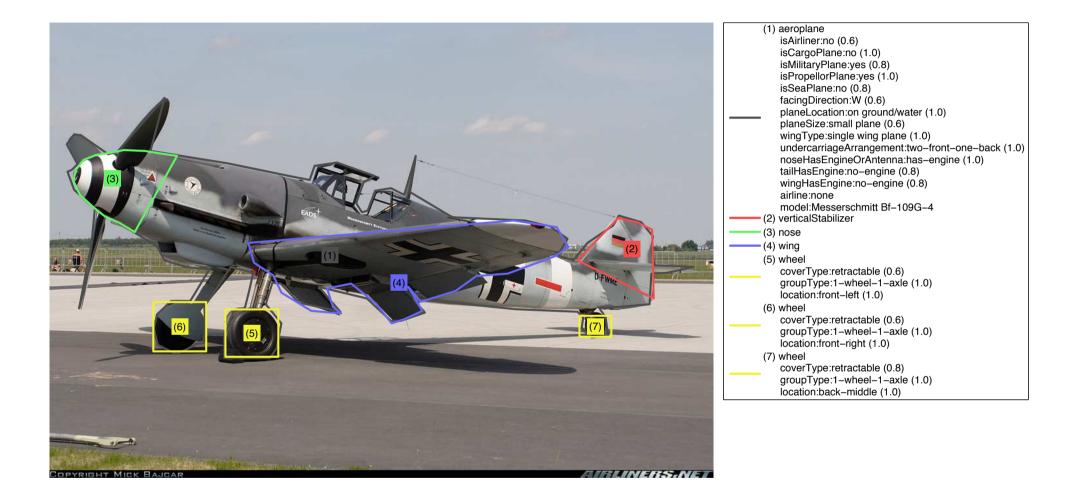
wheel - group type: 6-wheels-3-axles

Complete annotation examples





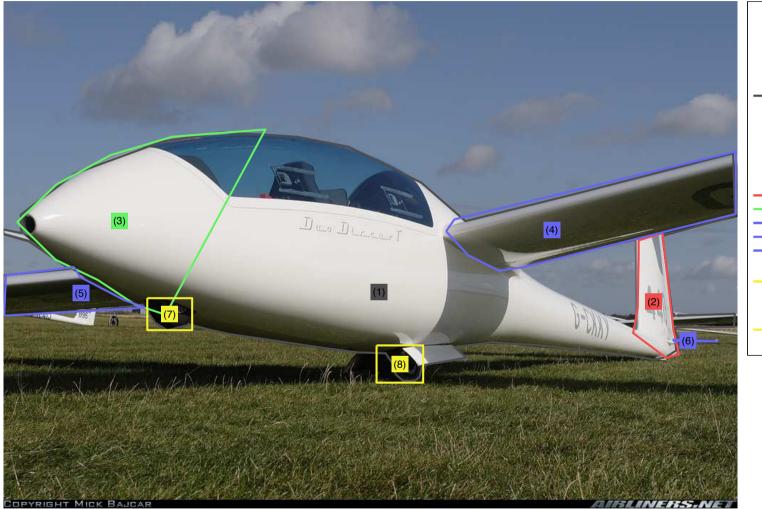


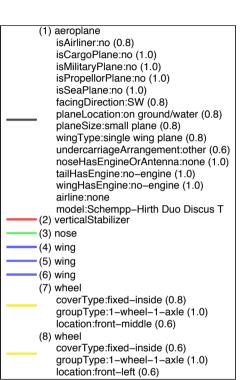


(1) aeroplane

isAirliner:yes (0.8)
isCargoPlane:no (1.0)
isMilitaryPlane:no (0.8)
isPropellorPlane:no (1.0)
isSeaPlane:no (1.0)
facingDirection:SW (1.0)
planeLocation:on ground/water (1.0)
planeSize:large plane (1.0)
wingType:single wing plane (1.0)
undercarriageArrangement:not visible (0.6)
noseHasEngine:3-on-top-and-sides (0.6)
wingHasEngine:no-engine (0.8)
airline:British Airways
model:Hawker Siddeley HS-121 Trident 3B

(2) verticalStabilizer
(3) wing (3) wing





Objects in Detail Parts & attributes

- A new dataset
- An object lexicon
- Localising parts
- Layouts
- Recognising attributes

Overview

Stuff in Detail Texture

- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

Lexicon of Parts and Attributes

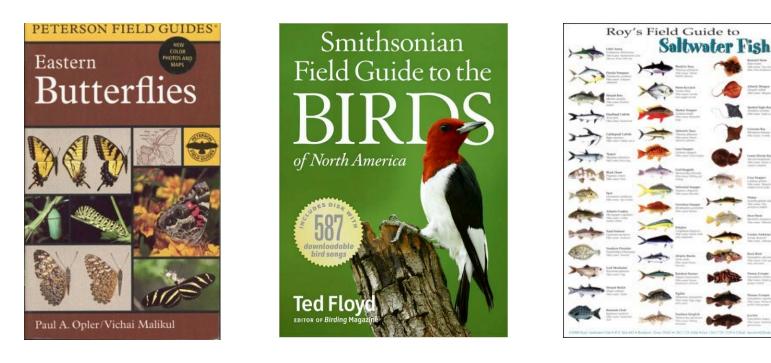
How do people describe objects?

Subhransu Maji TTI Chicago

Source of Parts and Attribute Lexicons

• Field guides:

- Provides exhaustive lists when available

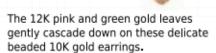


Experts vs. Layman

Source of Parts and Attribute Lexicons

Captioned images

Dazzle after dark with Judith Leiber's decadent oversized crystal-embellished silver-tone clutch. Carry this fabulous extra to add high-octane glamour to an LBD and teetering heels. Shown here with an Emilio Pucci dress and Givenchy shoes.

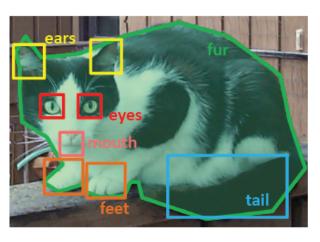


Rock and roll in these sexy, strappy heels from Report Signature. The smoldering Rockwell features a grey patent leather upper with pleated satin crossing at the open-toe atop a 1 inch platform, patent straps closing around the ankle with a gold buckled, and finally a 5 inch patent cone heel. Sizzle in these fierce mile-high shoes.

Limited by sources of such text (not always visual attributes)

Berg et al., ECCV 2010

Parts and Attributes: Why?



Object Categories: animal, land animal, domestic, mammal, carnivore, cat

Viewpoint/pose: lying down, left side, facing camera

Other likely parts: four legs

Helps differentiate instances of an object Communication requires a lexicon

What are good attribute lexicons?

Goals: Differentiation + Communication

Discriminative Description

Describe the (visual) differences between the two

Description

list properties

- plane
- has engine
- red color
- has rudder

Discriminative Description

propeller plane vs. passenger plane one engine vs. four engines red color vs. white color round rudder vs. pointy rudder

Helps elicit a lexicon that enables fine grained discrimination Is task specific by design

The Annotation Task Interface

Find differences between the two aeroplanes

Click here to see example answers.

List 5 differences between the two aeroplanes

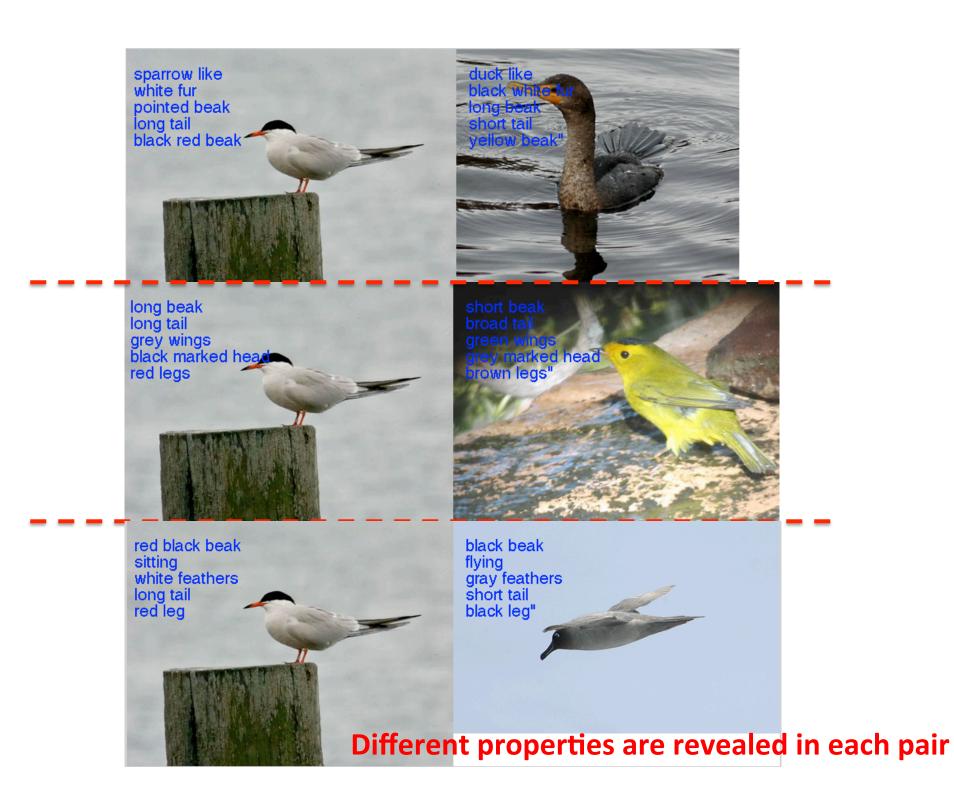
Submit Answer

The Annotation Task Interface

Example Annotations

Example Annotations

Images are from CUB 200 dataset



Frequencies of Properties

Frequencies of Properties

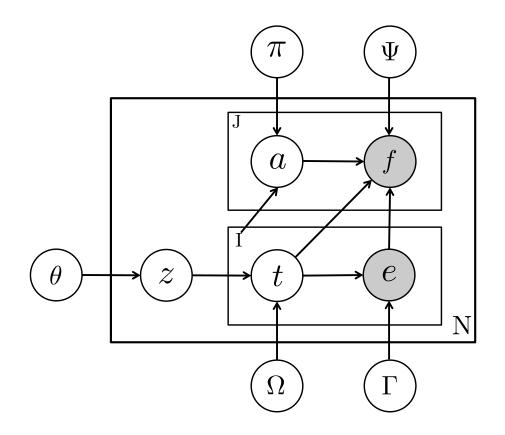
Discovering parts & attribute lexicons

Red rudder vs. *White* rudder *Pointy* nose vs. *Round* nose

{*Red, White*} Color {Pointy, Round} Shape

- Analyzing sentence pairs
 - Words that *repeat* across a sentence pair are parts (nouns)
 - Words that are *different* across a sentence pair are from the same semantic *modifier* category
 - Each sentence has only one noun and modifier topic

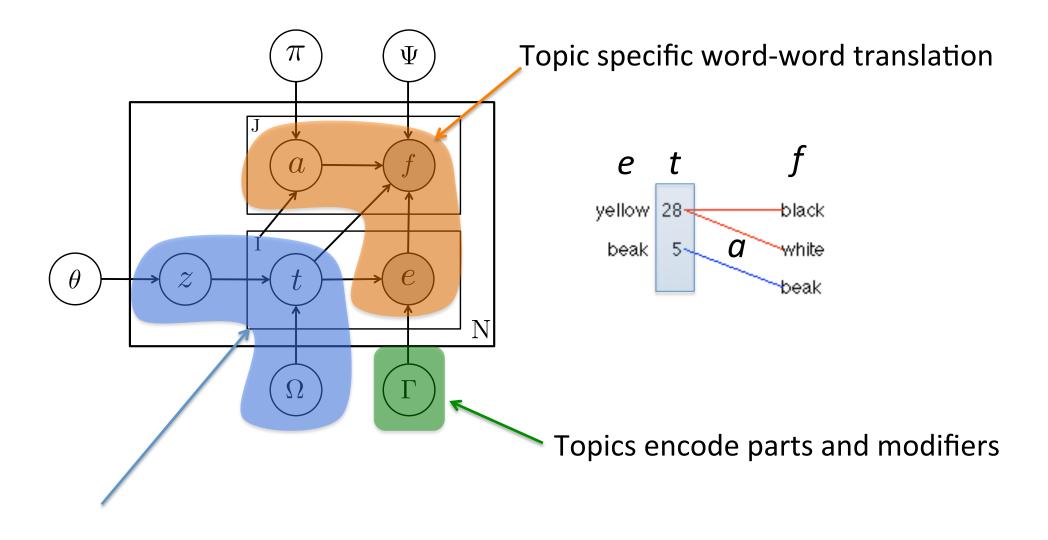
Bipartite Topic Translation Model for Sentence Pairs



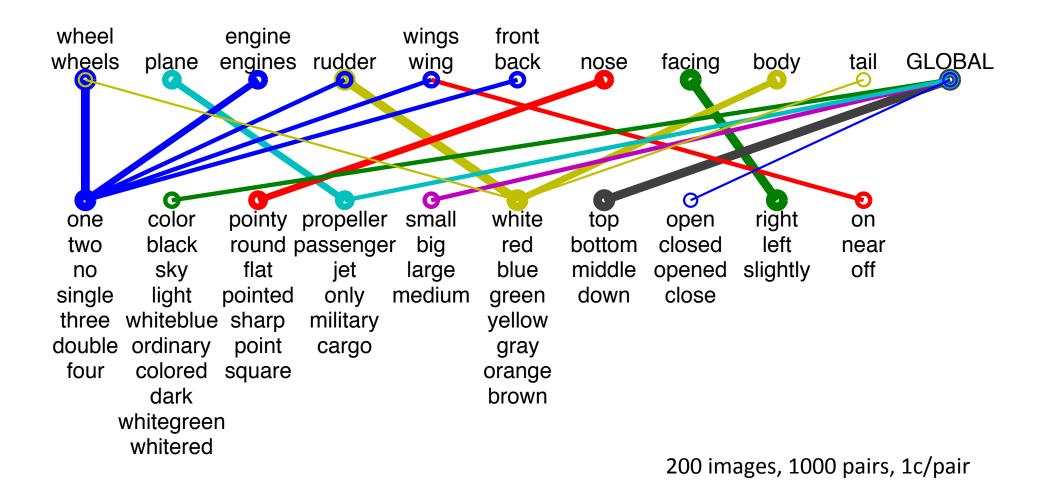
For each sentence pair $\mathbf{e}_s, \mathbf{f}_s, s \in \{1, \dots, N\}$

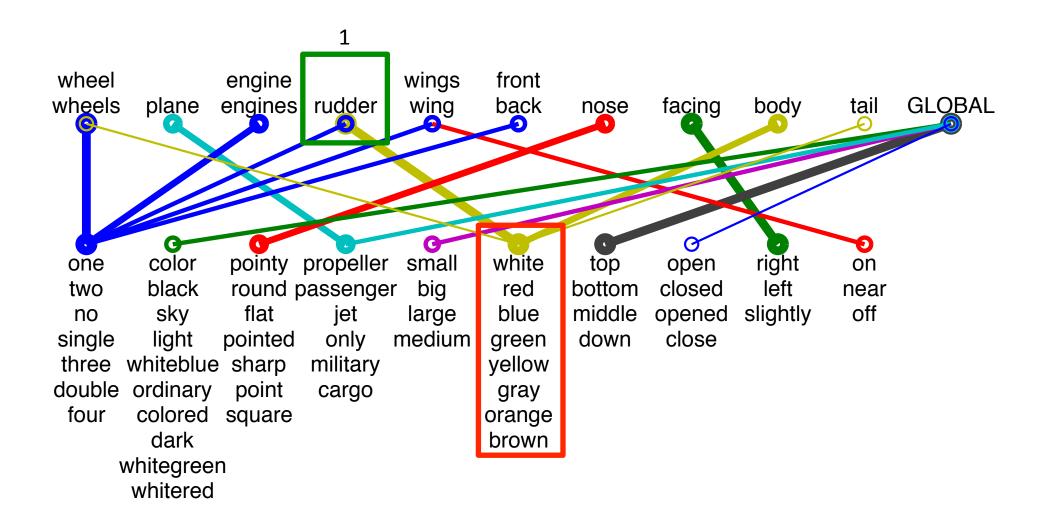
- Sample relation $z_s \sim Multinomial(\theta)$
- For each word position $i \in 1, \ldots, I_s$ in $\mathbf{e_s}$
 - Sample topic $t_{s,i} \sim Multinomial(\Omega_{z_s})$
 - Sample word $e_{s,i} \sim Multinomial\left(\Gamma_{t_{s,i}}\right)$
- For each word position $j = \{1, \ldots, J_s\}$ in $\mathbf{f_s}$
 - Sample $a_j \in \{1, ..., I\} \propto \pi(|a_j j|),$
 - Sample word $f_{s,j} \sim Multinomial\left(\Psi_{e_{a_j},t_{a_j}}\right)$

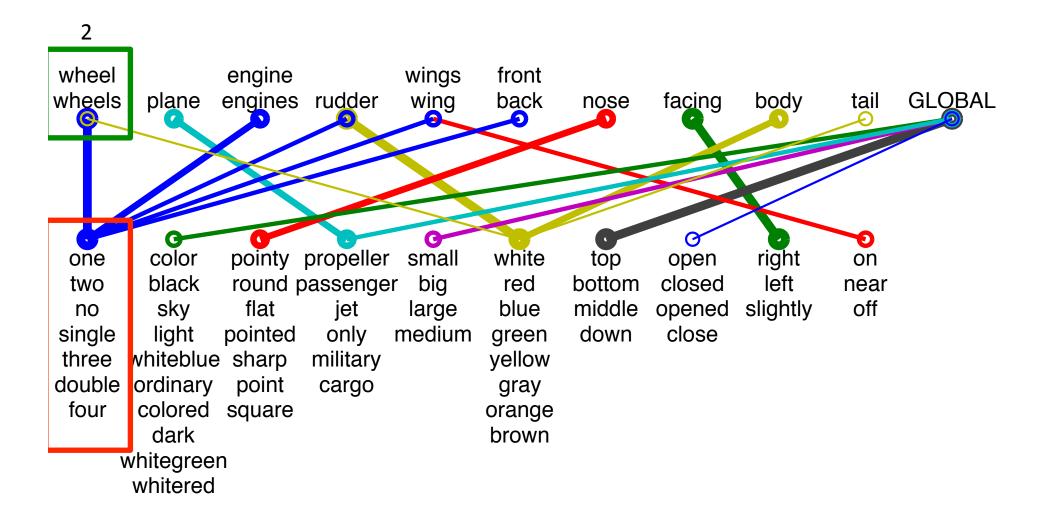
Bipartite Topic Translation Model for Sentence Pairs

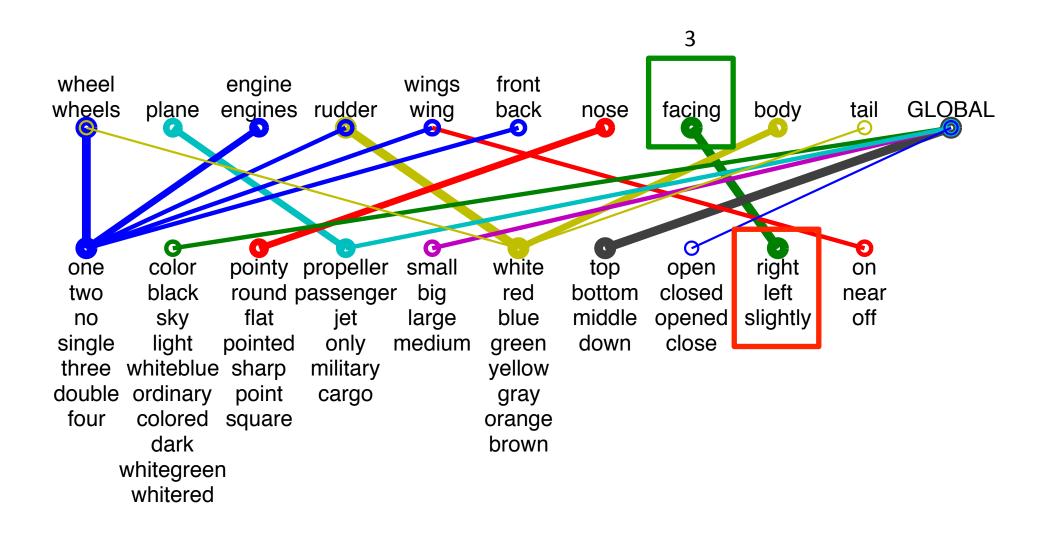


Bipartite topics: Each sentence has one noun and one modifer topic

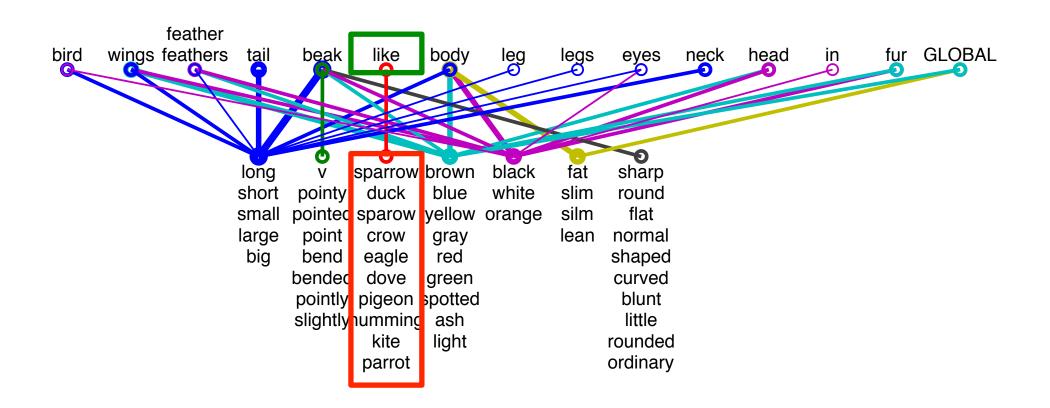








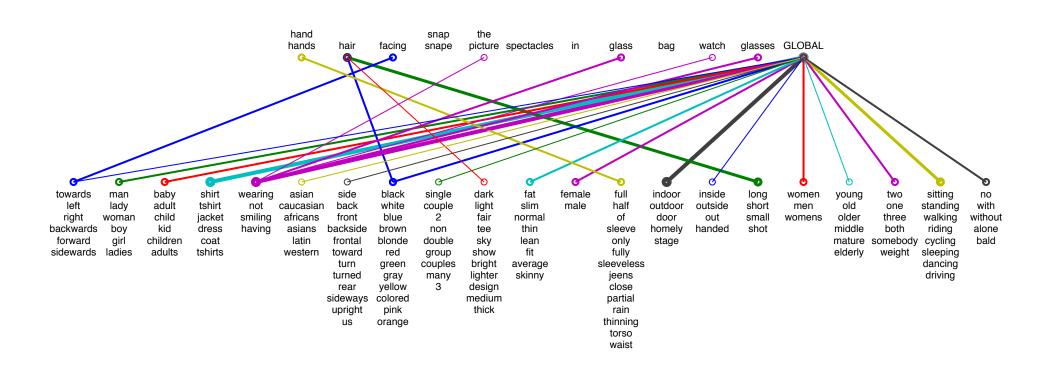
Attributes of Birds



200 images, 1600 pairs, 1c/pair

One image per category CUB200

Parts & Attributes of People



400 images, 1600 pairs, 1c/pair random images from PASCAL VOC 10

Summary

- Discriminative description is an effective way to obtain a lexicon of parts and attributes that are useful for fine-grained discrimination
- Simple analysis of such text can help discover topics that encode parts, modifiers and their relations.

Overview

Objects in Detail Parts & attributes

- A new dataset
- An object lexicon
- Localising parts
- Layouts
- Recognising attributes

Stuff in Detail Texture

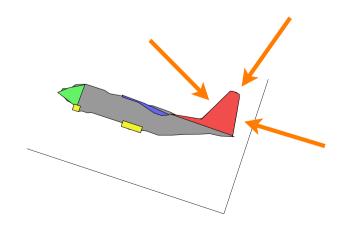
- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

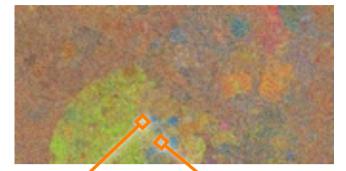
- Learning to merge
- Cascading
- Scoring regions by attributes

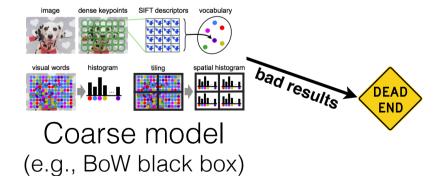
Localizing parts

Ross Girshick University of Chicago



Find airplanes with propellors on their noses





Not on nose! Confusing occlusion Context?

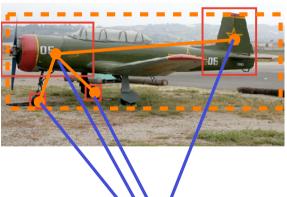
Use parts to align vision models with language

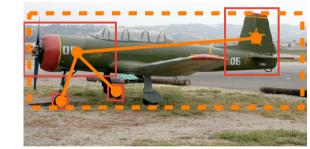
Overview of approach

Q: Propellor on nose?

1. Candidate part detections (this talk)

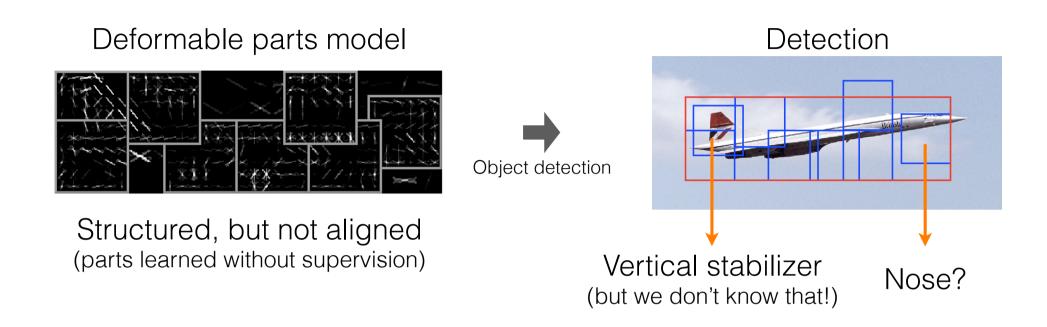
2. Consistent layout generation (next talk)



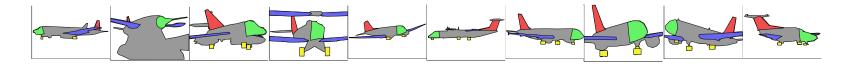


3. Extract semantically aligned features ...

Why semantic parts?



- Without semantic parts
 - the semantic alignment is unknown or nonexistent
 - show me the vertical stabilizer
 - no ground-truth for debugging performance bottlenecks
 - are the part detectors failing? is the spatial model too rigid?



Part detection: evaluation metric

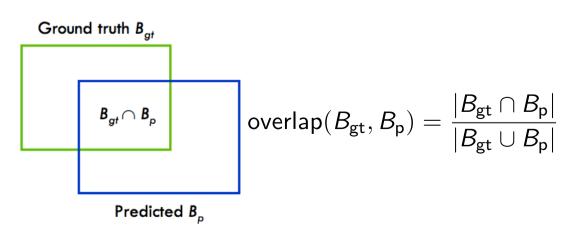
Part detection

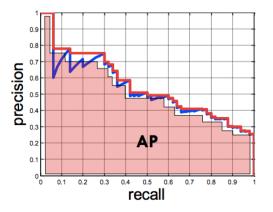
Task: predict part bounding boxes

Test image

Scored candidate detections

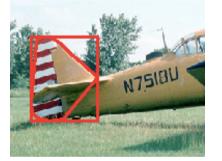
- PASCAL VOC Challenge evaluation
 - Sort candidate detections by confidence score
 - Grade each as true positive or false positive (overlap ≥ 0.5)
 - Precision-recall curve & average precision (AP)

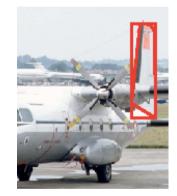


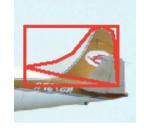


Training data

Vertical stabilizers





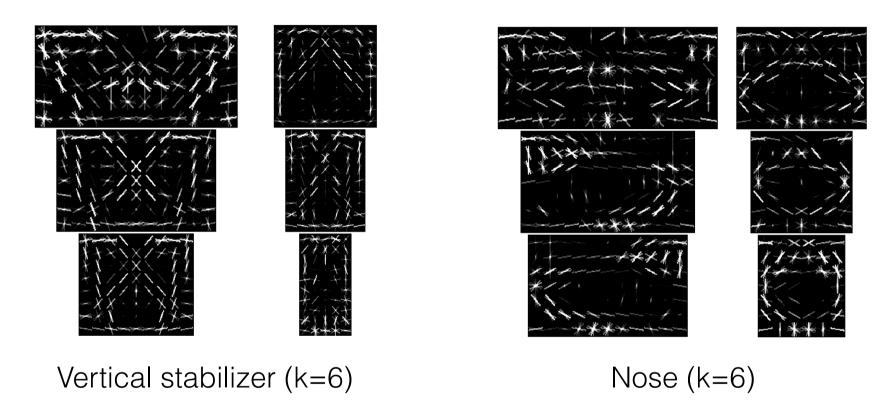




Noses

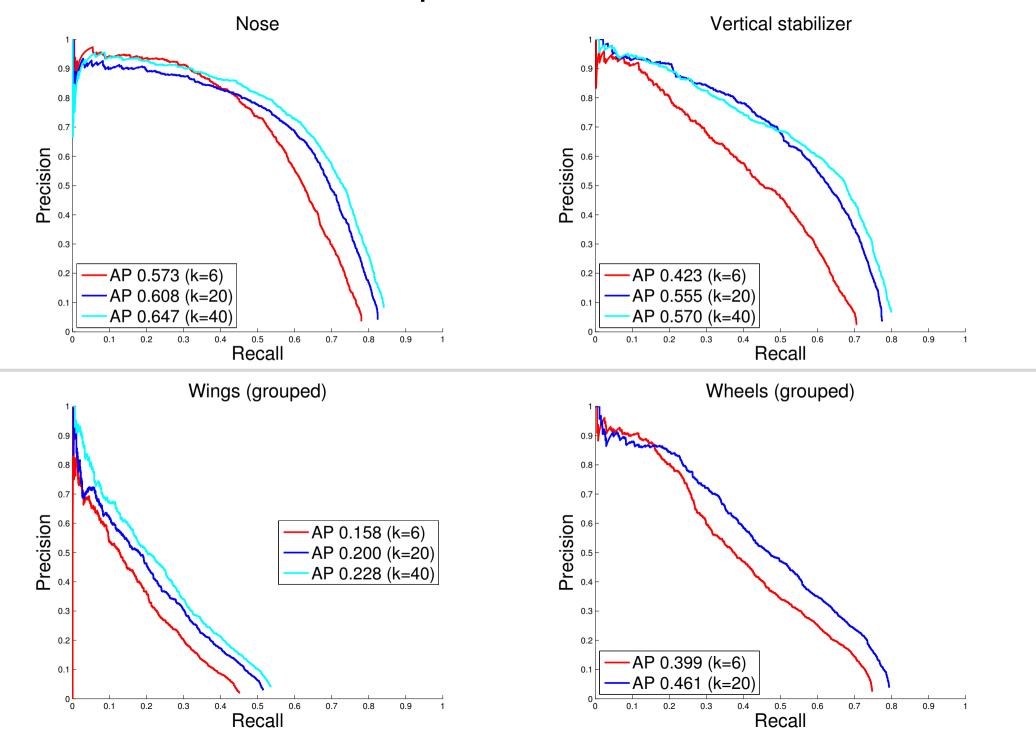
Baseline part detector

• Model: mixture of filters on gradient orientation (HOG) features



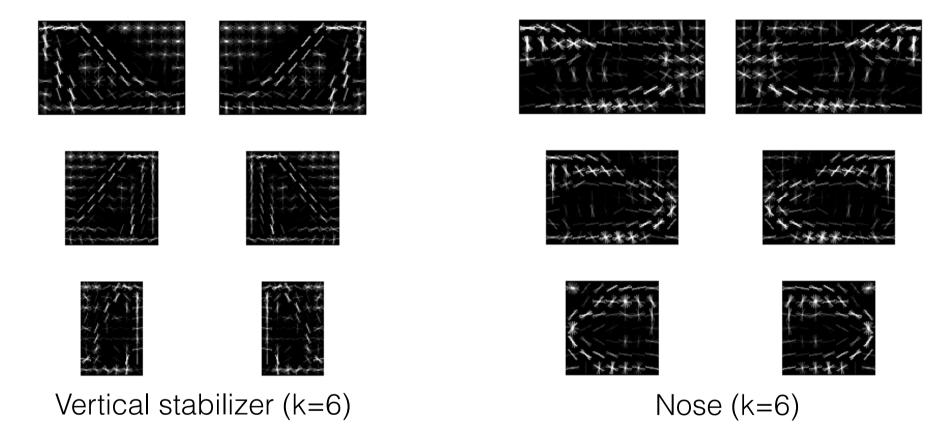
- Weak supervision (bounding box only; position, scale, mixture all *latent*)
- Trained with latent SVM
 - mixtures initialized by aspect ratio clustering

Baseline part detector results



Improving part detectors

Method I: unsupervised left vs right orientation clustering



Method 2: use segmentation masks for shape clustering does not rely on aspect ratio

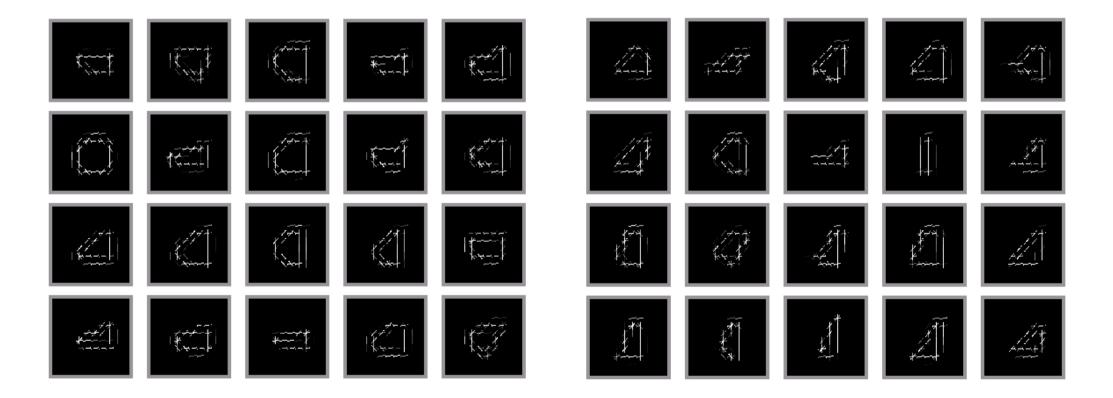
requires additional annotations (ok, we have them)

Leveraging shape annotations

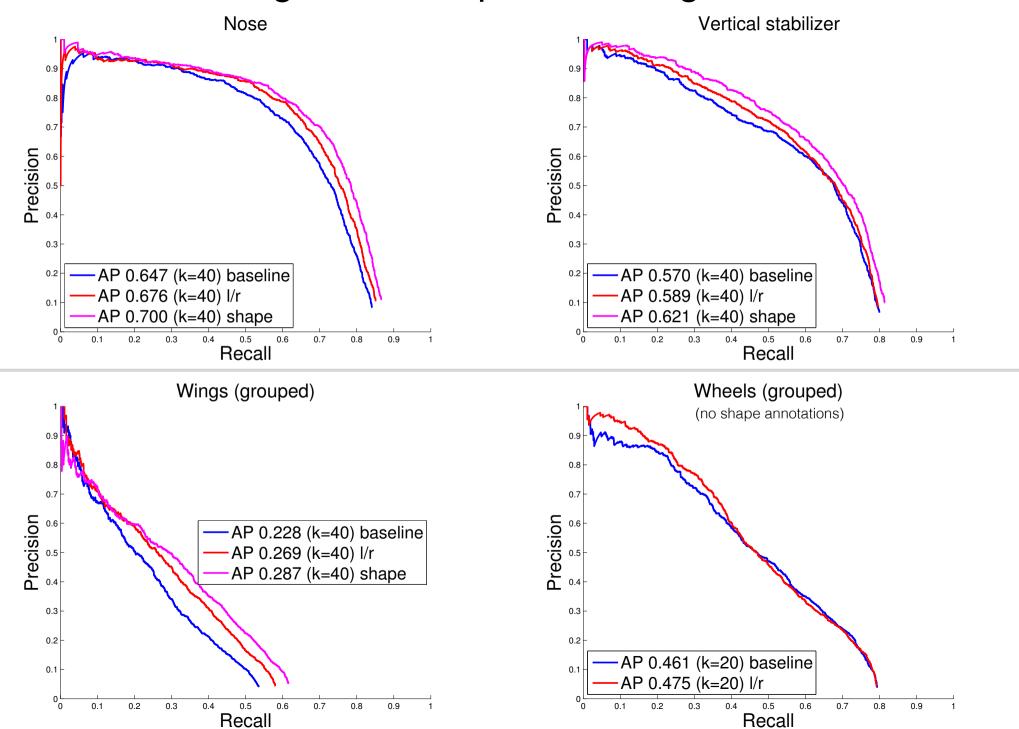
Binary oriented edge features from shape masks

Nose

• EM (latent translation, scale & cluster) with mixtures of Bernoulli templates

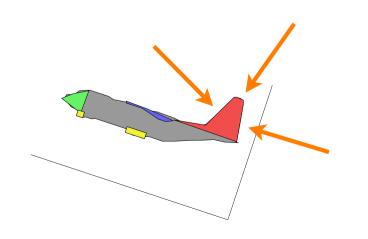


Left-right and shape clustering results



Localizing parts: summary

- Semantically aligned parts: good for applications and debugging
- Unsupervised left vs right helps tease out shape information
- Shape masks initialization works even better (good for square parts!)



Overview

Objects in Detail Parts & attributes

- A new dataset
- An object lexicon
- Localising parts
- Layouts
- Recognising attributes

Stuff in Detail Texture

- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

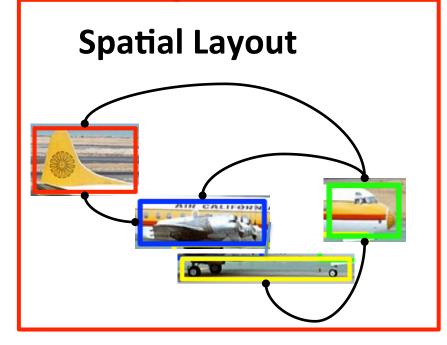
Estimating Layouts

Putting parts in context

Subhransu Maji TTI Chicago

Putting Parts in Context

This talk



Appearance Layout

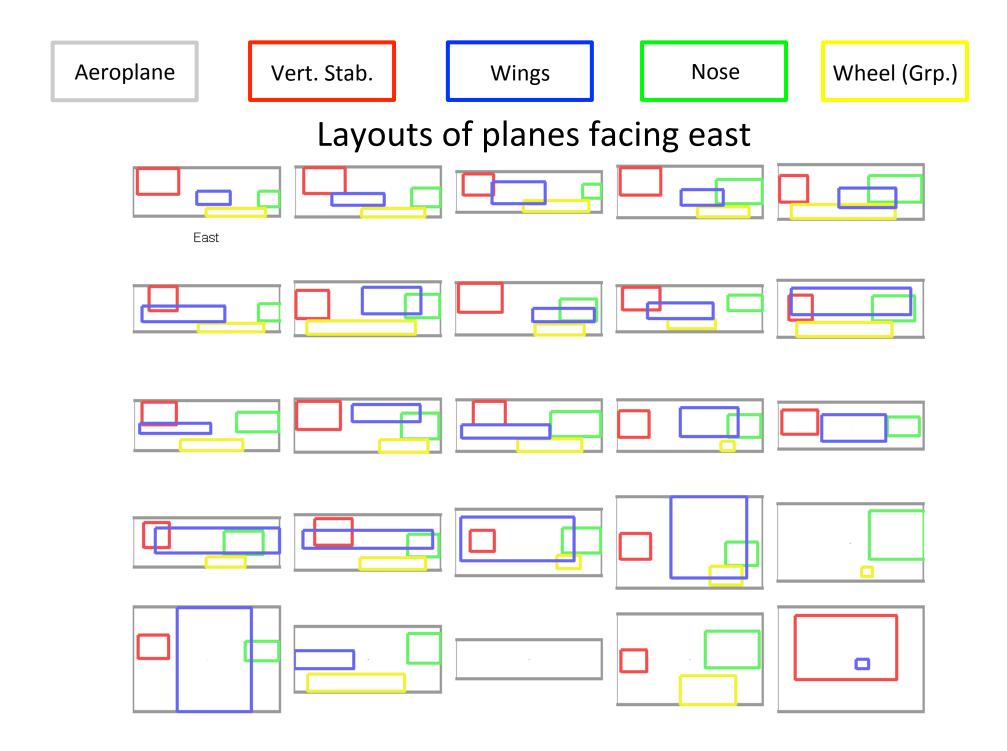
Similarity of Color & Texture Shape compatibility Contour continuity

Spatial Layout Variability

Viewpoint

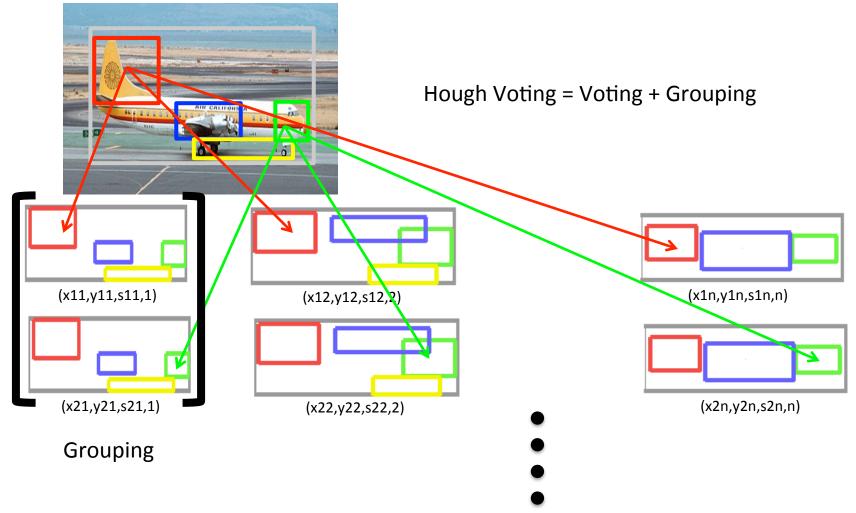
Structural Variability

The need for mixture models

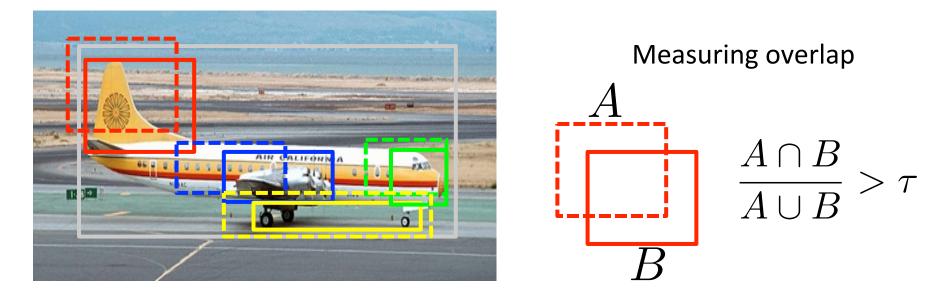


Efficiently Sampling Layouts

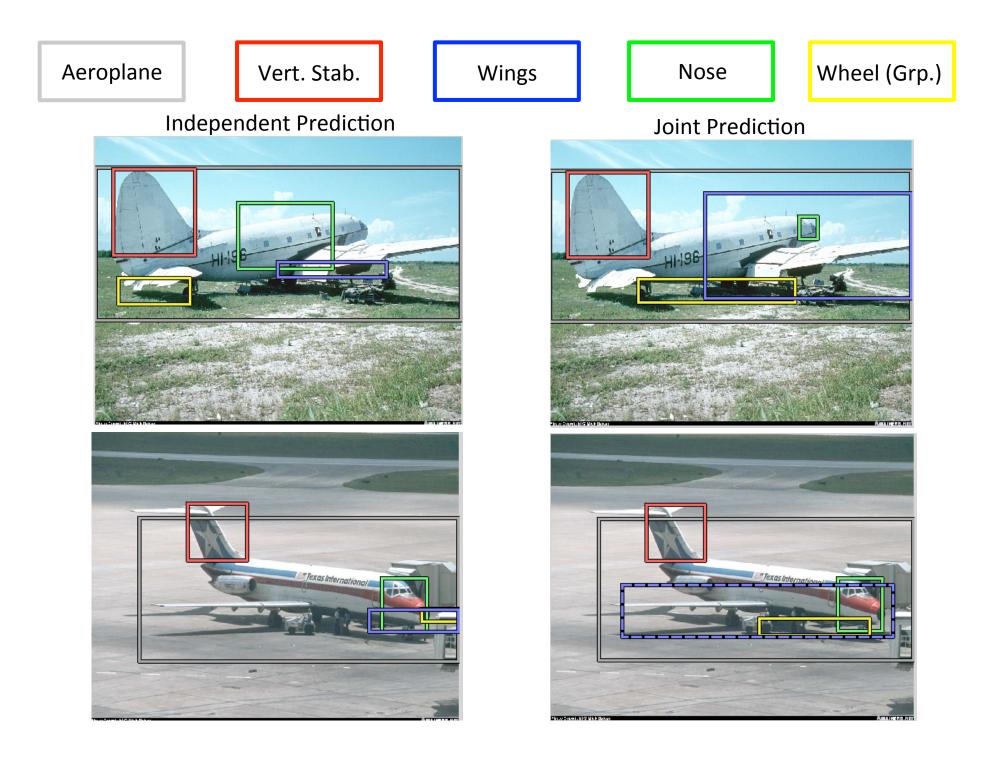
- Start from top k detections for each of the n parts
- Naïve solution : $O(k^n)$ all combinations
- Faster solution : Hough voting O(n k #layouts)

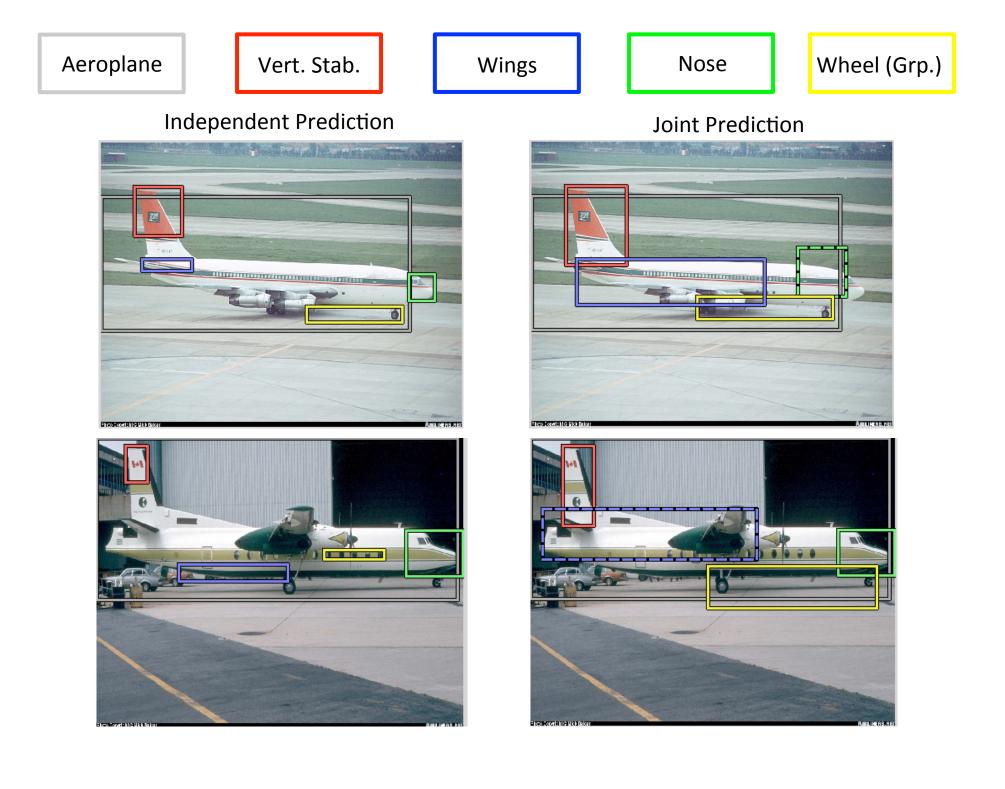


Scoring and Evaluating a Layout

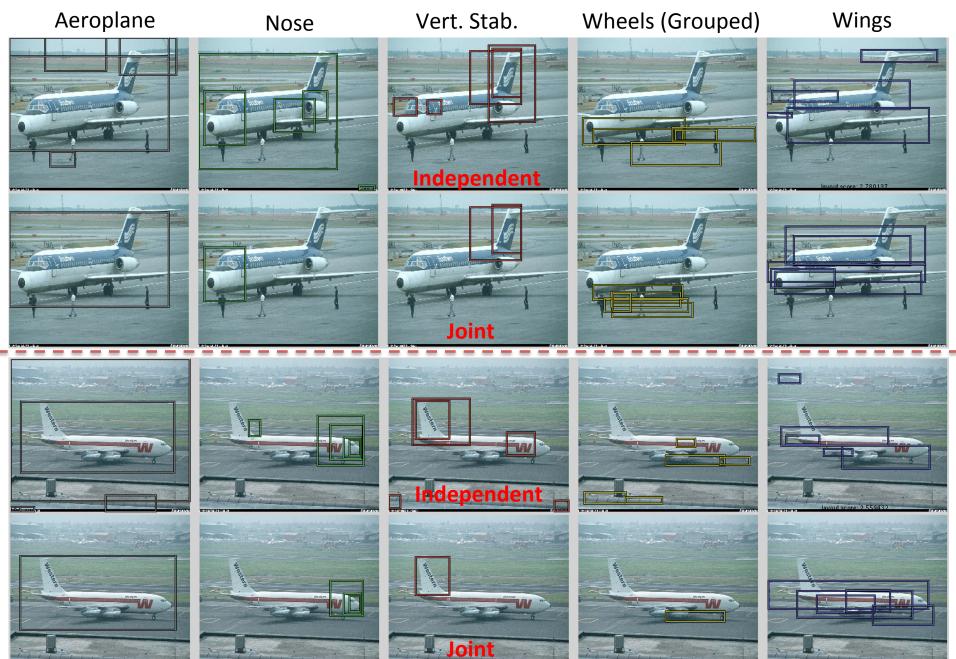


$$\begin{split} & \text{Loss}(\mathbf{x}) = \sum_{i} \text{Loss}(x_{i}) + \max(0, \#true - \#predicted) \\ & \text{overlap} & \text{predicting too few} \end{split} \\ & \text{Score of a layout: } \mathbf{w}^{T} \Phi(\mathbf{x}) \\ & \Phi(\mathbf{x}) \text{ - features extracted from the part locations} \\ & \text{Weights trained using MIL learning} \end{split}$$

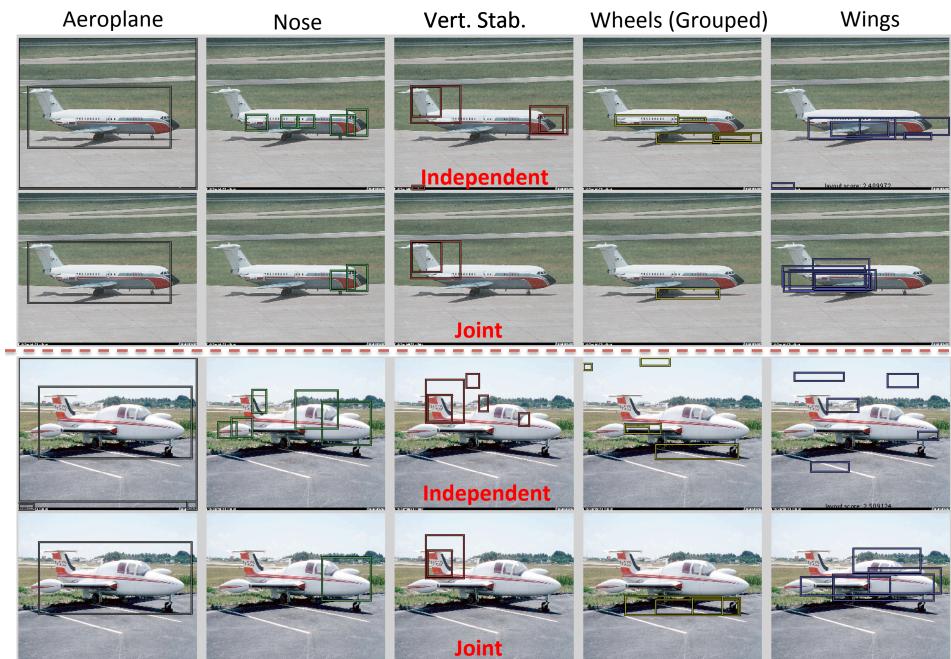


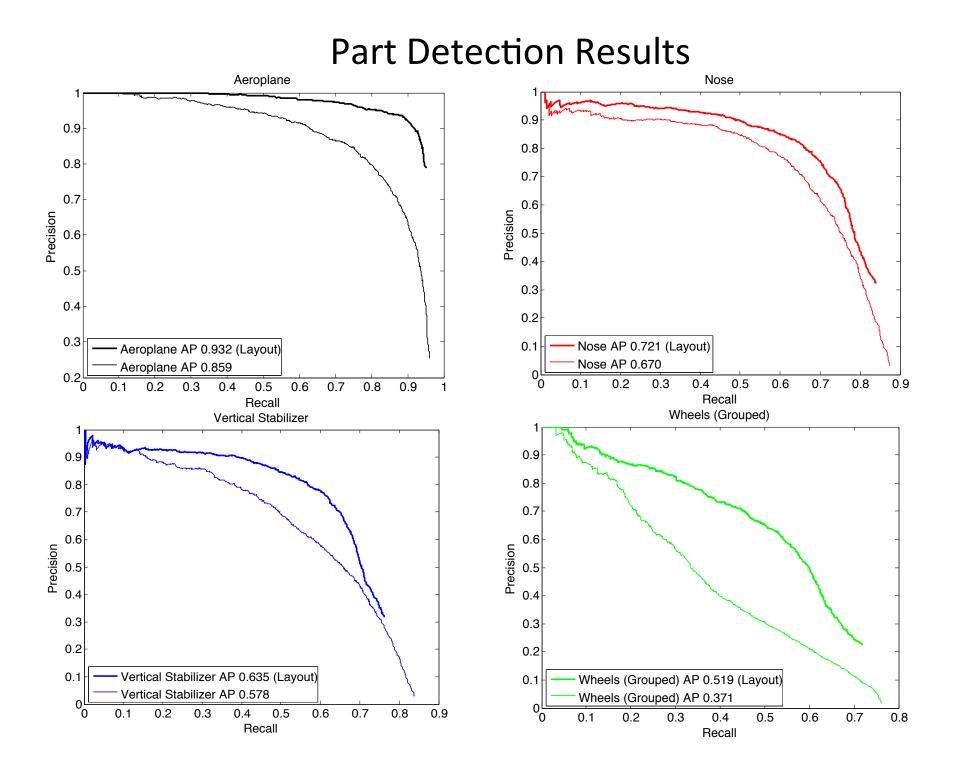


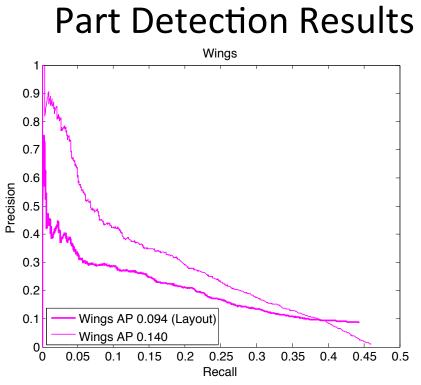
Part Detections



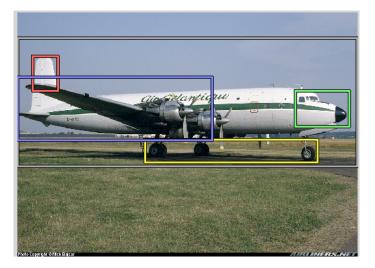
Part Detections

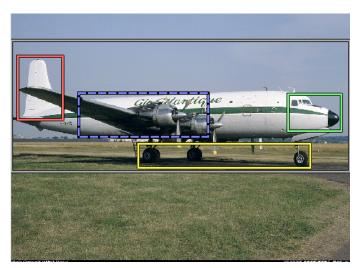


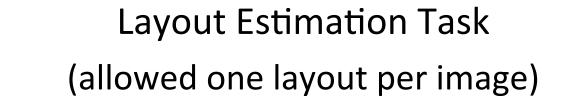


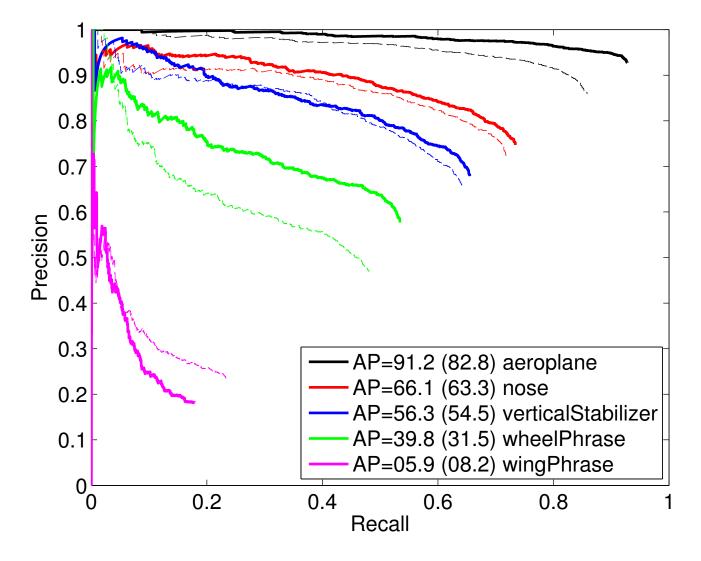


The model has learned to ignore the wing detections

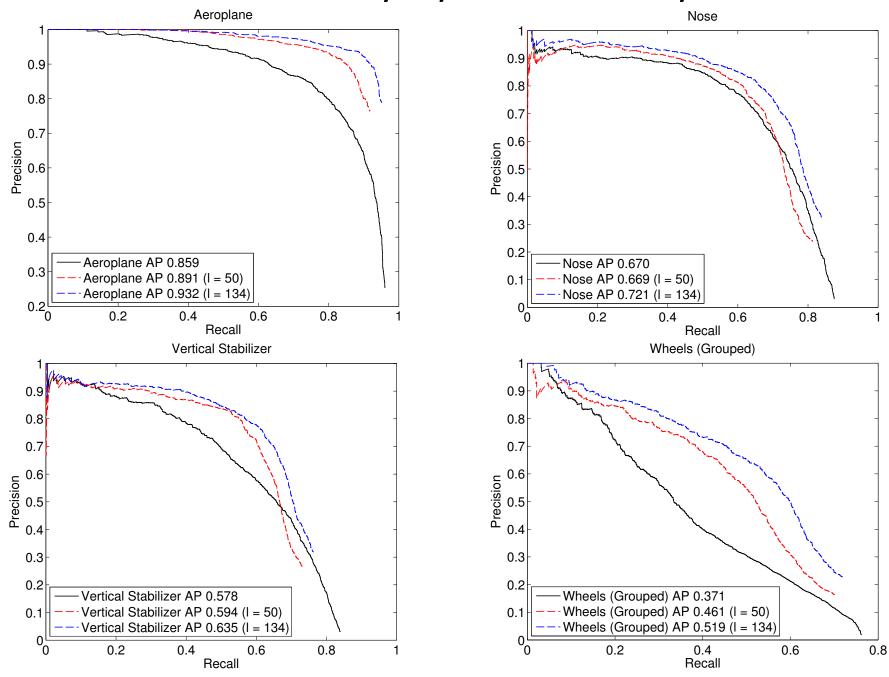








How many layouts necessary?



Summary

- Planes have wide variety of layouts due to the view point and structural differences.
- This is a unique property of this dataset, which enables new directions in research about part detection (i.e. beyond a few mixture models)
- We explored a possible way of representing such spatial layouts and showed that it improves detection quite a bit
- Appearance layouts will be explored in the future.

Overview

Objects in Detail Parts & attributes

- A new dataset
- An object lexicon
- Localising parts
- Layouts
- Recognising attributes

Stuff in Detail Texture

- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

Overview

Objects in Detail Parts & attributes

- A new dataset
- An object lexicon
- Localising parts
- Layouts
- Recognising attributes

Stuff in Detail Texture

- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

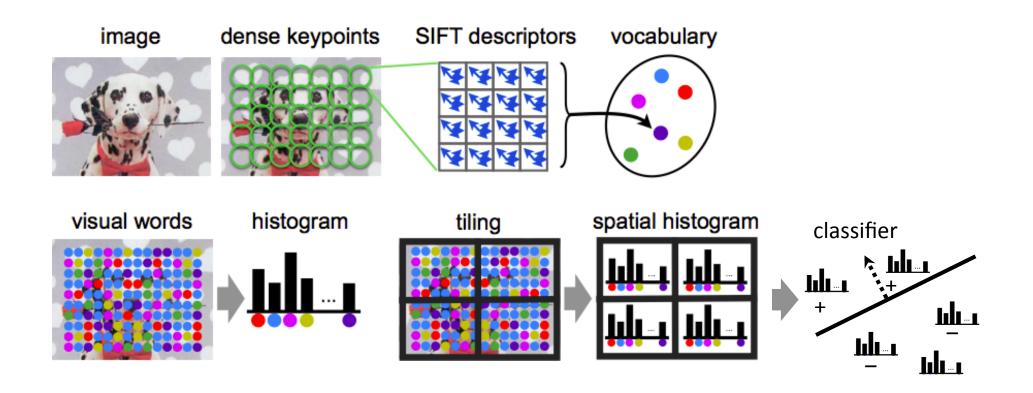
isAirliner: 'yes' isMilitaryPlane: 'no' isSeaPlane: 'no' facingDirection: 'W' planeLocation: 'on ground'

.000

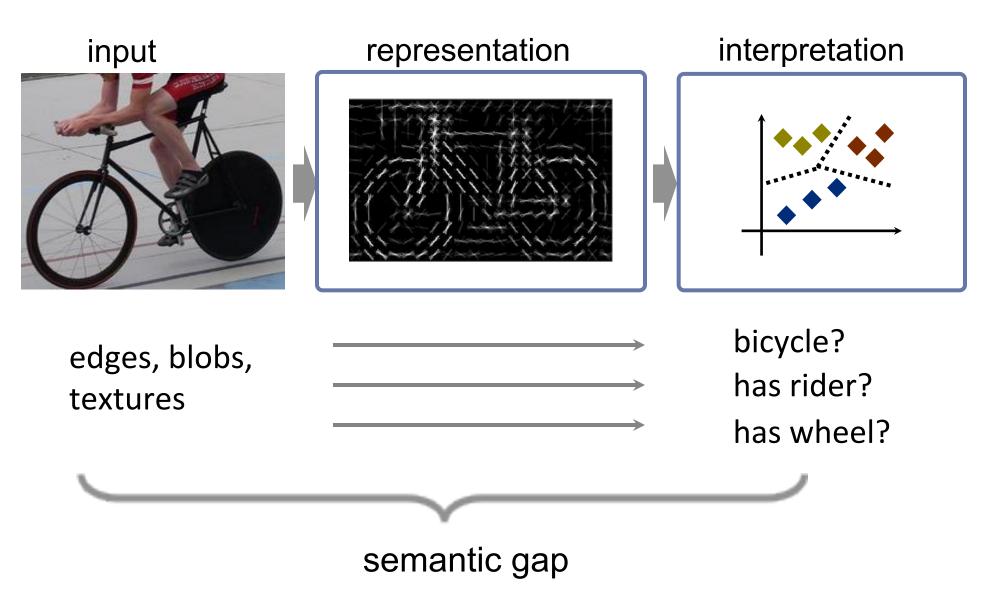
Attributes

wingType: 'single-wing plane tailHasEngine: 'no-engine' wheel-coverType: 'retractable'

Bag of Visual Words



Current Methodology



Context is Important

Predict the Attributes

Where is the plane located ? What kind of aeroplane is it ?

What type of wing does it have ?

What direction is it facing ?

Objects in Detail

- Image
- Aeroplane
- Parts
 - Background
 - Vertical Stabilizer
 - Nose
 - Wing
 - Wheel
 - Fuselage
- Undercarriage

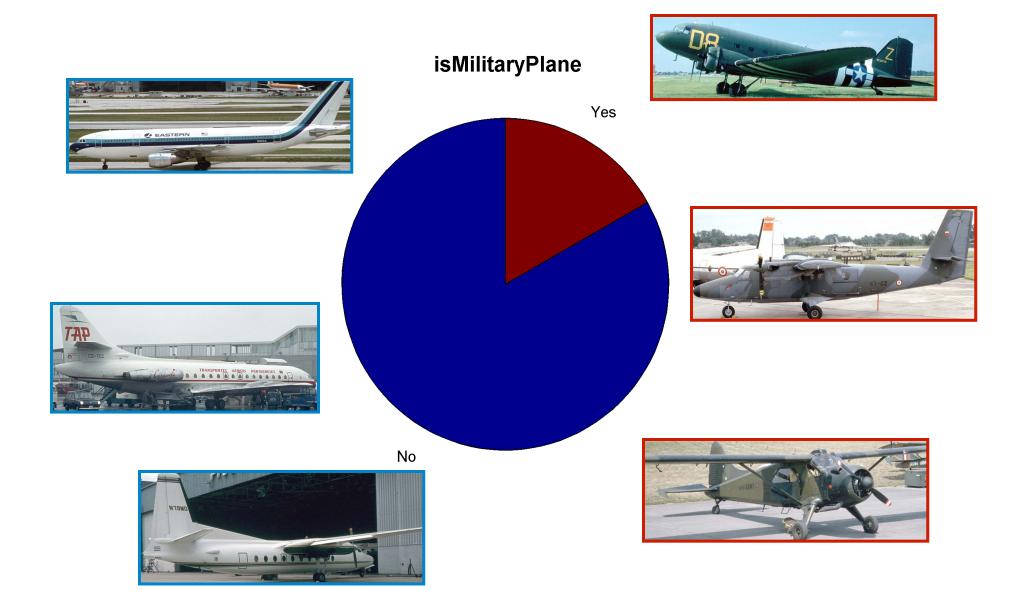


Image : isMilitaryPlane

- Image
- Aeroplane
- Parts
 - Background
 - Vertical Stabilizer
 - Nose
 - Wing
 - Wheel
 - Fuselage
- Undercarriage

AP:73.92

Aeroplane

- Image
- Aeroplane
- Parts
 - Background
 - Vertical Stabilizer
 - Nose
 - Wing
 - Wheel
 - Fuselage
- Undercarriage

AP:73.92 AP:83.88

Background

 Image 	AP:73.92
 Aeroplane 	AP:83.88
 Parts 	
– Background	AP:45.23
 Vertical Stabilizer 	
– Nose	
– Wing	
– Wheel	
– Fuselage	
 Undercarriage 	

Vertical Stabilizer

 Image 	AP:73.92
 Aeroplane 	AP:83.88
 Parts 	
– Background	AP:45.23
 Vertical Stabilizer 	AP:71.30
– Nose	
– Wing	
– Wheel	
– Fuselage	
 Undercarriage 	

Nose

 Image 	AP : 73.92
 Aeroplane 	AP:83.88
 Parts 	
– Background	AP:45.23
 Vertical Stabilizer 	AP : 71.30
– Nose	AP : 75.21
– Wing	
– Wheel	
– Fuselage	
 Undercarriage 	

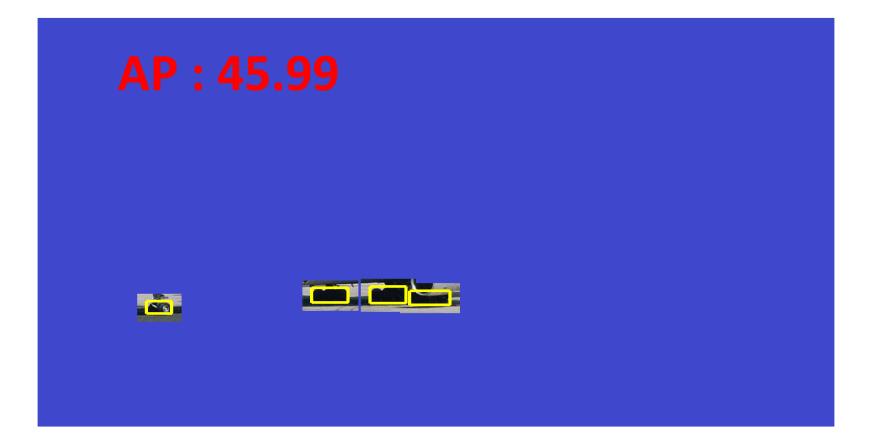
Wing



21

•	Image	AP:73.92
•	Aeroplane	AP:83.88
•	Parts	
	– Background	AP:45.23
	 Vertical Stabilizer 	AP:71.30
	– Nose	AP:75.21
	– Wing	AP : 52.80
	– Wheel	
	– Fuselage	
•	Undercarriage	

Wheel



isMilitaryPlane: 'yes'

•	Image	AP:73.92
•	Aeroplane	AP:83.88
•	Parts	
	– Background	AP:45.23
	 Vertical Stabilizer 	AP:71.30
	– Nose	AP:75.21
	– Wing	AP:52.80
	– Wheel	AP:45.99
	– Fuselage	

• Undercarriage

``Fuselage''

isMilitaryPlane: 'yes'

25

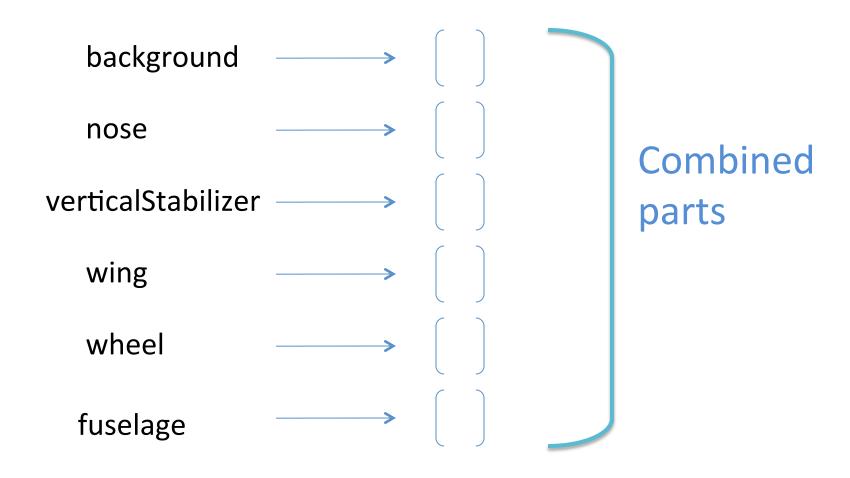
•	Image	AP:73.92
•	Aeroplane	AP:83.88
•	Parts	
	– Background	AP:45.23
	 Vertical Stabilizer 	AP : 71.30
	– Nose	AP:75.21
	– Wing	AP : 52.80
	– Wheel	AP:45.99
	– Fuselage	AP:80.87
•	Undercarriage	

Undercarriage

isMilitaryPlane: 'yes'

•	Image	AP:73.92
•	Aeroplane	AP:83.88
•	Parts	
	– Background	AP:45.23
	 Vertical Stabilizer 	AP:71.30
	– Nose	AP:75.21
	– Wing	AP:52.80
	– Wheel	AP:45.99
	– Fuselage	AP:80.87
•	Undercarriage	AP:45.63

Combined parts



isMilitaryPlane: 'yes'

•	Image	AP:73.92
•	Aeroplane	AP:83.88
•	Parts	
	– Background	AP:45.23
	– Vertical Stabilizer	AP:71.30
	– Nose	AP:75.21
	– Wing	AP:52.80
	– Wheel	AP:45.99
	– Fuselage	AP:80.87
•	Undercarriage	AP:45.63
•	Combined parts	AP:87.92

Possible Variations (seg. v/s box.)

Parts & Attributes - fuselage

- isAirliner (1.5;nose)
- isCargoPlane (18.19)
- isMilitaryPlane (5.66)
- isPropellorPlane (0.68;nose)
- isSeaPlane (42.51)
- isGlider (9.43)
- planeSize (7.52)
- noseHasEngineOrAntenna (0.53;nose)
- wingHasEngine (1.34;nose)
- wheel-coverType (6.8)

Parts & Attributes - wheel

planeLocation (1.72;background)
undercarriageArrangement (8.98)
wheel-location (2.69)

Parts & Attributes - nose

facingDirection (3.96)wheel-groupType (1.18;fuselage)

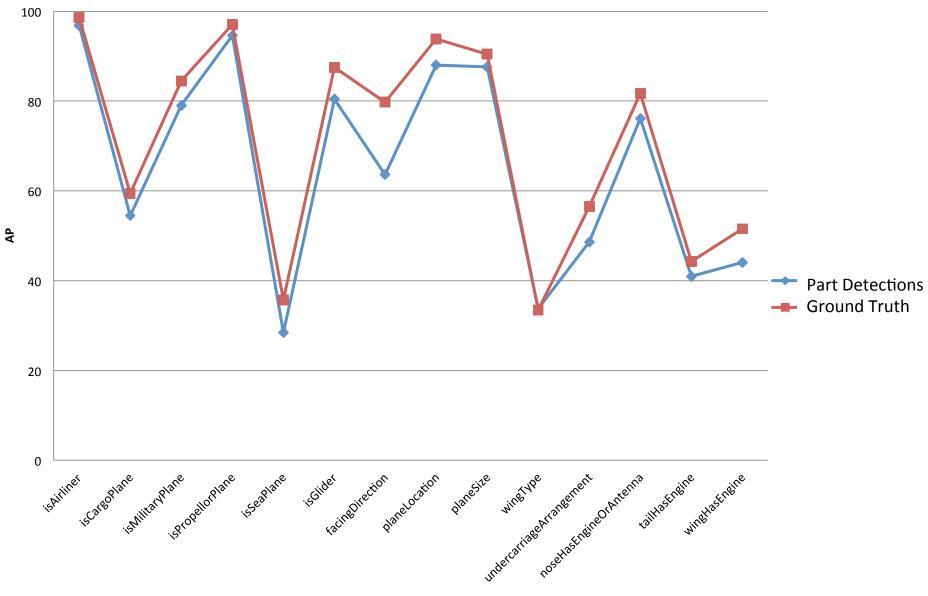
Parts & Attributes - wing

wingType (1.94;fuselage)

Parts & Attributes - verticalStabilizer

tailHasEngine (3.28)

Attribute Recognition : Using Part detections



Conclusions

- Some regions of an image are more informative than others for a given task
- Utilizing part segmentations to add structure to Bag of Words improves performance significantly
- Fuselage and Wheel are the two most important parts accounting for 13/17 attributes
- Understanding which parts are more important can help focus effort in part detection stage

Objects in Detail Parts & attributes

- A new dataset
- An object lexicon
- Localising parts
- Layouts
- Recognising attributes

Overview

Stuff in Detail Texture

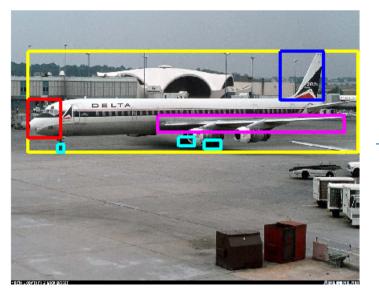
- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

Attribute prediction using part-based models

• Task:



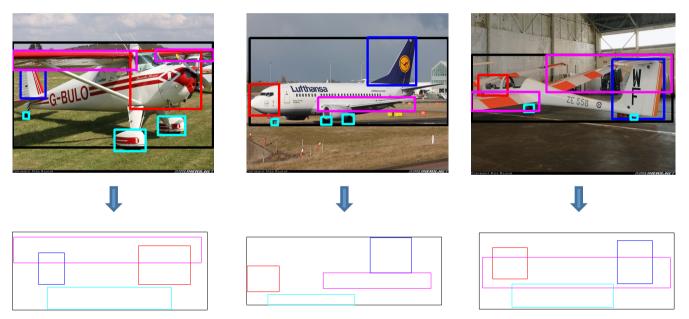
- Is airliner? (yes/no)
- Is military plane? (yes/no)
- Is facing East? (yes/no)
- Does nose have engine? (yes/no)
- Is Lufthansa plane? (yes/no)

Given an object detection, predict the attributes of the object.

Here we focus on geometry based features which encode spatial layout of object's parts

Layout features

- We cluster the geometric layouts of parts
- Given 5 airplane parts we concatenate their 5 bounding boxes into a 20dimensional feature vector and perform kmeans clustering
- The closest cluster centers for a few ground truth detections:



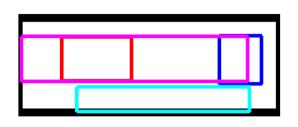
- Each detection is assigned to the closest one of the k clusters
 - ➡ k-dimensional binary feature vector to attribute classifiers

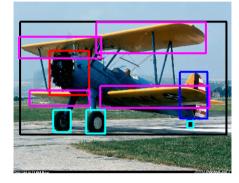
Layout features when the number of parts is varying

- Some detections may have all the parts but some may have less parts
- We cluster all possible detection configurations separately (16 in total)
- We get different layout vocabularies for different configurations
- We train attribute classifiers separately for each configuration (but training data is partly shared)
- In order to enhance robustness to hallucinated parts, the final feature vector is obtained by concatenating the layout features of all subconfigurations

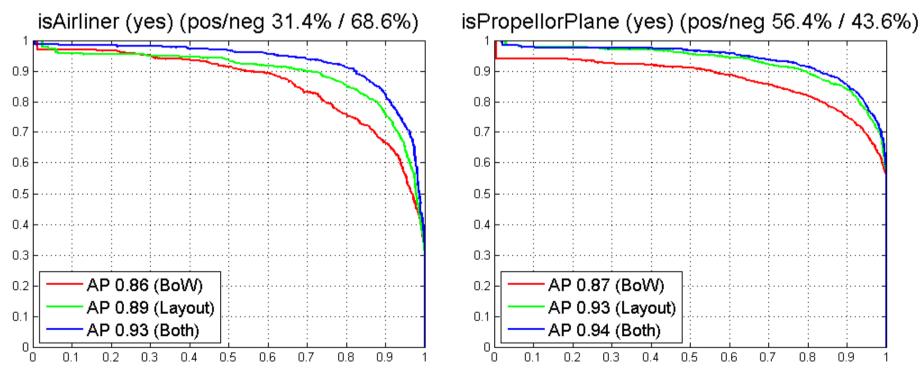
Example

• Can you say whether this layout refers to a jet airliner or a propellor plane?



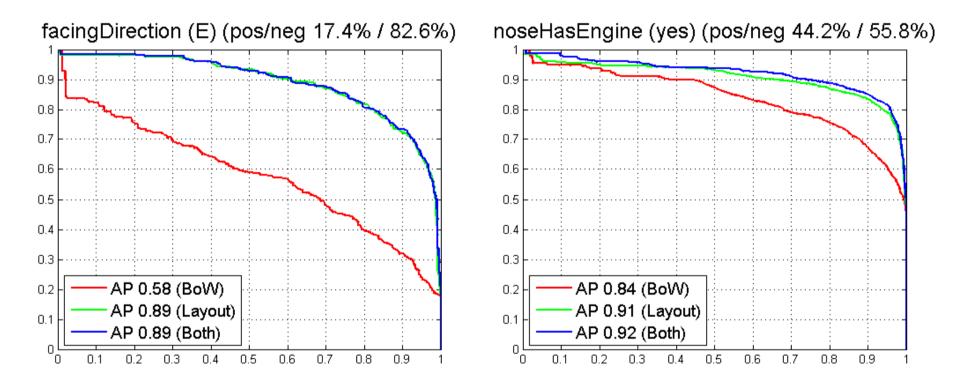


• Precision-recall curves for ground truth boxes in the test set:



Additional examples

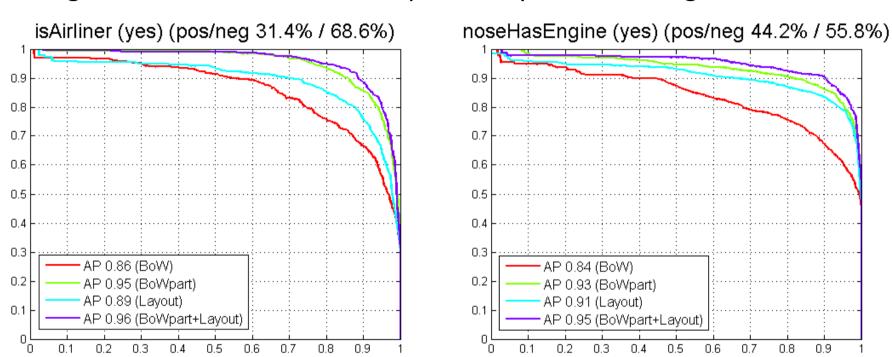
• Precision-recall curves for ground truth boxes in the test set:



Using both layout and bags-of-words from all parts

- We extract the layout features (as explained on previous slides)
- We train first-layer attribute classifiers for each part+attribute pair using a single bag-of-words histogram as a feature
- We take the scores from the first-layer classifiers of detected parts and use them with the layout features to train the final second layer classifier for each attribute
- At test time, we apply the classifier that is designed for this particular detection configuration, i.e., different classifier for "airplane+nose" detections than for "airplane+nose+tail" detections

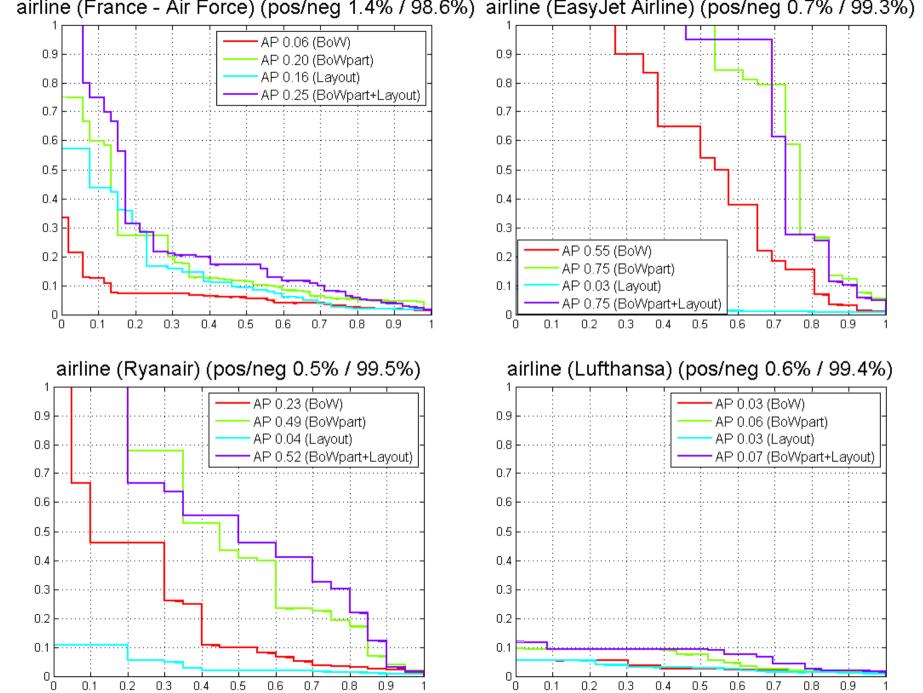
Results



• Bag-of-words features from all parts + layout features give best results:

• Mean average precision over all 54 binary attributes:

BoW 0.40 Layout 0.43 BoWpart 0.53 BoWpart+Layout 0.56



airline (France - Air Force) (pos/neg 1.4% / 98.6%) airline (EasyJet Airline) (pos/neg 0.7% / 99.3%)

Conclusion

- Part detections have potential to improve attribute predictions
- Part detections can be utilized in many ways
- Experiments show that bag-of-words features and layout features are complementary and best results are obtained by using both
- In future it would be necessary to combine object detection (object +parts) and attribute prediction into a single pipeline
- In addition, one could consider object detection and attribute prediction jointly (e.g. by using feedback from attribute classifiers to choose the best combination of part detections)

Overview

Objects in Detail Parts & attributes

- A new dataset
- An object lexicon
- Localising parts
- Layouts
- Recognising attributes

Stuff in Detail Texture

- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

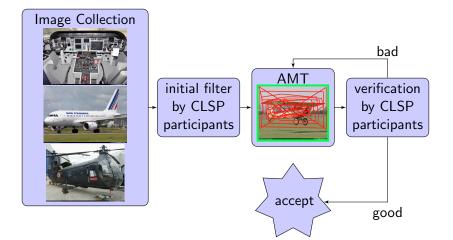
Annotations

Naomi P. Saphra Carnegie Mellon University

August 3, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

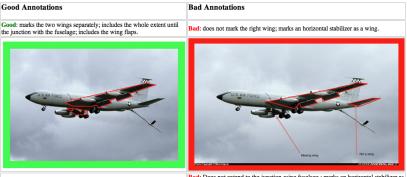
The Annotation Process



Collecting Data: Parts and Attributes

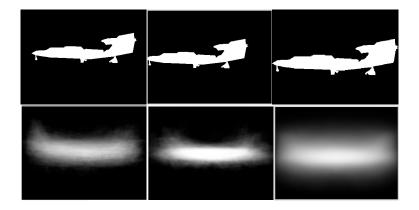
Check the examples below carefully.

- To add a polygon. Click on the point where you want the new polygon to start, then on the second point, the third, and so on. The polygon is completed by going back to the first point, closing the figure.
- To edit an existing polygon. Click and drag any of the blue points on the polygon to adjust it.
- To select a polygon. Click on a control point or near a segment. The selected polygon appears in red.
- To delete the selected polygon. Press d or D.
- To delete all polygons. Press R (capital R).

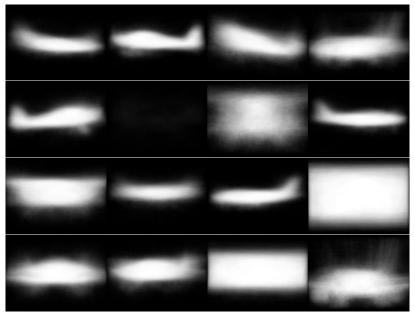


Bad: Does not extend to the junction-wing fuselage ; marks an horizontal stabilizer as

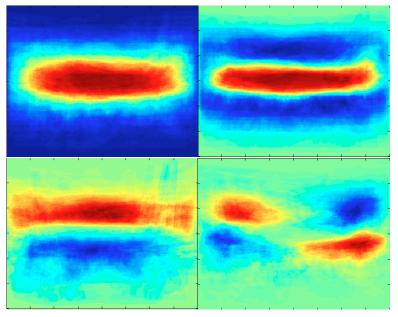
Getting To Know The Data



K-Means

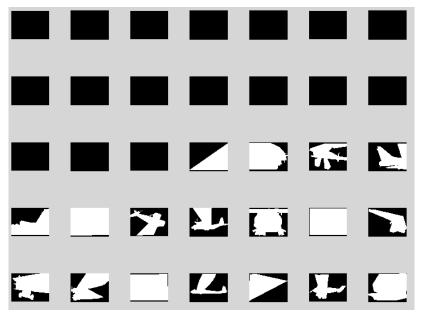


PCA: Eigenplanes



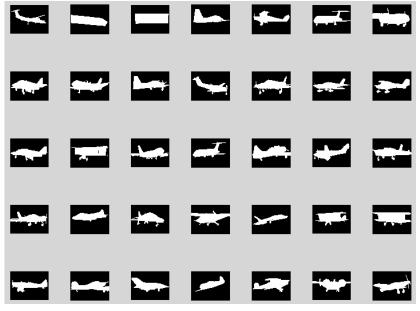
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Gaussian: Unlikely



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

Gaussian: Likely



Annotation Problems

Instructions had bounding boxes and polygons in same picture.

- Turkers didn't read instructions.
 - Thought they had to trace every outline.
 - Ended before desired end of nose or wing.
- Turkers were careless.
 - Miss parts.
 - Loose outlines.
- Didn't realize they were annotating a new part.
- Didn't bother annotating anything.
- Got frustrated.

Verifying Annotations: Manually

Juho and Esa created tools for manually verifying annotations.

- 7700 planes, 10 parts, 3 annotations per part per plane per pass-through, some required several pass-throughs.
- Tool for correcting borderline polygons.

Verifying Annotations: Automatically

- PCA
- SVM
- Identify worst annotators, invite only best back to annotate other parts.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

SVM: Metadata

- features
 - mask pixels
 - vertex count
 - annotator ID
 - time spent annotating
 - L1 normalized histogram of angles in polygon
 - PCA likelihood: Likelihood of annotation being an annotation of a *different* airplane part.
- combinations
 - baseline: Accept every annotation.
 - mask
 - vertex count, annotator ID, time
 - angle, vertex count, annotator ID, time
 - mask, vertex count, annotator ID, time
 - angle, vertex count, annotator ID, time, PCA likelihood

SVM: Results

	airplane	vert stabilizer	nose
baseline	76	92	94
mask	80	94	94
angle, CAT	80	92	95
CAT	79	92	95
mask, CAT	82	92	94
angle, mask, CAT, PCA	76	92	94

CAT = vertex Count, Annotator ID, Time spent annotating

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Future Work

- Polygon edge-feature edge similarity
- Use new part classifiers to bootstrap validation
- Incorporate these tools more into verification process

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Overview

Objects in Detail

Parts & attributes

- A new dataset
- An object lexicon
- Localizing parts
- Layouts
- Recognizing attributes

Stuff in Detail

Texture

- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

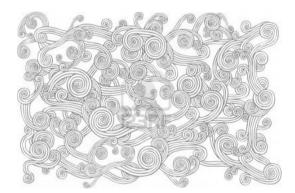
lasonas Kokkinos

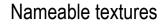
Ecole Centrale Paris

Subhransu Maji

TTI-Chicago

Sammy Mohamed Stony Brook

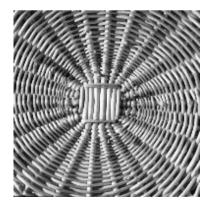




Visual texture

- Natural processes

– Man-made structures

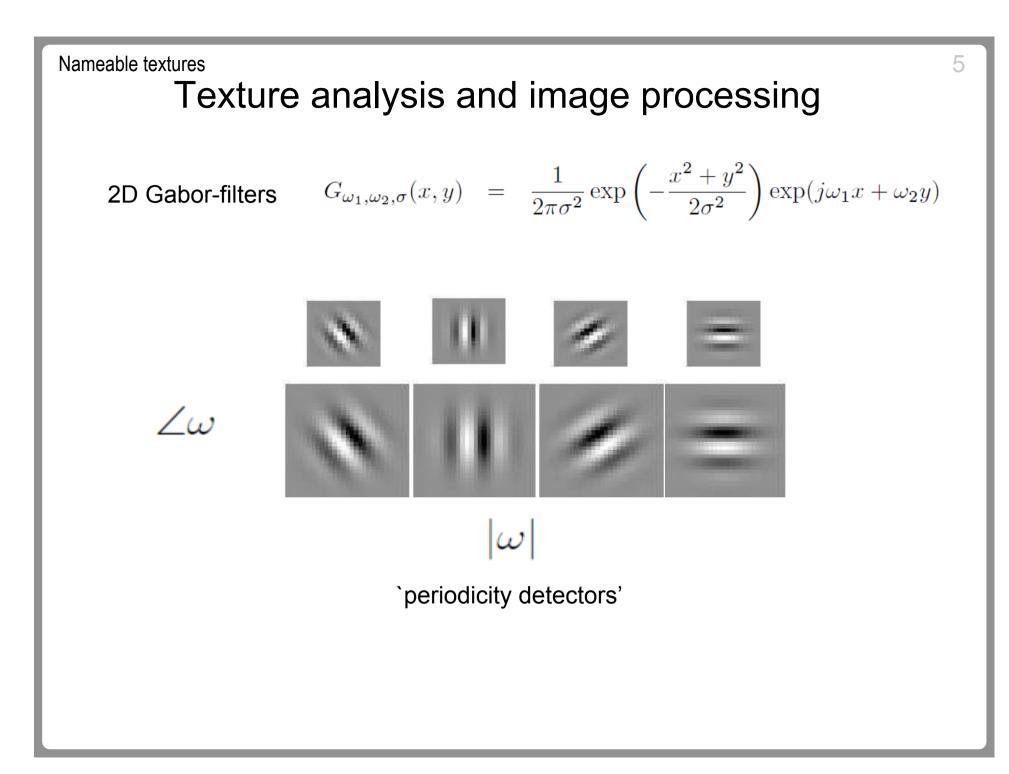


The number of possible intensity images notes the number of allowable gray levels direct search, even for small (m = 64), t Consequently, one is usually obliged assumptions about the image and degrad as compromises at the computational st putational problem is overcome by expliservation that the posterior distribution i approximately the same neighborhood nal image, together with a sampling m the *Gibbs Sampler*. Indeed, our princ tribution is a general, practical, and mat approach for investigating MRF's by sai and by computing modes (Theorem

What defines a texture?

- What is common in these images?
 - No common deterministic model
 - Statistical properties..

"What features and statistics are characteristics of a texture pattern, so that texture pairs that share the same features and statistics cannot be told apart by pre-attentive human visual perception?" ---- Julesz 1960s-1980s



Nameable textures Multi-scale and multi-orientation texture analysis

Multiband Demodulation 11 = R. $I * g_i$ A_i $\cos(\phi_i)$ g_i

Texture analysis and `visual words'

- K-means on SIFT descriptors ~ textons
- Bag-of-Words/Spatial Pyramid models

input

representation

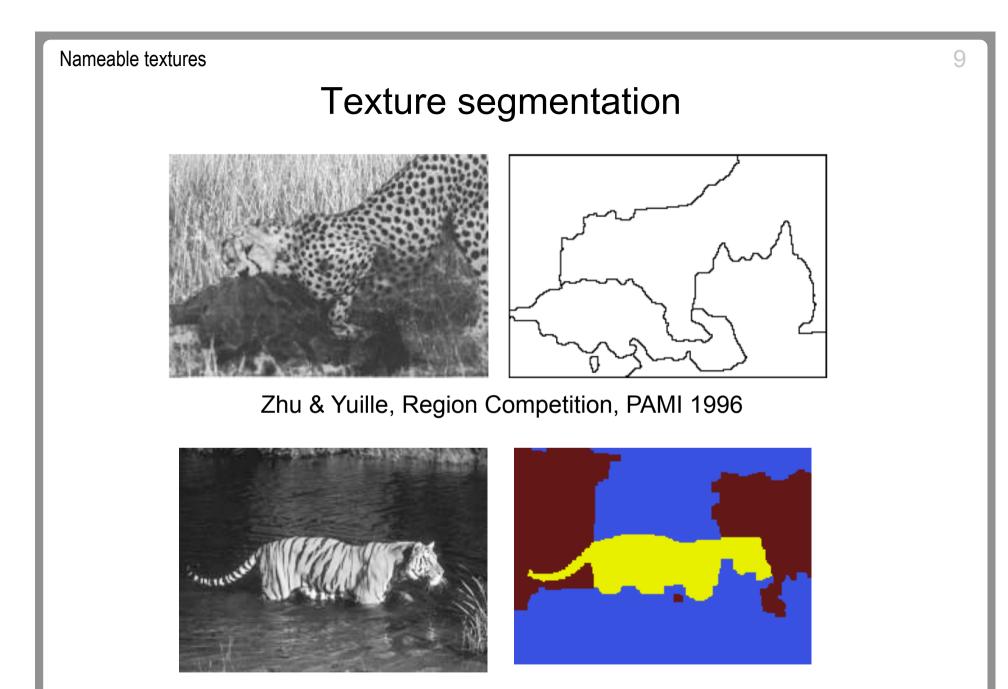


What can we do with texture?

High-dimensional description of an image patch

Roughly translation invariant (stationarity assumption) Potentially scale & orientation invariant

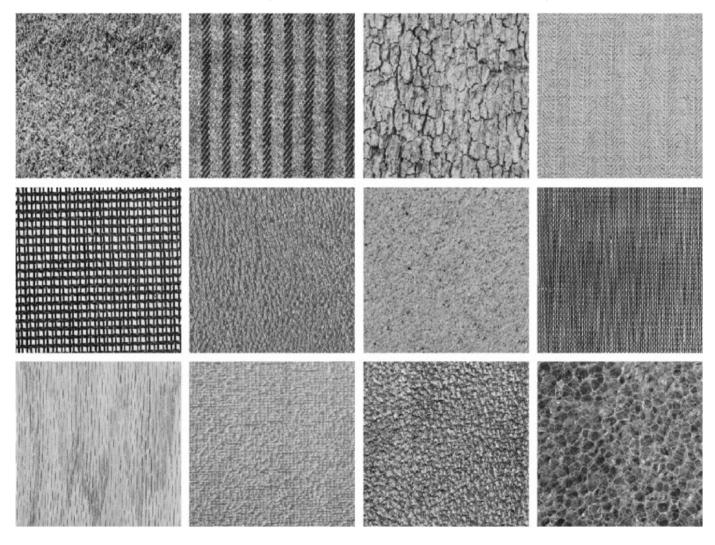
Texture = features



Delong et al, Fast Approximate Energy Minimization with Label Costs, IJCV 2012

Texture classification

Brodatz 98 textures (Caltech 101 of the 90's)



Texture-based labelling

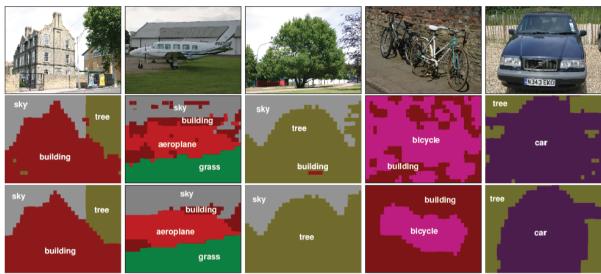
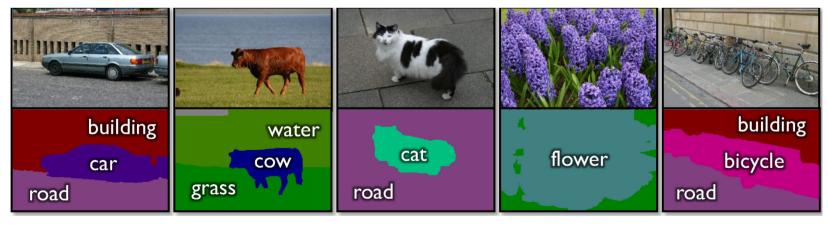


Figure 3. (Best viewed in color). Example images (top), and segmentations using PLSA (middle) and PLSA-MRF (bottom), with topics learned from image labels.

Region Classification with Markov Field Aspect Models, Verbeek and Triggs, CVPR 07



Textonboost for image understanding, Shotton et al, IJCV 07

What can we do with texture? (revisited)

Soaring heights and unfathomable lows of vision (recognition, segmentation) We want something in between

Not too high: decoupled from object-specific aspects (color, pose, occlusion..) -stationary & `pure' -shareable across categories

Not too low: semantic (e.g. `striped', `dotted', `honeycombed', etc.)

-interpretable by humans -categorical

Overview

Objects in Detail

Parts & attributes

- A new dataset
- An object lexicon
- Localizing parts
- Layouts
- Recognizing attributes

Stuff in Detail

Texture

- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

Nameable textures

Human-centric merit: use texture in image queries

Vision-centric merit: stratification of `texture jungle', `debuggable' vision models

Is there a proper lexicon for textures?

COGNITIVE SCIENCE Vol 21 (2) 1997, pp. 219-246 ISSN 0364-0213 Copyright © 1997 Cognitive Science Society, Inc. All rights of reproduction in any form reserved.

The Texture Lexicon: Understanding the Categorization of Visual Texture Terms and Their Relationship to Texture Images

> NALINI BHUSHAN Smith College

A. RAVISHANKAR RAO IBM Watson Research Center

GERALD L. LOHSE

The Wharton School, University of Pennsylvania

In this paper we present the results of two experiments. The first is on the categorization of texture words in the English language. The goal was to determine whether there is a common basis for subjects' groupings of words related to visual texture, and if so, to identify the underlying dimensions used to categorize those words.

Eleven major clusters were identified through hierarchical cluster analysis, ranging from 'random' to 'repetitive'. These clusters remained intact in a

COGNITIVE SCIENCE Vol 21 (2) 1997, pp. 219–246 ISSN 0364-0213 Copyright © 1997 Cognitive Science Society, Inc. All rights of reproduction in any form reserved.

The Texture Lexicon: Understanding the Categorization of Visual Texture Terms and Their Relationship to Texture Images

NALINI BHUSHAN

Smith College

A. RAVISHANKAR RAO IBM Watson Research Center

GERALD L. LOHSE

The Wharton School, University of Pennsylvania

In this paper we present the results of two experiments. The first is on the categorization of texture words in the English language. The goal was to determine whether there is a common basis for subjects' groupings of words related to visual texture, and if so, to identify the underlying dimensions used to cateaorize those words.

Eleven major clusters were identified through hierarchical cluster analysis, ranging from 'random' to 'repetitive'. These clusters remained intact in a Intended to be a thorough list of words used in describing surface texture.

Started with a list of 367 words, cut down to 98.

Examples: entwined facetted fibrous flecked flowing fractured freckled frilly furrowed gauzy gouged grooved holey interlaced intertwined knitted lacelike latticed lined matted meshed messy mottled netlike perforated periodic pitted pleated porous potholed random regular repetitive rhythmic ridged rumpled scaly scrambled spattered spiralled sprinkled stained stratified striated studded twisted veined webbed winding wizened woven

Challenges

Several words are not easy to pin down:

Scrambled, regular, messy, jumbled, random, disordered, indefinite, complex...

Based on a Google image query for each word, we assigned to each word a level of difficulty.

List of words with difficulty <7/10:

Uniform, Smooth, Dotted, Checkered, Grid, Spotted, Polka-Dotted, Waffled, Marbled, Zigzagged, Corrugated, Honeycombed, Speckled, Fibrous, Flecked, Facetted, Flowing, Fractured, Flecked, Frilly, Furrowed, Gauzy, Gouged, Grooved, Holey, Interlaced, Intertwined, Knitted, Lacelike, Latticed, Whirly, Swirly, Ribbed, Cracked, Banded, Wrinkled, Crosshatched

Overview

Objects in Detail

Parts & attributes

- A new dataset
- An object lexicon
- Localizing parts
- Layouts
- Recognizing attributes

Stuff in Detail

Texture

- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

Google query results for `Ribbed'

`Good'

`Partially good'

`Wrong'

Additional challenges: duplicates, watermarks, resolution, blur, noise

Strategy: get good data for now, and leave partial data for later

Amazon Turk instructions

Annotation instructions for Honeycombed textures

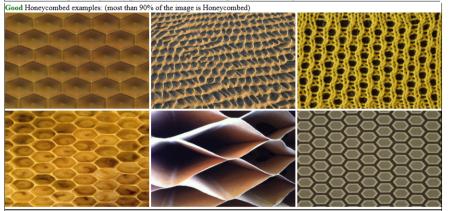
Task: classify images as Good, Partially good, Bad.

Good: most (more than 90%) of the image is Honeycombed.

Partially good: only part (less than 90%) of the image is Honeycombed.

Bad: the image has no Honeycombed region.

To decide between good and partially good, estimate the number of pixels that are Honeycombed.



Partially good Honeycombed examples: (less than 90% of the image is Honeycombed)

Bad Honeycombed examples:(the image has no Honeycombed region)

Annotation instructions for Polka-dotted textures

Task: classify images as Good, Partially good, Bad.

Good: most (more than 90%) of the image is Polka-dotted.

Partially good: only part (less than 90%) of the image is Polka-dotted.

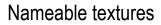
Bad: the image has no Polka-dotted region.

To decide between good and partially good, estimate the number of pixels that are Polka-dotted.

Good Polka-dotted examples: (most than 90% of the image is Polka-dotted)

Partially good Polka-dotted examples: (less than 90% of the image is Polka-dotted)

Bad Polka-dotted examples:(the image has no Polka-dotted region)

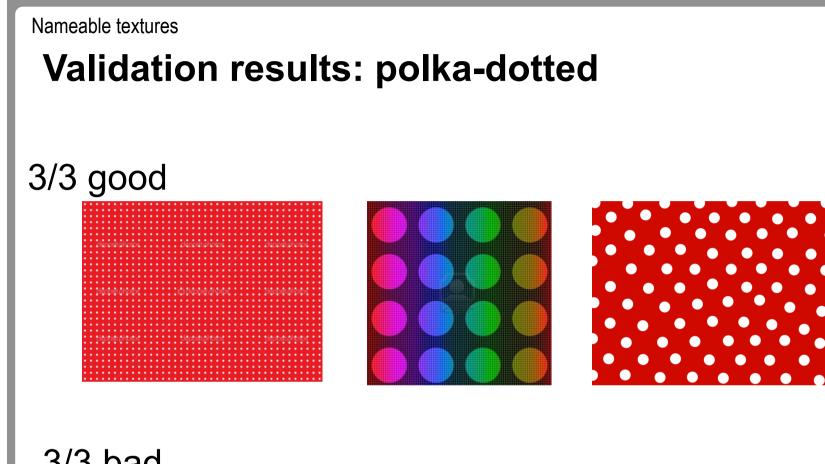


Validation results: honeycombed

3/3 good

© oboy * www.ClipartOf.com/77933

3/3 bad



3/3 bad

Validation results: cracked

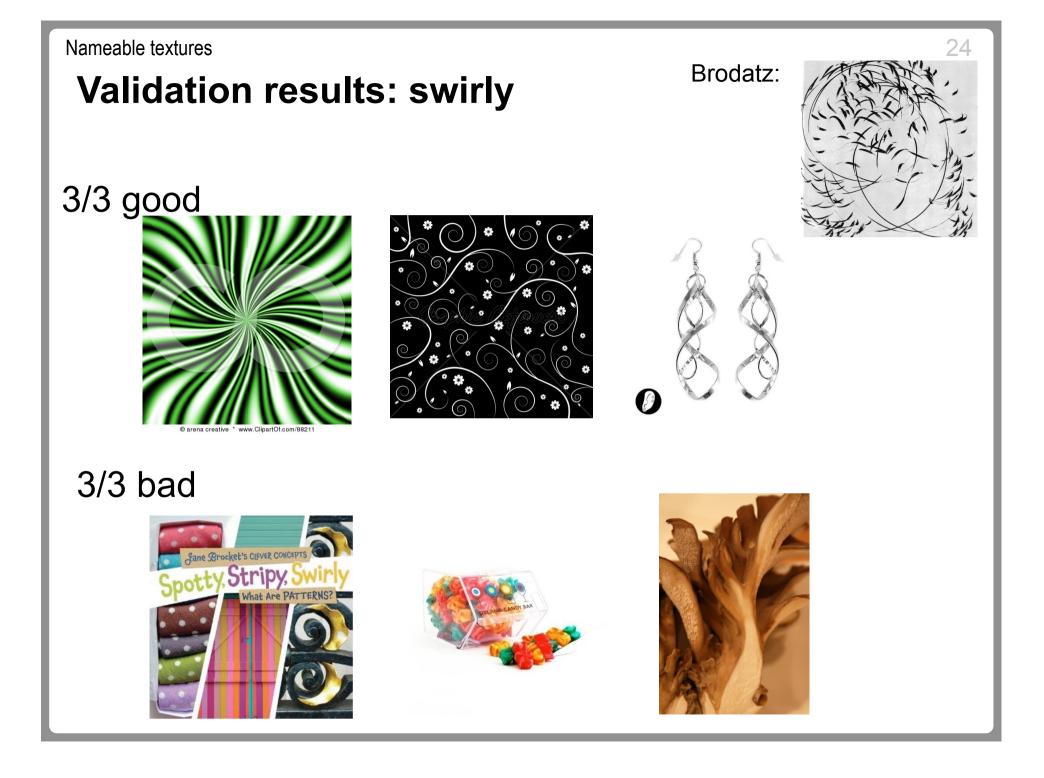
3/3 good

3/3 bad

Validation results: marbled

3/3 good

3/3 bad



Validation results: waffled

3/3 good

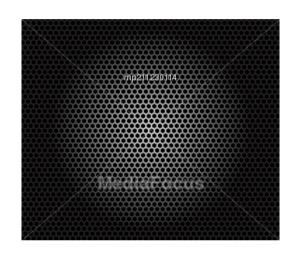
3/3 bad

Validation results: wrinkled

3/3 good

Validation results: spotted

3/3 good



3/3 bad

Validation results: knitted

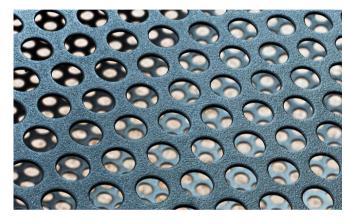
3/3 good

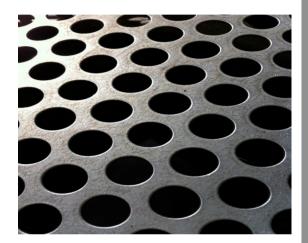
28

3/3 bad

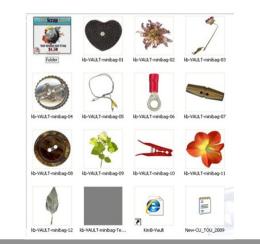
Validation results: holey

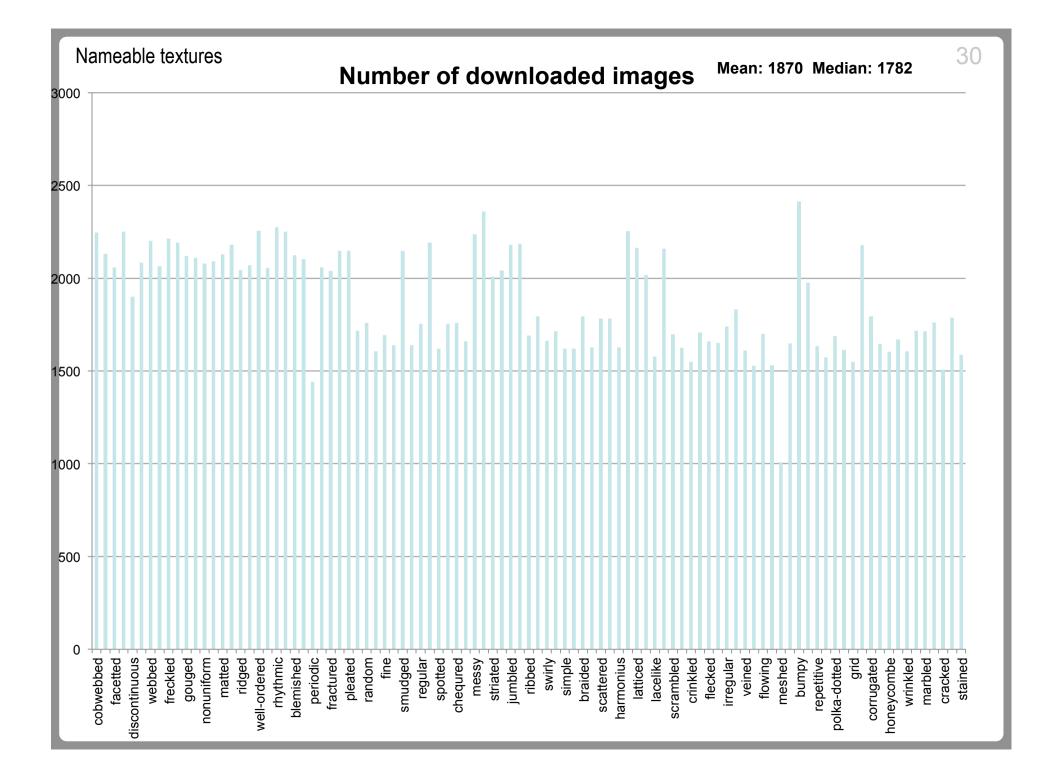
3/3 good

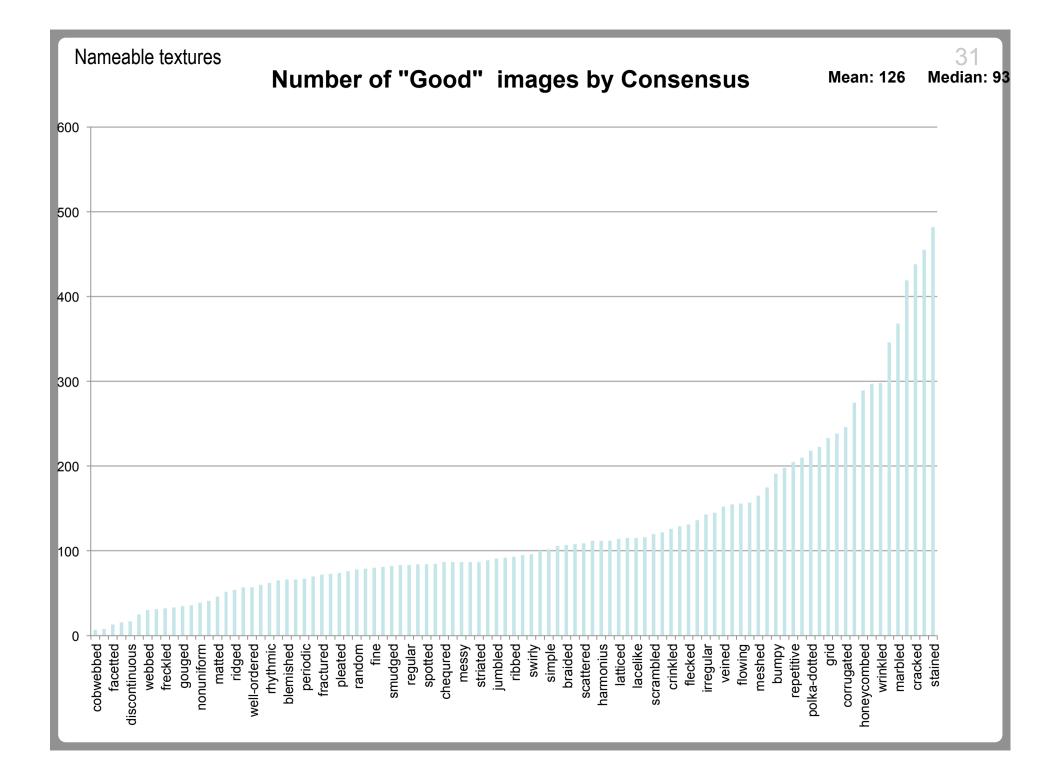




3/3 bad







Overview

Objects in Detail

Parts & attributes

- A new dataset
- An object lexicon
- Localizing parts
- Layouts
- Recognizing attributes

Stuff in Detail Texture

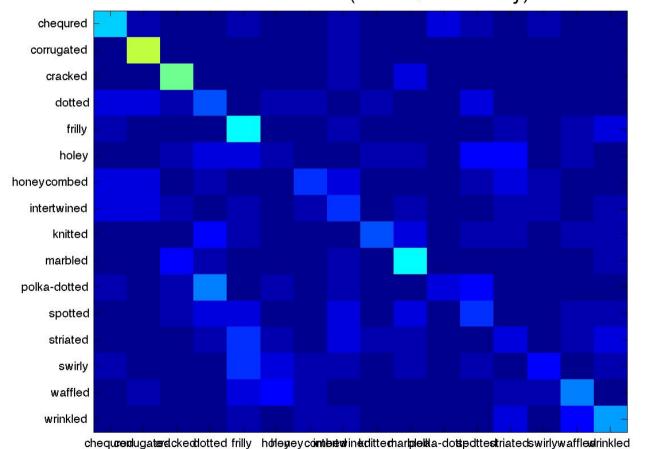
- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

Baseline results

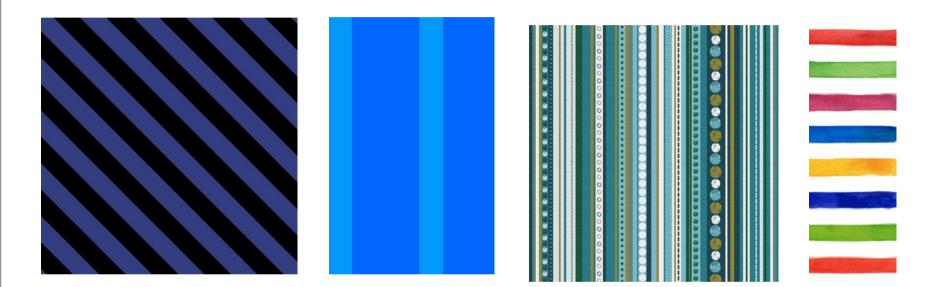
SVM classifier for bag-of-words with k-chi kernel $k(x,y) = \sum_{i} \frac{2x_i y_i}{x_i + y_i}$



Confusion matrix (39.58 % accuracy)

Intra-category variability

Images for `banded' category



34

Scale and orientation: nuisance parameters

Sneaking in

mom's keychain

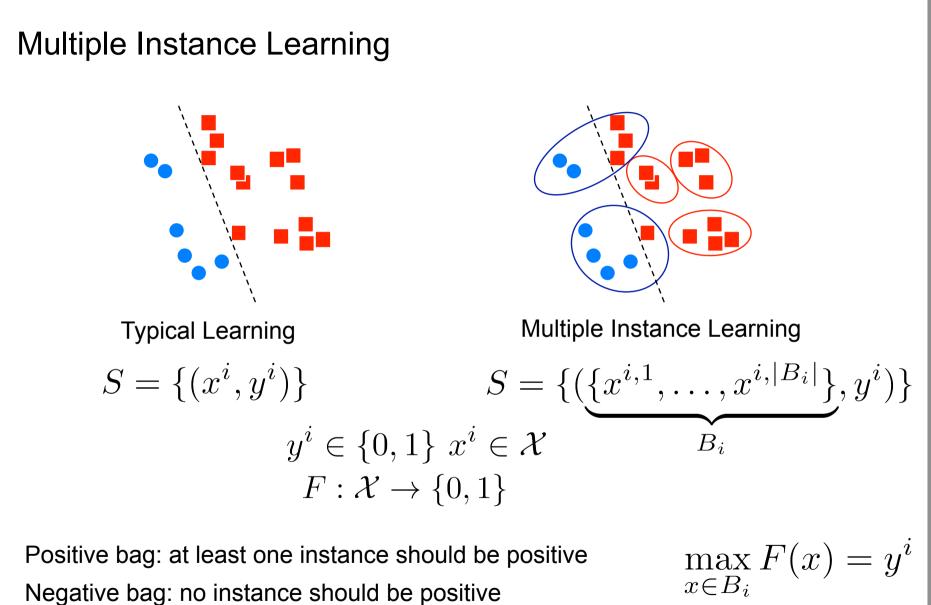
grandma's keychain

dad's keychain

We know that dad cannot enter

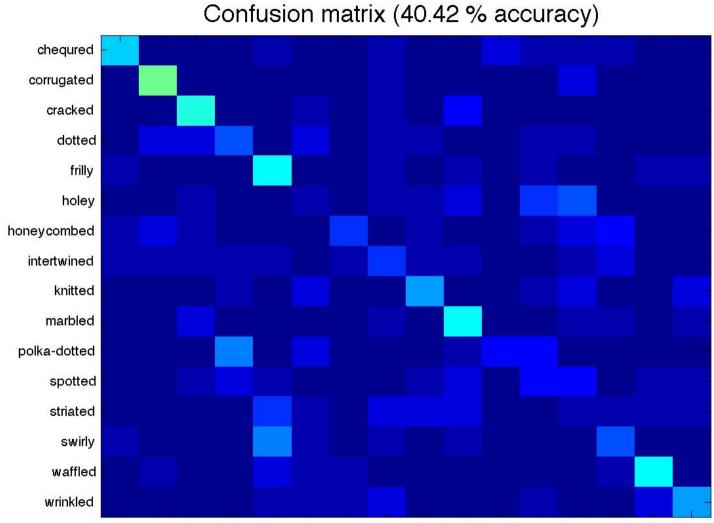
Which key should we try?

Slide Credit: B. Babenko/T. Dietterich



36

Multiple Instance Learning + BOW



chequrendugateralckeddotted frilly hollengeycointerationadittecharlplekta-dotspdttestriatedswirlywafflendrinkled

37

Fisherfeatures

BOW problem: part of the signal is `lost in quantization'

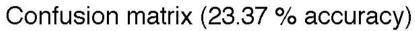
`Fisherfeatures' : replace vector quantization through GMMs

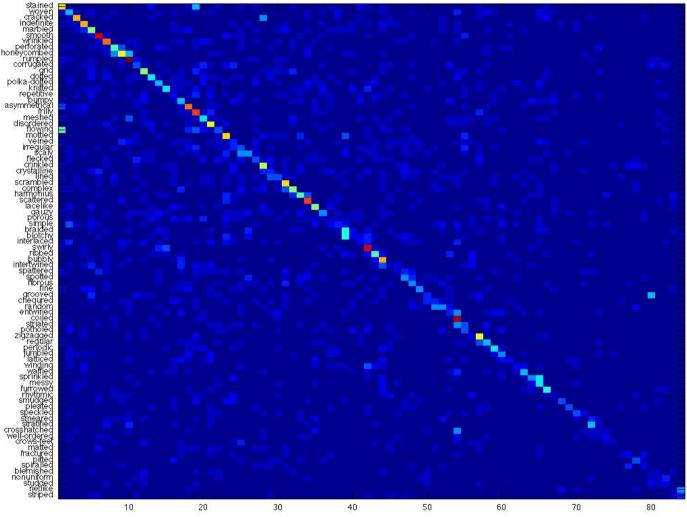
T. Jaakkola and D. Haussler, Exploiting Generative Models in Discriminative Classifiers. NIPS 1998

F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for image classification. ECCV, 2010.

K. Chatfield, A. Vedaldi, L. Victor, and Z. Zisserman. The devil is in the details: an evaluation of recent feature encoding methods, BMVC 2011

The more, the merrier





39

Nameable textures: a roadmap for visual textures

A new dataset for texture category classification

Multiple Instance Learning & Fishervectors for texture models

Future work:

sliding window/superpixel-based scoring texture-based superpixel merging texture-based object detection semi-supervised learning

Texture lexicon: a stratification of visual textures

A new dataset for nameable texture classification 98 Categories, 30-100 words per category

Cast texture representation in multi-class classification terms

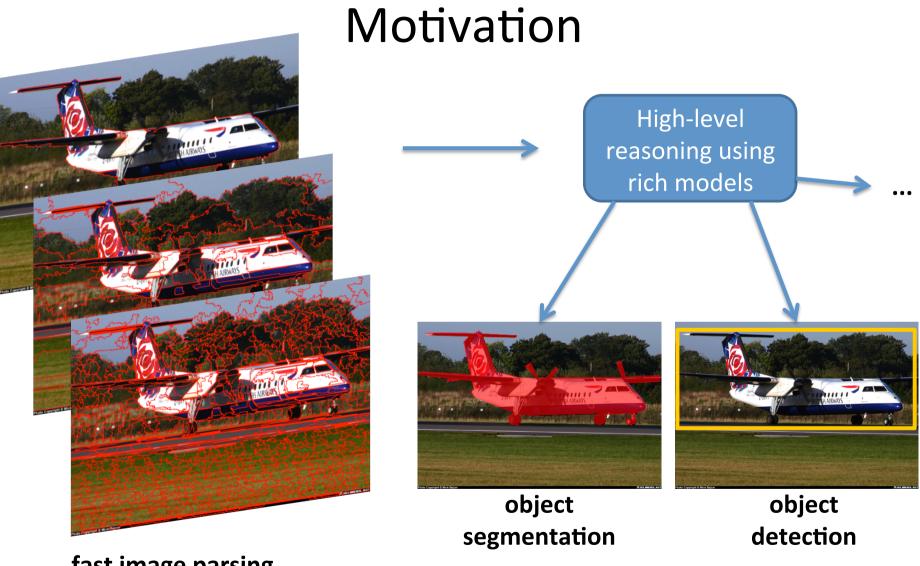
Multiple Instance Learning of texture models

Bottom-Up Image Parsing Part 1

Karén Simonyan, David Weiss, Andrea Vedaldi, Ben Taskar

What Is Bottom-Up Image Parsing?

- **Image parsing**: decomposing an image into a set of meaningful structures (e.g. objects, parts, boundary-aligned segments)
- Bottom-up parsing: start with a set of primitives (e.g. super-pixels) and gradually merge them into larger structures



fast image parsing into a multi-scale pool of segments

Our Approach

Greedy merging (agglomerative clustering):

- start with over-segmentation into super-pixels
- at each step, spatial neighbors with the highest score are merged

merging video

Related Work

Super-pixel grouping

- Classification Model for Segmentation [Ren, 2003]
- Optimal Contour Closure [Levinshtein, 2010]
- Efficient Region Search for Object Detection [Grauman, 2011]

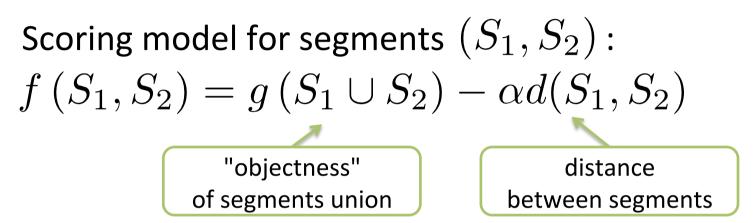
Greedy merging

- gPb-owt-ucm [Arbelaez, 2010]
- Selective Search for Object Recognition [van de Sande, 2011]

Top-down merging

• Unifying Segmentation, Detection, and Recognition [Tu, 2003]

Scoring a Merge



Complementary cues:

- distance is effective on uniform areas
- objectness captures appearance cues
 - how an object/part should look like
 - inter-segment variability can be high

Scoring Function Learning

$$f(S_1, S_2) = g(S_1 \cup S_2) - \alpha d(S_1, S_2)$$

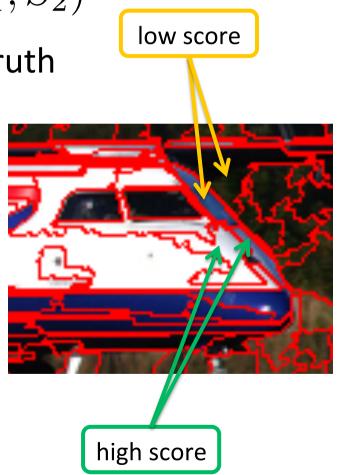
Discriminative learning from ground-truth segmentation

Goal – learn a scoring model:

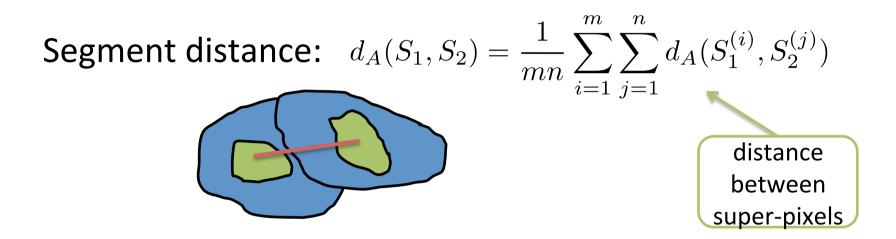
- pair inside an object high score
- pair crossing the object low score

Two research directions:

- Distance metric learning
- Objectness learning (next talk)



Distance Learning



Mahalanobis distance for super-pixels: $d_A(U, V) = (\phi_U - \phi_V)^T A(\phi_U - \phi_V)$

Learn A from the constraints:

- $d_A(U_P, V_P) < \Delta_1$ if segments belong to the same class
- $d_A(U_N, V_N) > \Delta_2$ if segments belong to different classes

Distance Learning (2)

Convex max-margin objective:

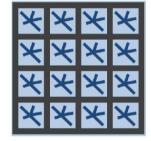
$$\min_{A \succeq 0} \sum_{(U_P, V_P)} \max(d_A(U_P, V_P) - \Delta_1, 0) + \sum_{(U_N, V_N)} \max(\Delta_2 - d_A(U_N, V_N), 0) + \frac{\lambda}{2} \|A\|_F^2$$

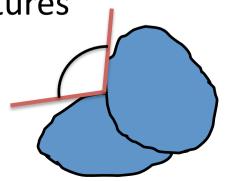
Solver: stochastic projected sub-gradient method

- projection on the cone of P.S.D. matrices by eigenvalue truncation
- step size $\gamma_t = 1/(\lambda t)$ due to strong convexity

Super-Pixels and Visual Features

- Super-pixels
 - Graph-based [Felzenszwalb, 2004]
 - SLIC [Achanta, 2012]
- Conventional features: bags of visual words
 - Dense multi-scale SIFT (500-D histogram)
 - Lab color (200-D histogram)
- Work in progress: boundary and shape features
 - Boundary strength, smoothness
 - Segment perimeter to area ratio





Datasets

- PASCAL VOC 2011
 - 20 classes, single model
 - training & validation 1111 images
 - testing 1112 images
- Airplanes
 - single class
 - training & validation 2958 images
 - testing 2979 images

Evaluation Measures

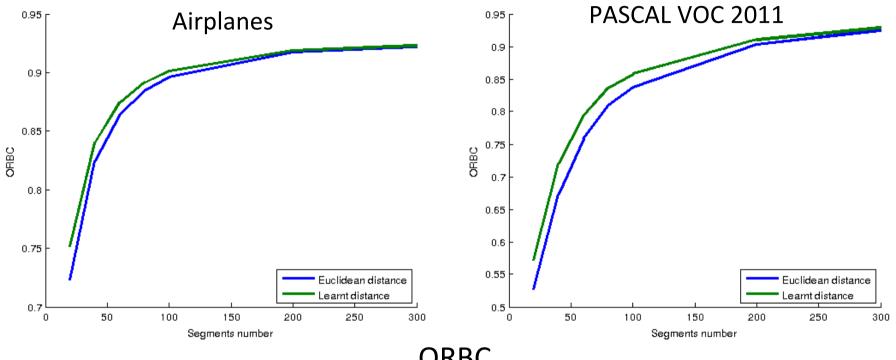
- Segmentation proposal recall
 - each segment is treated as a putative segmentation mask
 - ground-truth overlap ratio: $s = \frac{|GT \cap Prop|}{|GT \cup Prop|}$
 - recall ratio of objects for which a good proposal (s > 0.5) exists
- AIR FRANC F-BASX

s=0.6

- Overlap Ratio Best Case (ORBC)
 - "best case" segmentation union of segments with high ground-truth overlap
 - ORBC overlap ratio of the "best case" segmentation
 - upper bound on segmentation accuracy

s=0.95

Results: Learnt vs Euclidean



ORBC

	Airplanes	PASCAL VOC 2011
Euclidean	0.638	0.601
Learnt	0.673	0.601
	Proposal recall	

Summary

- Fast bottom-up parsing a pre-processing step for highlevel vision algorithms (< 2 s/image)
- Two complementary merging cues
 - distance between segments
 - appearance of segment union
- Distance learning leads to slight improvement with offthe-shelf features
- Appearance learning 2nd part of the talk...

Learning Appearance Models for Bottom-Up Parsing (LAMBUP)

David Weiss, Karen Simonyan, Ben Taskar, Andrea Vedaldi

Re-cap: Greedy Merging

Re-cap: Greedy Merging

Objective:

s(i,j) = Objectness(Union(i,j)) - Distance(i,j)

Re-cap: Greedy Merging

Objective:

s(i,j) = - Distance(i,j)

Objectness Features

Objective:

s(i,j) = Objectness(Union(i,j))

$$s(i,j) = \mathbf{w}^{\top} \mathbf{f}(x_i, x_j)$$

f = [color, texture, - Distance(i,j)]

Bad merges

Good merges

N: Bad merges P: Good merges x: Image

$$\min \frac{1}{2}||\mathbf{w}||^2$$

 $\mathbf{w}^{\top} \mathbf{f}(x_u, x_v) \leq -1 + \xi_{uv}^x, \quad \forall (u, v) \in N^x$ $\mathbf{w}^{\top} \mathbf{f}(x_i, x_j) \geq 1 - \xi_{ij}^x, \quad \forall (i, j) \in P^x$ **"Standard SVM" Formulation**

- In practice, difficult to score all positives above threshold
- Not all pairs need to be merged: Labels are ambiguous
- Can incorporate into learning for more robust procedure

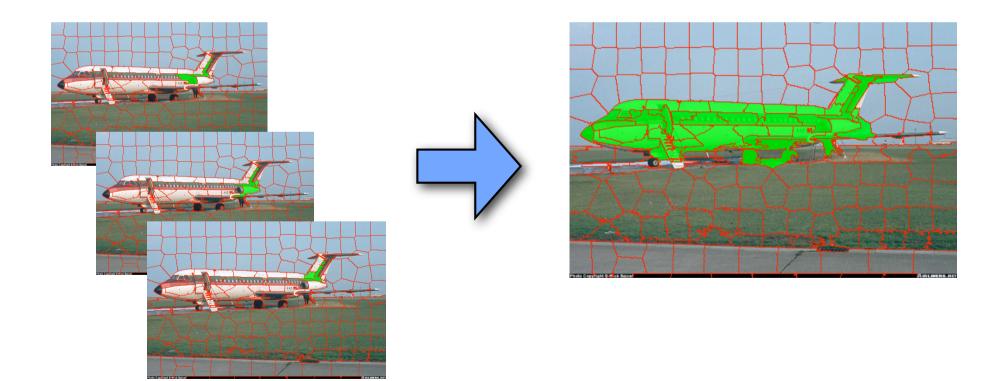
N: Bad merges P: Good merges x: Image

$$\min \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{x} \sum_{(u,v) \in N^x} \xi_{uv}^x + \xi_P^x$$

 $\mathbf{w}^{\top} \mathbf{f}(x_u, x_v) \leq -1 + \xi_{uv}^x, \quad \forall (u, v) \in N^x$ $\frac{1}{|P^x|} \mathbf{f}(x_i, x_j) \geq \mathbf{f}(x_i, \xi_{ijj}^x) \geq \mathbf{f}(i, \xi) \geq \mathbf{f}(x_i, \xi_{ijj}^x) \leq \mathbf{f}(x_i, \xi_{ijj}^x) \leq \mathbf{f}(i, \xi) \leq P \forall x$

"Ambiguous Labels" Formulation

"Ambiguous Labels" Formulation



Evaluation

- Output destined for object detector
- Propose object segmentations
- One merge = One Proposal

Evaluation Proposals

• One merge = One Proposal

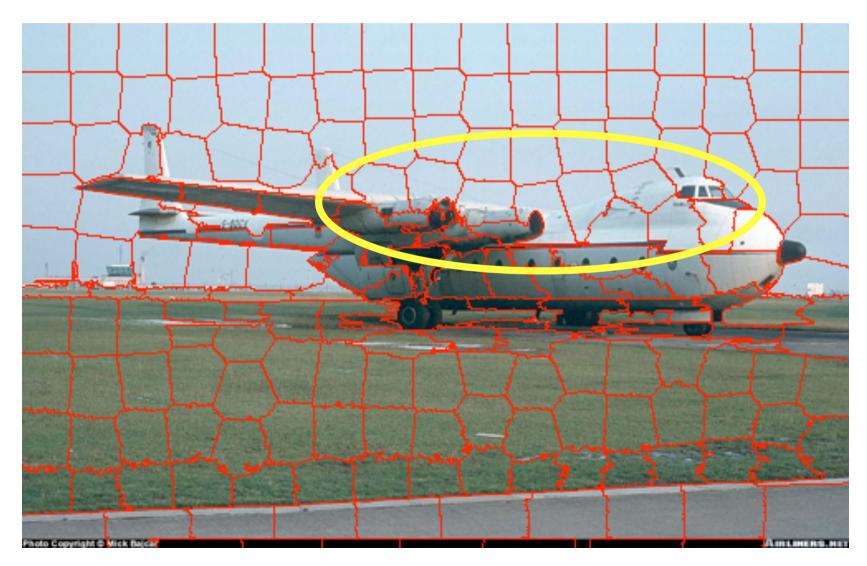
Evaluation Proposals

0.7399

- Compute Intersection over Union (IoU)
- IoU >= 0.5 = "hit"
- Measure recall

Evaluation Proposals

Method	Recall
Distance Only	67.0
Standard SVM	71.5
Ambiguous Labels	72.9



Method	Recall	Recall (Improved)
Distance Only	67.0	
Standard SVM	71.5	75.9
Ambiguous Labels	72.9	75.7

Fixing data --> easier to learn

Work-In-Progress

- Merging = Changing Feature Distribution
- Model should **adapt**
- Solution: **novel cascade architure**

Implemented, but not enough features

Objectness Helps!

	S	Ρ	FS	FP	Base
aeroplane	0.42	0.44	0.50	0.40	0.53
bicycle	0.07	0.07	0.06	0.06	0.08
bird	0.67	0.63	0.71	0.63	0.67
boat	0.26	0.27	0.27	0.27	0.40
bottle	0.39	0.30	0.35	0.33	0.39
bus	0.41	0.25	0.41	0.25	0.46
car	0.34	0.35	0.35	0.33	0.38
cat	0.80	0.76	0.84	0.78	0.85
chair	0.38	0.36	0.36	0.37	0.43
COW	0.66	0.63	0.62	0.66	0.62
diningtable	0.44	0.46	0.49	0.49	0.54
dog	0.65	0.66	0.65	0.65	0.57
horse	0.65	0.65	0.62	0.65	0.58
motorbike	0.49	0.47	0.46	0.47	0.61
person	0.37	0.40	0.39	0.39	0.38
pottedplant	0.39	0.38	0.39	0.40	0.40
sheep	0.52	0.53	0.52	0.52	0.46
sofa	0.69	0.66	0.75	0.69	0.75
train	0.39	0.39	0.42	0.42	0.63
tvmonitor	0.59	0.59	0.59	0.60	0.68

Method	Recall	Recall (Improved)
Distance Only	52.0	
Standard SVM	47.8	48.7
Ambiguous Labels	46.3	46.7

LabSIFTPairwise

LabSIFTPairwise

LabSIFTPairwise+LabSIFTUnary

LabSIFTPairwise

LabSIFTPairwise+LabSIFTUnary

LabSIFTPairwise

LabSIFTPairwise+LabSIFTUnary

Overview

Objects in Detail Parts & attributes

- · A new dataset
- · An object lexicon
- Localising parts
- Layouts
- Recognising attributes

Stuff in Detail Texture

- · A texture lexicon
- · A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- · Learning to merge
- Cascading
- Scoring regions by attributes

Part/Attribute Queries

- A person may be interested in querying a set of images for objects that have certain properties
 - An aeroplane with a red, pointy nose

A furry cat

Bottom Up Proposals of Parts/Attributes

single-prop aeroplane with a red pointy nose

Scoring Functions

• First approach: train a discriminative classifier for every possible class/part/attribute

$$f_{cat}(I)$$
 $f_{furry}(I)$ $f_{furry+cat}(I)$...
17.3 16.8 19.2 ...

A Naïve Independence Assumption

- k mutually-exclusive class/parts, m binary attributes → (k+1)2^m - 1 possible scoring functions
- Insufficient sample of complex part/attribute combinationsExponential training cost

$$p(brown, furry, cat) \propto e^{f_{brown}(I)} \cdot e^{f_{furry}(I)} \cdot e^{f_{cat}(I)}$$

$$\implies$$

$$n p(brown, furry, cat) = f_{brown}(I) + f_{furry}(I) + f_{cat}(I) + b$$

- Linear training cost
- Disregards the high statistical dependence between cat and furry

Joint Discriminative Training

• Formulation as regularized risk

$$\min_{f} \lambda \Omega(f) + \sum_{q \in \mathcal{Q}} \ell(f, X, Y, q)$$

• $|\mathcal{Q}|$ is exponential, and we therefore need to sample a subset of basis queries, Q

$$\min_{f_Q} \lambda \Omega(f_Q) + \sum_{q \in Q} \ell(f_Q, X, Y, q)$$

 $\bullet \ Q$ is a very general parametrization of discriminative models

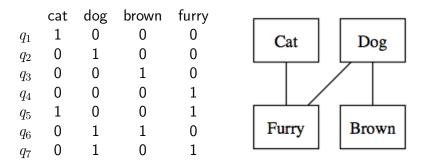
- $\bullet\,$ For simplicity, consider only conjunctions: brown $\wedge\,$ furry $\wedge\,$ cat
- Encode as a binary matrix

	cat	dog	brown	furry
q_1	1	0	0	0
q_2	0	1	0	0
q_3	0	0	1	0
q_4	0	0	0	1
q_5	1	0	0	1
q_6	0	1	1	0
q_7	0	1	0	1

Relationship to Graphical Models

• Hammersley-Clifford theorem

$$\ln p(x) = \sum_{C \in cl(\mathcal{G})} f_C(x_C) + b$$



Vector Valued Functions / Query Covariances

- A vector valued function returns a vector ouput for any input.
- One may specify a covariance structure, *B*, between outputs.
- With a separable kernel, $k(x, y, i, x', y', j) = k(x, y, x', y')B_{i,j}$ and $K_S = K_{\text{joint}} \otimes B$
- $B_{i,j}$ should be large if outputs *i* and *j* are similar, and small otherwise.
- We will set each of our outputs to be the scoring function of a prediction for a given part/attribute query, and *B* will measure how similar those scoring functions should be.

Application to Part/Attribute Queries

• A part/attribute query can be encoded in a binary string as follows: 1 ... 0 striped red pointy ... we will call the mapping of a query, q, to this binary string $\varphi(q)$

• Set
$$B_{i,j} = \langle \varphi(q_i), \varphi(q_j) \rangle$$

- We specify a set of basis queries, $Q = \{q_1, \ldots, q_k\}$.
- Train vector valued regression with the submatrix B_Q corresponding to the basis queries
- Infer functions for novel queries using their relationship to basis queries

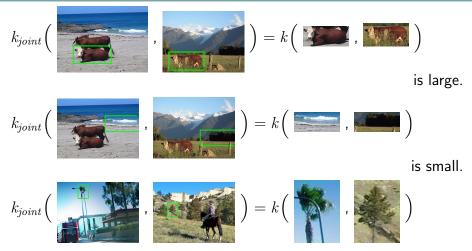
Joint Kernel between Images and Boxes: Restriction Kernel

- Note: $x|_y$ (the image restricted to the box region) is again an image.
- Compare two images with boxes by comparing the images within the boxes:

$$k_{joint}((x, y), (x', y')) = k_{image}(x|_y, x'|_{y'})$$

- Any common image kernel is applicable:
 - linear on cluster histograms: $k(h, h') = \sum_i h_i h'_i$,
 - χ^2 -kernel: $k_{\chi^2}(h, h') = \exp\left(-\frac{1}{\gamma}\sum_i \frac{(h_i h'_i)^2}{h_i + h'_i}\right)$
 - pyramid matching kernel, ...
- The resulting joint kernel is positive definite.

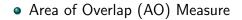
Restriction Kernel: Examples

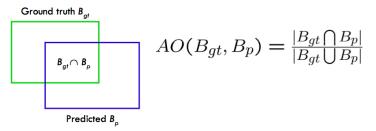


could also be large.

Note: This behaves differently from the common tensor products
 k_{joint}((x, y), (x', y')) ≠ k(x, x')k(y, y')) !

Evaluating Bounding Boxes





• Set a threshold such that $AO(B_{gt}, B_p) > t$ indicates a correct detection: 0.5

PASCAL VOC

• Define a loss function $\Delta(B_{gt}, B_p) = 1 - AO(B_{gt}, B_p)$.

Structured Output Ranking

• Given a joint kernel map, φ , learn an objective that orders outputs correctly

$$\min_{w \in \mathcal{H}, \xi} \hspace{0.5cm} \lambda \Omega(w) + rac{1}{|\mathcal{E}|} \sum_{(i,j) \in \mathcal{E}} \xi_{ij}$$

margin rescaling

s.t.
$$\langle w, \varphi(x_i, y_i) \rangle - \langle w, \varphi(x_j, y_j) \rangle \ge \Delta_j - \Delta_i - \xi_{ij}$$

or $\langle w, \varphi(x_i, y_i) \rangle - \langle w, \varphi(x_j, y_j) \rangle \ge \underbrace{1 - \frac{\xi_{ij}}{\Delta_j - \Delta_i}}_{\text{slack recalling}}$

Slack rescanng

$$\xi_{ij} \ge 0$$

(2)

(1)

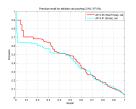
Transferring to Previously Unseen Queries

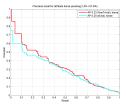
- Given basis queries, we may jointly learn a set of functions by combining ranking objectives subject to a joint regularization of basis queries: Ω(f₁,..., f_k) = α^TK ⊗ Bα
- Using our covariance function, we may construct a ranking objective for previously unseen queries by taking a linear combination of basis queries:

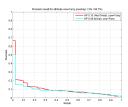
$$f_j = \sum_{i \in \mathsf{basis}} B_{i,j} f_i$$

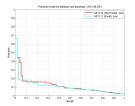
- VOC Dataset 20 categories
- Features and attributes described in Farhadi et al., CVPR 2009
- Texture + Color + HOG \approx 9K features
- 64 attributes many of which are *highly* correlated with a specific class label
- We will focus on the "furry" attribute and related classes

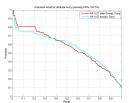
Results

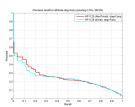


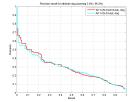


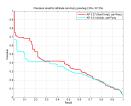


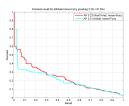


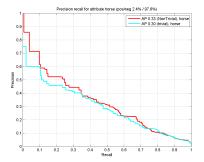


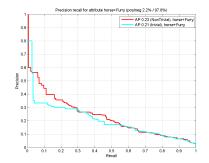


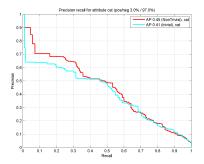


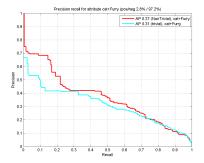












Overview and Future Outlook

- Discriminative training of a scoring system for object/part+attributes queries
- A general regularized risk framework that relates *basis queries* to a graphical model structure
- Natural extension to novel queries at test time
- Significantly improved performance over a naïve independence assumption
- Extensions to queries beyond conjunctions
- Automatic learning of basis query set (structure of graphical model)
 - Modeling accuracy + sparsity penalty
- Integration with top down inference system

Matthew Blaschko Center for Visual Computing École Centrale Paris & INRIA Saclay - Île-de-France

matthew.blaschko@inria.fr

Summary

Objects in Detail

Parts & attributes

- A new dataset
- An object lexicon
- Localising parts
- Layouts
- Recognising attributes
- The cost of data collection

Stuff in Detail

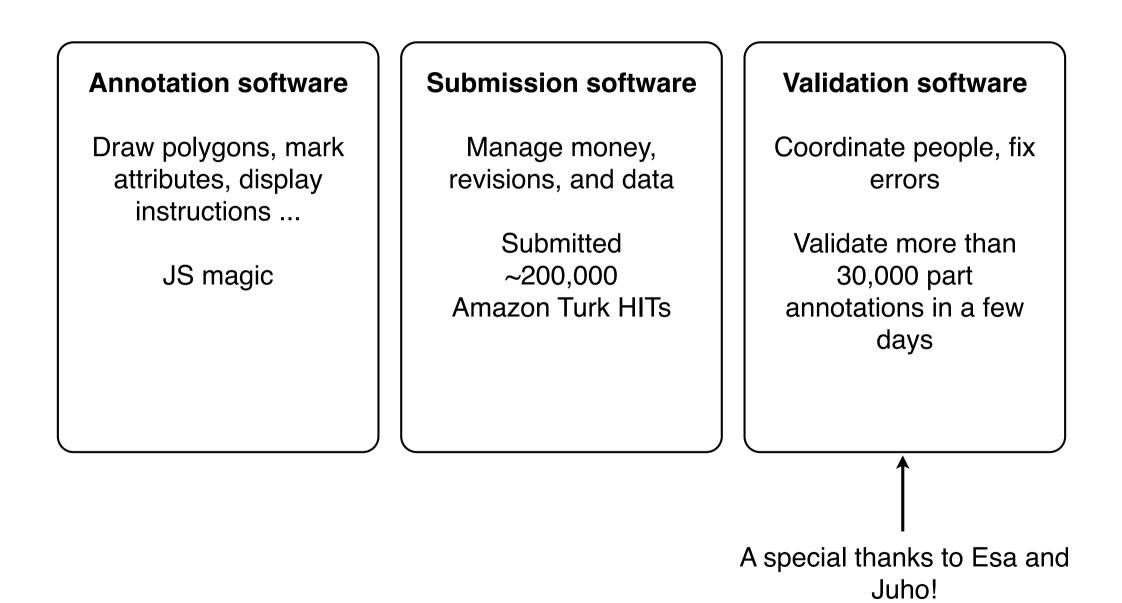
Texture

- A texture lexicon
- A new dataset
- Transformation invariant semantic

Parsing Bottom-up inference

- Learning to merge
- Cascading
- Scoring regions by attributes

Contribution: A framework for annotation



Contribution: A new part & attribute dataset

Problem	Data	Time frame	Progress
Image Classificat	tion Caltech-101	2003-06	star models, BoW
Object Detectic	on PASCAL VOC	2006-12	DPMs, large scale learning
Parts & Attribut	ies OID	2012-?	?
<image/>		New benc	set in this class chmark and challenges w in the future!

Contribution: a new semantic texture dataset

honeycombed latticed netlike mottled meshed

36

Contribution: models & methods

Parts and geometry

Part models, semantic clustering boxes & shapes Part layouts improving part detection with context

Learning to merge

Generic metric learning Class specific union & ambiguous labels

Attributes

Attributes from appearance local-global appearance and attribute interactions

Attributes from geometry

many attributes can be predicted from layouts

Proposals covariant attribute modelling

Texture nuisance-invariant models 37

Future

• The start of a new challenge

- the life after 7 years of PASCAL VOC
 - Iarge scale but basic understanding (*e.g.*, ImageNet)
 - detailed understanding

Objects in detail

- a multi-year challenge
- Texture in detail

• Pushing the technical barrier

- modelling local & global information
- fast inference
- detailed features for subtle attributes

