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Rich language understanding requires resolving massive uncertainty
about context and interlocutors’ goals and beliefs.

• How and why do these factors influence interpretation?

• How can interpretation be mostly easy and successful when it
ought to be really hard and error-prone?

Answer: listeners construct rich interpretations by combining

• domain-specific linguistic knowledge

• knowledge of the world and their interlocutors

via domain-general probabilistic inference and social reasoning
mechanisms.



Toward computational psychosemantics

in which Montague and Grice meet the Rev. Bayes

• Bayesian inference in brief

• Bayes/Grice: Interpretation as intention recognition and as
latent variable estimation

• Iterated-reasoning architecture for language understanding

• Three kinds of pragmatic inference

• Inferring speaker beliefs, desires on the basis of observed
utterances [implicature]

• Inferring literal meaning [ambiguity resolution]

• Inferring values of free variables [context-sensitive meaning]



Caveats and hat tips

The framework is currently under development with input from lots
of people including (but not limited to):

Mike Frank, Noah Goodman, Andreas Stuhlmüller, Leon Bergen,
Roger Levy, Judith Degen, Adam Vogel, Chris Potts, Percy Liang,
Gerhard Jäger, Michael Franke, ...

Today’s story emerges largely
from my collaborations with
Noah Goodman (Lassiter &
Goodman ’13, Goodman &
Lassiter ’14; usual disclaimers
apply).



Formal models of information & inference

Deductive paradigm

• An info state IA is an unstructured set of possibilities,
representing the total of what agent A fully believes

• All-or-nothing inference: p follows from IA iff true everywhere

• Learning q contracts the live possibilities: IA Ô⇒
learn q

IA ∩ q

Bayesian paradigm

• An info state PA is an measure on a set of possibilities L ⊆ W ,
representing agent A’s graded beliefs

• Learning q updates the measure without changing the domain:

PA(prop) Ô⇒
learn q

PA(prop∣q) = PA(prop & q)
PA(q)

• Similar notion of entailment; richer, graded inference
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Cognitive interpretation (Tenenbaum et al. ’11)

Generative models represent common-sense theories of causal
relations between features of the world.

• generate predictions about future events

• Test against evidence; refine model

Simple example:

• Fires, incense, asteroids can cause smoke

• So, if you see smoke one of these things might be causing it

• Observations influence both P(cause) and P(smoke∣cause)

Priors matter, as they should.

Applications in many areas of cognitive science: learning,
reasoning, categorization, language, vision, motor control, ...



Bayes & Grice (Grice ’89, Lewis ’69, Clark ’96)

Themes from Grice:

• literal meaning underdetermines communicated content

• the rest requires inferring speakers’ latent intentions

• pragmatic enrichments are inferences from chosen action
together with rationality, cooperativity assumptions

• We’re fixing a car, and you hand me a tool I don’t recognize
• ‘Give me that tool’ when we both know the most useful tool
• ‘Al met a woman’ when it’s relevant if he also married her

Implicit in Grice: Ls maintain a model of S’s action planning and
use it to generate smart inferences

• L model of S generates predictions about what S will do

• pragmatic inferences emerge from choice to say u rather than
saying or doing something else



Listeners actively model speakers’ motivations (Clark ’75)

Rich inferences from

• choice to utter u
instead of anything
else S could have
said or done

• inferences rely on a
model of how S
would have behaved
if intentions were
different
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Sampling of psycholinguistic evidence

“Put the cube in the can”: Ls rapidly narrow attention to items for
which it’s possible to fulfill command (Chambers et al. ’02)

“Hand me the cake mix”: Ls infer that the cake mix near to them
is intended, since otherwise S would pick it up himself — unless
S’s hands are full (Hanna & Tanenhaus ’04)

“What’s above the cow with shoes?”: Ls assume Ss don’t ask
questions they know the answer to (Brown-Schmidt et al. ’08)



Sampling of psycholinguistic evidence

“Put the cube in the can”: Ls rapidly narrow attention to items for
which it’s possible to fulfill command (Chambers et al. ’02)

“Hand me the cake mix”: Ls infer that the cake mix near to them
is intended, since otherwise S would pick it up himself — unless
S’s hands are full (Hanna & Tanenhaus ’04)

“What’s above the cow with shoes?”: Ls assume Ss don’t ask
questions they know the answer to (Brown-Schmidt et al. ’08)



Sampling of psycholinguistic evidence

“Put the cube in the can”: Ls rapidly narrow attention to items for
which it’s possible to fulfill command (Chambers et al. ’02)

“Hand me the cake mix”: Ls infer that the cake mix near to them
is intended, since otherwise S would pick it up himself — unless
S’s hands are full (Hanna & Tanenhaus ’04)

“What’s above the cow with shoes?”: Ls assume Ss don’t ask
questions they know the answer to (Brown-Schmidt et al. ’08)



Bayesian action understanding (Baker, Saxe & Tenenbaum ’09)

A woman is walking down the street. She suddenly stops, turns
around, and runs in the opposite direction. Why did she do that?

• She’d missed her bus and had to take the subway.

• She realized she’d forgotten to turn off the stove.

• There’s been an alien invasion, and she saw one coming.

Human inferences in simple cases captured by “inverse planning”:

P(Belief, Desire ∣ action) = P(action ∣ Belief, Desire) × P(Belief, Desire)
∑

Bel*, Des*
P(action ∣ Bel*, Des*) × P(Bel*, Des*)

Sampling gloss: “use model to generate predictions about beliefs,
desires; on that basis, predict action; throw out incorrect predictions;
update beliefs by reference to belief-desire combos that remain.”



Bayesian language understanding

Key insight of Grice, Lewis, Clark: language understanding is a
special case of action understanding.

Key question (refined from beginning)

How can communication be easy and successful most of the time,
when it should be difficult and highly error-prone?

Proposed answer: listeners use powerful, domain-general Bayesian
inference mechanisms to combine

• linguistic knowledge (potentially domain-specific)

• predictions generated by social reasoning, in particular active
modeling of speakers’ linguistic and non-linguistic choices

Given richly structured beliefs, inference from observed utterance
allows listeners to update beliefs about many other variables



Recursive interpretation (cf. Lewis ’69, Clark ’96)

L reasons about what the world is like (including S’s intentions),
given observed utterance u:

PL(w ∣u)∝ PS(u∣w) × PL(w)

S reasons about what to say, given (a) desire that L infer w , and
(b) private utterance preferences:

PS(u∣w)∝ PL(w ∣u) × PS(u)

Problem: this reasoning will go on forever.

Solution: pick a base case, recurse up to some (low) level.



Recursive interpretation simplified (Franke ’08, Frank&Goodman ’12)

Pragmatic listener L1 reasons about w given priors and speaker
model.

PL1(w ∣u)∝ PS1(u∣w) × PL1(w)

S1 reasons about what to say, given that they want a literal
listener L0 to infer their intention.

PS1(u∣w)∝ PL0(w ∣u) × PS1(u)

Literal listener L0 simply assumes u is true, without reasoning
about S.

PL0(w ∣u) = PL0(w ∣u is true)

Note: this model predicts a pragmatic preference for informative
utterances.
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Pragmatic enrichment: Implicature

• Dad, I met a girl [quantity]

• Mary ate most of your cookies [quantity]

• The candidate is punctual and his wife is friendly [relevance]

• Mrs. X uttered a series of sounds closely corresponding to the
tune of “Home sweet home” [manner]

Recursive Bayes generates quantity implicatures automatically

(Franke ’08, Frank & Goodman ’12, G. & Stuhlmüller ’13, Vogel e.a. ’13)

• Manner implicatures: see Bergen et al. ’12.

• Relevance: seems straightforward, but not yet investigated.



Quantity implicature

A: We had 5 forms left to fill out. How many did you do?

B: I filled out some of them.

Suppose PL0/1(B filled out n forms) is uniform for n ∈ {0, ...,5}.

PL0(B filled out n forms∣u = ‘some’)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of forms

P
ro
ba
bi
lit
y

prior
posterior given u="some"

PL0(B filled out n forms∣u = ‘all’)
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Crucial informativity difference when “all” is true.



Informativity effects on speaker model

PL1(w ∣u)∝ PS1(u∣w) × PL1(w)
PS1(u∣w)∝ PL0(w ∣u) × PS1(u)
PL0(w ∣u) = PL0(w ∣u is true)

Let alternatives be “none”, “some”, and “all”, with uniform prior.

• If n = 0, only “none” is true ⇒ choose “none”

• If 0 < n < 5, only “some” is true ⇒ choose “some”

• If n = 5, “some” and “all” both true. Now,

• PL0(n = 5∣“some”) = 1/5
• PL0(n = 5∣“all”) = 1

so PS1(“some”∣n = 5) = 1/5
1/5+1 ≈ .17, PS1(“all”∣n = 5) ≈ .83

• S1 nearly 5 times as likely to say “all” when it is true.



Informativity effects on speaker model

Graphical depiction: S1 utterance probability by n.
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Effects on pragmatic listener

L1 incorporates this asymmetry and reasons backwards:

• S said “some”
• If “all” were true, he probably would have said “all” instead,

since that would be much more informative
• So, “all” probably isn’t true: PL1(5∣“some”) ≈ .04.

L0 ∶ PL0(B filled out n forms∣u)
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Ambiguity and underspecification

Bayesian update is only defined for things that can be true or false.

PL1(w ∣u)∝ PS1(u∣w) × PL1(w)
PS1(u∣w)∝ PL0(w ∣u) × PS1(u)
PL0(w ∣u) = PL0(w ∣u is true)

What if u doesn’t pick out a unique proposition?

• “Take Al to the bank” (which kind of bank?)

• “It is big” (What is ‘It’? How big is ‘big’?)



Ambiguity

Ambiguous utterances have a random choice in their meaning (or,
a random choice is required to decide which word was used).

JbankK =
⎧⎪⎪⎨⎪⎪⎩

Jriver bankK with probability p

Jfinancial bankK with probability 1 − p

• Probabilistic reference projects up through compositional
semantics straightforwardly (see Goodman & Lassiter ’14).

L0 conditions on truth of utterance given model. Predictions:

• Plausible interpretations favored, because more likely true
[true in many samples from world model]

• Implausible interpretations filtered out as probably false

Ambiguities thus resolved acc. to probability of being true.

• Mary/The otter/The businessman went to the bank.

⇒ World knowledge directly influences interpretation.



Underspecification: Vague scalar adjectives

Scalar adjectives have notoriously context-sensitive meanings.

• I saw a big {baby, football player, tree, skyscraper, planet}.
• Click on a/the large circle. [varying distribution of sizes]

Why do these adjectives mean what they do, relative to a given
context? What is the role of the reference class?

How can we communicate any information at all using expressions
this semantically flexible?

Theoretical constraints:

• Non-uniform prior on resolved meanings would make
interpretation too inflexible

• Context-sensitive interpretations have to emerge from
interpretation process and world knowledge



Underspecification: Vague scalar adjectives

Positive-form adjectives compare an object’s measure along some
scale to a threshold value θ. (Cresswell ’76, Kennedy ’07, etc.)

JAl is tallKθ = 1 iff µheight(Al) > θ

Common idea: context determines a value for θ, taking into
account lexical information, reference classes, ...

• What is “context”, and how does it go about doing its job?

Bayesian approach:

• Parametrize model by θ, with uniform prior

• Estimate P(h, θ∣u)
• Marginalize out θ to infer Al’s height.



Underspecification: Vague scalar adjectives

Model with semantic “nuisance” variables at L0.

PL1(w ∣u)∝ PS1(u∣w) × PL1(w)
PS1(u∣w)∝ PL0(w ∣u) × PS1(u)
PL0(w ∣u) = ∑

θ

PL0(w ∣u is true relative to θ, θ) × PL0(θ)

Note: we’re introducing θ at L0 and eliminating it there as well



Simulation

Disaster: “Al is tall” conveys no information.
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• L0 prefers (implausibly) strong interpretations

• S1 infers that “tall” is most informative for short people



Variable-passing solution (Lassiter & Goodman ’13, cf. Bergen et al. ’12)

Solution: instantiate variables at L1 and pass them down.

Pragmatic listener derives joint inferences about states of the world
and interpretations given values for variables.

PL1(w , θ∣u)∝ PS1(u∣w , θ) × PL1(w) × PL1(θ)

S1 chooses u with a preference for informative utterances given θ

PS1(u∣w , θ)∝ PL0(w ∣u, θ) × PS1(u∣θ)

L0 conditions on literal meaning, given values for variables.

PL0(w ∣u, θ) = PL0(w ∣u is true relative to θ)



Simulation: Gaussian prior (“tall”) (Lassiter & Goodman ’13)

PL1(h, θ∣u)∝ PS1(u∣h, θ) × PL1(h) × PL1(θ)

Let u = “Al is tall”.

P(θ) is uniform: any
possible interpretation
of tall is equally likely a
priori.



Simulation: Gaussian prior (“tall”) (Lassiter & Goodman ’13)

PL1(h, θ∣u)∝ PS1(u∣h, θ) × PL1(h) × PL1(θ)

PL1(h) = total prob. of
worlds in which Al’s
height is h.

A reasonable prior for
heights is a Gaussian.

PL1(h) is highest for
moderate values.



Simulation: Gaussian prior (“tall”) (Lassiter & Goodman ’13)

PL1(h, θ∣u)∝ PS1(u∣h, θ) × PL1(h) × PL1(θ)

PS1(u∣h, θ) favors
higher θ because they
make u more
informative.

Context-sensitive
probabilistic meanings
emerge from
competition between
prior and likelihood
terms.



Simulation: Gaussian prior (“tall”) (Lassiter & Goodman ’13)

Inferred height of
Al, given u = “Al is
tall”.

Note crucial role of
statistical priors.



Bayesian interpretation: summary

Implicature: need pragmatic enrichment even with full meanings

Bayesian interpretation requires a proposition at base listener L0.

When literal meaning doesn’t give us one, we infer ...

• and deal with whatever uncertainty remains.

We can resolve uncertainty about literal meaning either at L0 or
L1.

• L0: exclusive preference for truthful interpretations ⇒ high
probability, in some cases logically weak

• L1: variable passes through speaker model, introducing
countervailing preference for informative interpretations

Empirical question which phenomena go which way. (Pronouns,
reciprocals, ...?)



Conclusions

Bayesian interpretation offers

• new, unified perspective on important issues in pragmatics

• useful synthesis of work in formal linguistics and cognitive
science

• a way to combine benefits of formal models of meaning
(precision, productivity) without ignoring pervasive
uncertainty and gradation in language

Needed for further progress:

• deepen engagement between computational cognitive science,
NLP, formal semantics/pragmatics

• find methods for verification/falsification/fine-tuning of
models: behavioral experiments, corpus studies, ...?



Thanks for listening!

Email: danlassiter@stanford.edu



Sorites paradox

1) A 7-foot-tall man is tall.

2) A man who is ε shorter than a tall man is also tall.

3) ∴ A 3-foot-tall man is tall.

Translation of (2): If µheight(x) > θ, then µheight(x) − ε > θ as well.

In our simulations, this has high but non-maximal posterior
probability: ≈ .98 with ε = .01.



Sorites paradox

1) A 7-foot-tall man is tall.

2) A man who is ε shorter than a tall man is also tall.

3) ∴ A 3-foot-tall man is tall.

Probabilistic approach avoids the logical problem of the sorites:

• P(premise 1) ≈ 1, P(premise 2) ≈ .98, P(premise 3) ≈ 0.

• Repeated use of a premise with high but non-maximal
probability does not preserve high probability (Kyburg ’61)


