Zero Resource <u>Speech</u> Technologies: An Overview

Aren Jansen

July 16, 2012

The Golden Age of Speech Recognition

- iPhone's Siri: is amazing (near perfect on me so far)
- Google Voice Search: 87,000 hours of transcribed speech (2000 manual + 85,000 automatic)

But...

- The success story fades when you consider a new (not seen in training):
 - Language, dialect, or accent
 - Domain
 - Channel/Environment

State-of-the-art:

– English: 15% error rate

- Mandarin: 30% error rate

The same technology trained/tested on Cantonese: 70% error rate

An Opportunity

- Transcribed speech is requires time and money
- Untranscribed speech is unlimited and free:
 - YouTube alone receives 60 hours of video on average every single minute (30 million hours per year)

The Zero Resource Setting

- 1. No transcribed training data
- 2. No language-specific models
- **3. No pronunciation dictionaries**
- **4. No** knowledge of what language it is (in extreme cases)

The Challenge

How can you automatically discover **linguistic structure** to aid downstream speech technologies?

Speech is Rich with Structure

Semantic: {book, reference, knowledge, wikipedia}

Grammatical: (he sold, NP, to her)

Lexical: encyclopedias

Phonetic: en s ai klow p iy d iy aa s

Acoustic-

Phonetic: voiced unvoiced voiced unvoiced voiced unvoiced voiced unvoiced

Acoustic:

Applying Unsupervised Learning

- In general, free to choose:
 - Representation (features)
 - Distance metric
 - Unsupervised learning (clustering) algorithm

 But: for speech these choices must be specialized for each level of linguistic structure

Where do you start?

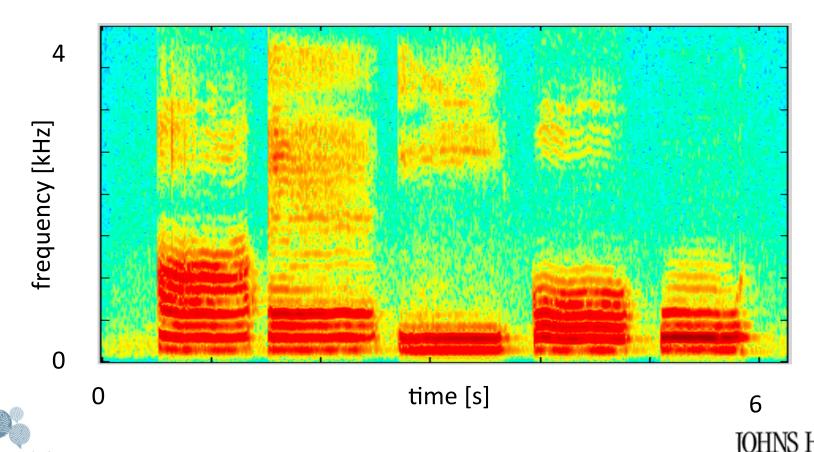
Input:

Scales of Analysis:

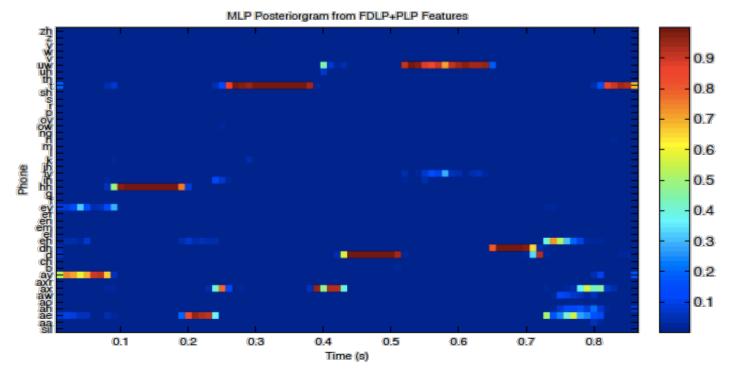
- 1. Featural: learn map from windowed signal to points in R^d
- Phonetic: learn to associate points in R^d with categorical subword unit inventory
- 3. Lexical: learn to associate trajectories in \mathbb{R}^d or strings of subword units with categorical words and phrases
- 4. Semantic: learn to relate words and phrases according to topical content

Outline

- Part 1: Lexical Discovery
- Part 2: Phonetic Discovery
- Part 3: Semantic Discovery
- Part 4: Applications



Preliminaries: Speech Features


 Acoustic features: PLP & MFCC = spectrograms + some post-processing

Preliminaries: Speech Features

 Posteriorgrams: posterior distribution over categorical units (e.g. phonemes) as a function of time

Part 1 LEXICAL DISCOVERY

Early Work from Speech Community

Multi-modal Computational Models:

Discovery constrained by action in call routing system

Allen Gorin, Stephen Levinson, et al. "An Experiment in Spoken Language Acquisition." *Trans. Speech and Audio Proc.* (1994)

Discovery constrained by vision

Deb Roy. "Learning Words from Sights and Sounds: A Computational Model." PhD Thesis (1997)

Provided Noisy Phonetic Tokenization:

Phone n-gram frequencies

Allen Gorin et al., "Learning Spoken Language without Transcriptions", in *Proc. ASRU* (1999)

Lexical Discovery From Subword Unit Tokenizations

 Parallel literature in the computational linguistics literature involving word segmentation from token sequences

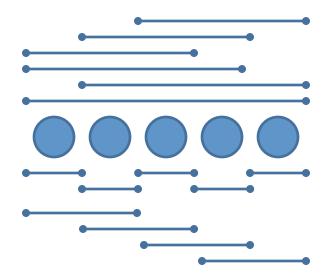
Make sure to attend:

- Mark Johnson's talk this afternoon at 2:30pm
- Sharon Goldwater's talk tomorrow at 9:50am

Words in Speech: No Longer Fixed Dimension

- Consider the space of spoken word utterances (not a vector space)
- Define a suitable distance metric characterizing acoustic phonetic similarity
- Perform clustering in this space

```
the
        the the
                 the
                     the
       the the
 the
                 then
           them
                 then
        them
them
     them
           them
                  then
   them
               them then
       them
                  then
            then
```



The Challenge

The word segmentation is not provided!

• In N frames of speech, have O(Nd) possible intervals that can contain a word or phrase of max length d

The Key: Repetition

 Intervals corresponding to words and phrases are repeated:

the king is dead long live the king

 Most of the intervals are not words and phrases and won't repeat (as much):

thek ingis de adlon gli vet heking

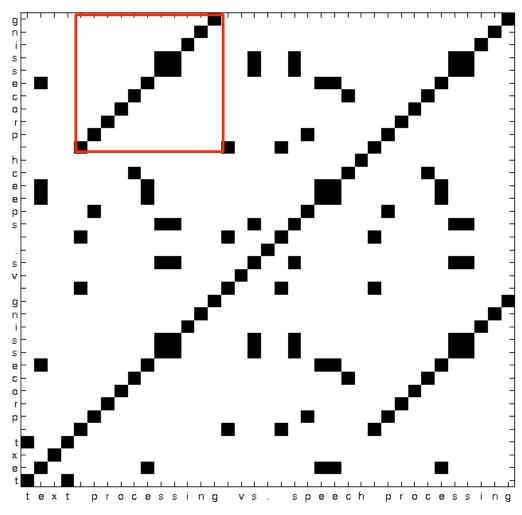
Problem: Nd possible intervals requires O(N²) interval comparisons

Prior Work in Unsupervised Word Discovery

Two Main Approaches:

- 1. Search for repeated trajectories in acoustic feature space
 - MFCC/PLP/FDLP: [Park & Glass, TASLP 2008], [Muscariello, Gravier, & Bimbot, Interspeech 2009], [Jansen & Van Durme, ASRU 2011]
 - GMM Posteriorgrams: [Zhang & Glass, 2010]
 - Mismatched Language Posteriorgrams: [Jansen, Church, Hermansky, 2010]
- 2. Decode with unsupervised acoustic model and look for repeated subword unit sequences (produced by unsupervised acoustic model)
 - [ten Bosch & Cranen, Interspeech 2007]
 - [Siu, Gish, Lowe & Chan, Interspeech 2011]

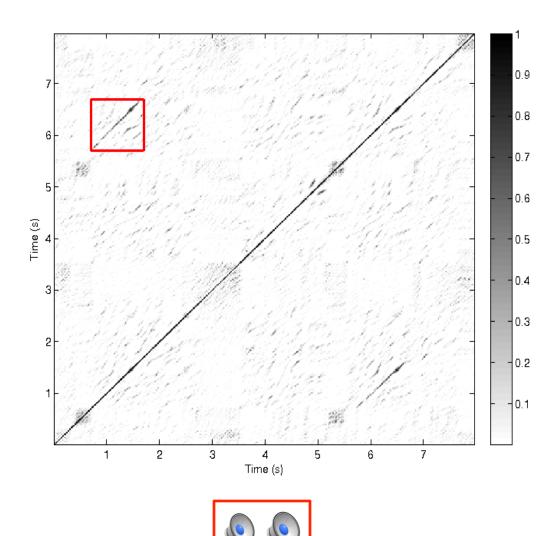
* ACORNS project



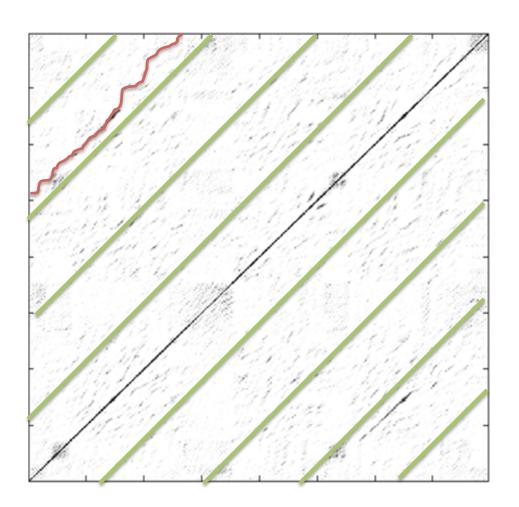


Text Dotplots

[Church & Helfman, 1993]

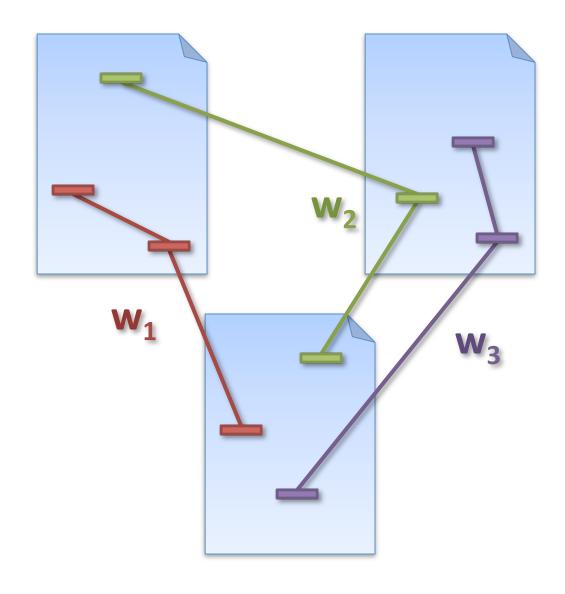


Acoustic Dotplots



Segmental Dynamic Time Warping

[Park & Glass, 2008]



Pseudo-word Clusters

JOHNS HOPKINS

Limitation #1: Speed

Two Computational Bottlenecks:

- 1. Compute the self similarity matrix (acoustic dotplot)
- 2. Search the similarity matrix for matching paths

Current Scalability State-of-the-art

[Jansen & Van Durme, ASRU 2011]

60 hours = 3.5 mi x 3.5 mi dotplot at monitor resolution (100 dpi)

Our Runtime: 6 hours on 100 cores

Exhaustive S-DTW: 3 months on 100 cores

Produces: Order 100k-1M units, not all distinct, not all words

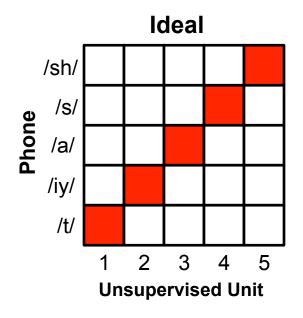
Limitation #2: Speaker Independence

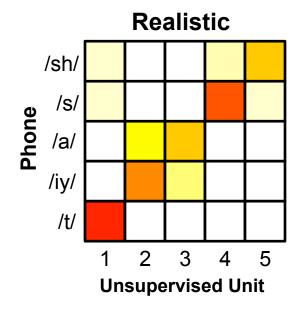
Task: Multi-speaker same word/different word discrimination

Features	Average Precision		
	Same Spkr	Overall	
PLP	52.3	19.0	Raw Acoustic
English AM	59.8	40.2	Supervised
			(200 hours)

Efforts

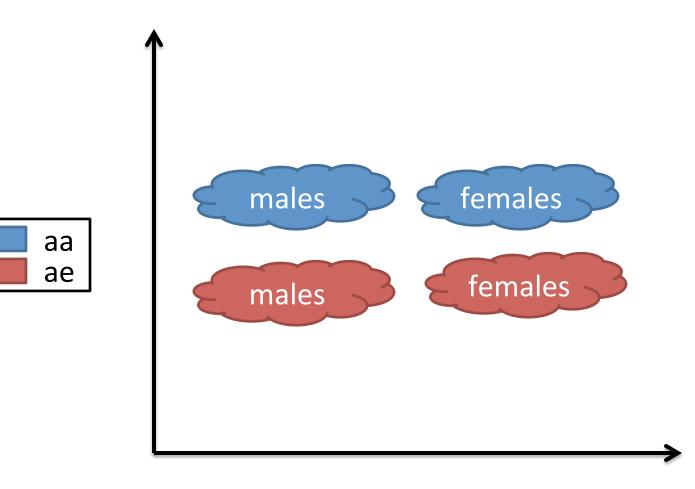
- Self-similarity matrix-based distance metrics [Muscariello, Gravier & Bimbot, ICASSP 2011]
- Post-processing of unsup. acoustic models [Anguera, ICASSP 2012]
- Manifold learning [Jansen, Thomas, & Hermansky, Interspeech 2012]




Part 2 PHONETIC DISCOVERY

Phonetic Structure

 Want units that map similar speech sounds produced by different speakers to the same categorical subword unit (or at least to same distribution over units)



Why This is **Very** Hard

Bottom-up Unsupervised Training (1/3)

Segment, Cluster, & Model

- 1. Segment speech into stationary segments
- 2. Cluster segments
- Train model for each cluster

Examples:

- Self-Organizing Units (SOUs)
 - [Garcia & Gish, 2006]
- Statistical Word Discovery (SWD)
 - [ten Bosch & Cranen, Interspeech 2007]
 - Recent segmentation work by Odette Scharenborg

Bottom-up Unsupervised Training (2/3)

Unsupervised Training of Standard ASR Components

- Universal Gaussian Mixture Models
 - Zhang & Glass, ASRU 2009
- Successive State Splitting (SSS): HMM-GMM training
 - Varadarajan, Khudanpur & Dupoux, ACL 2008

Bottom-up Unsupervised Training (3/3)

The Next Generation:

- Switching Linear Dynamical Systems
 - Bala Varadarajan, Sanjeev Khudanpur (talk tomorrow at 10:50a)
- Non-parametric Bayesian Modeling
 - Lee & Glass, ACL 2012 (Bayesian Segment/Cluster/Model)
 - Shinji Watanabe
- Deep Learning pre-training
 - Mike Seltzer
 - Yann LeCun, Fei Sha

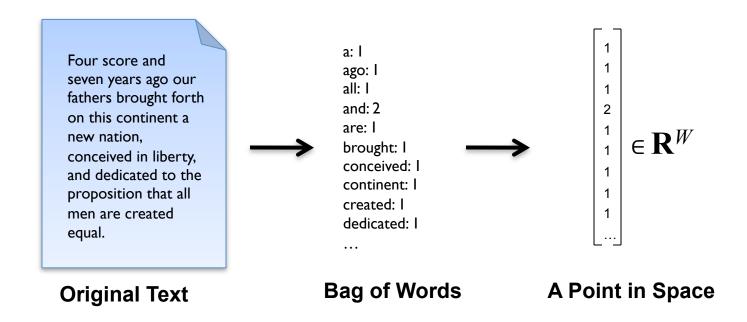
Main Hurdle: Speaker Independence

- Bottom-up approaches predisposed to learn speaker-specific allophones
- Task: Multi-speaker word matching

Features	Average Precision	
PLP	14.6	
SOU Tokenization	12.4	
GMM Posteriors	14.7	
English AM (200hr)	45.6	

Incorporating Top-Down Constraints

- Jansen & Church, Interspeech 2011 (me, tomorrow 11:40a):
 - 1. Discover words from acoustics using S-DTW style algorithm
 - 2. Train whole word model for each (context dependent phones)
 - 3. Cluster context dependent phones across models
 - 4. Compute posteriorgrams and iterate
- Non-parametric Bayesian version: Naomi Feldman's talk tomorrow morning at 9am
- Hazen, Siu, Gish, Lowe & Chan, ASRU 2011:
 - 1. Train acoustic model for SOUs and decode
 - 2. Discover pseudo-words in SOU transcript/lattice
 - 3. Augment LVSCR lexicon, train language model, iterate



Part 3 SEMANTIC DISCOVERY

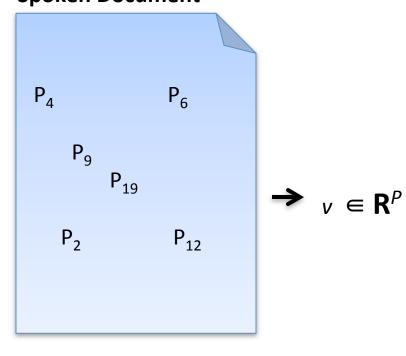
Words are Defined By the Company They Keep

- The Trick: Characterize document content w/o understanding
- The Computation: Convert text into a "Bag of Words"

Bags of SOU n-grams/Pseudo-terms

[Gish, Siu, Chan, Belfield – Interspeech 2009] [Dredze, Jansen, Coppersmith & Church -- EMNLP 2010]

Regular Text Document


Four score and seven years ago our fathers brought forth on this continent a new nation, conceived in liberty, and dedicated to the proposition that all men are created equal.

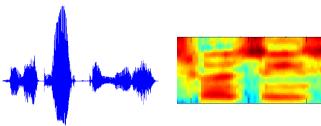
 $\rightarrow v \in \mathbb{R}^W$

Actual Lexical Labels

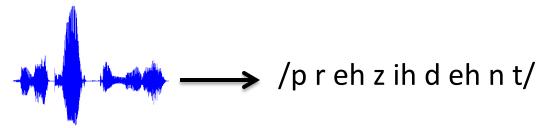
Pseudo-term Spoken Document

Label Placeholders

Part 4 APPLICATIONS


Query-by-Example (QbyE) Search

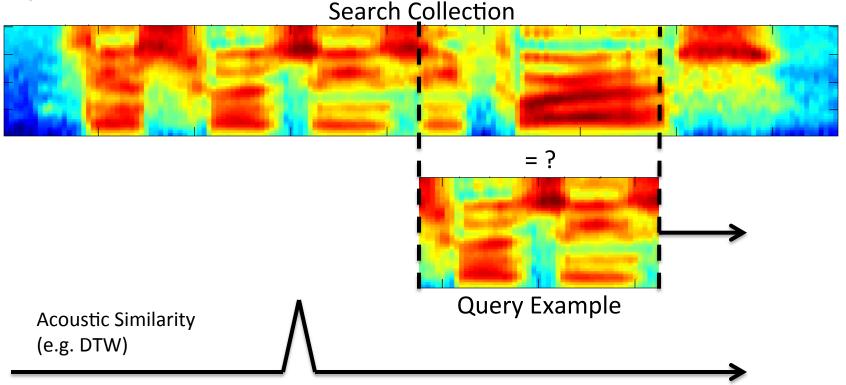
 Instead of a text query (word or phone string), you are given a short snippet of audio


Normally

New York City president /p r eh z ih d eh n t/

Query-by-example

• Past approaches: Phonetically decode query and search index e.g [Shen et al, Interspeech 2009],[Parada et al, ASRU 2009]


MediaEval 2011/2012: Florian Metze, Xavier Anguera, et al.

Zero Resource QbyE: DTW Search

- Optimized DTW: 200X real-time [Zhang & Glass, Interspeech 2011]
- Ported to a GPU: 1,000X real-time [Zhang & Glass, ICASSP 2012]
- Randomized Approx: Up to 500,000X real-time [Jansen & Van Durme, Interspeech 2012]

Topic Identification/Clustering

- Apply classification/clustering algorithms to bags of units vectors:
 - 1. Bags of pseudo-words

Dredze, Jansen, Coppersmith & Church, EMNLP 2010

2. Bags of SOU n-grams

Gish, Siu, Chan, Belfield, Interspeech 2009

Hazen, Siu, Gish, Lowe, & Chan, ASRU 2011

With a Little Annotation...

 Discovery methods learn units, but does not provide labels

 Ideal case: labeling a single example of each unit completes the process, enabling other applications

 But: as soon as you any labels, you are in semisupervised regime (and other methods may be more suitable)

Area Most in Need of Attention (my view as an engineer)

- Speaker invariance is most important issue at all levels of analysis for downstream technologies
- Unsupervised learning at each level of analysis cannot be optimally performed in isolation, e.g.:
 - Lexical structure constrains phonetic structure
 - Semantic structure constrains lexical structure

