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Machine recognition of speech  
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1.  How to find w ? 
2.  What is the model M(wi) ? 
3.  What is the data x ? 
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The “best” model found through Bayes rule 
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stochastic search 
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•  Info lost in x, is lost forever 
•  Info left must be dealt with later 



Data x ? 

•  Describes changes in acoustic pressure 
–  original purpose is reconstruction of 

speech 
–  rather high bit-rate 

•  additional processing is necessary to 
alleviate the irrelevant information  

Speech signal ? 

•  besides information lost and 
retained, additional requirements 
on x may exist (Normal 
distributions, de-correlated,..) 
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•  One of Fourier ideas 
–  Describe a periodic signal by an (infinite) sum of other well 

defined periodic signals (sines and cosines)  

Joseph Fourier 
(1768-1830) 
Student of Lagrange 
Adviser of e.g. Dirichlet or Navier 
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Orthogonality 
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Spacing of spectral components is 1/T 
 
Periodicity in one domain (here time) implies discrete 
representation in the dual domain (here frequency) 
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Sinusoidal signal (pure tone) 
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? 
Truncated sinusoidal signal Its spectrum 
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Non-stationary turns into periodic 
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First “real” recognizer ever build  
(Davis, Biddulph, Balashek 1952) 

Concept of the first “real” automatic 
speech recognizer(R.H. Galt 1951) 



/k/ /k/ /k/ /k/ 

Potter, Kopp, and Green, Visible Speech 1947 
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Fourier transform of the signal s(m) multiplied by the window w(n-m)  
Spectrum is the line spectrum of the signal convolved with the 
spectrum of the window 

Spectral resolution 
of the short-term 
Fourier analysis is 
the same at all 
frequencies.  
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LDA gives basis for projection of 
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Spectral Basis from LDA  



LDA vectors from Fourier Spectrum 
(OGI 3 hour stories hand-labeled database) 

63 % 16 % 

12 % 2 % 

•  Spectral resolution of LDA-derived 
spectral basis is higher at low 
frequencies 

Psychophysics:  
Critical bands of human hearing 
are broader at higher 
frequencies 
 

Physiology: 
Position of maximum of 
traveling wave on basilar 
membrane is proportional to 
logarithm of frequency 



Sensitivity to Spectral Change 
(Malayath 1999) 

Cosine basis                         LDA-derived basis              Critical-band filterbank 
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•  Spectral resolution 
decreases with 
frequency. 

•  Temporal resolution 
stays the same (given by 
the length of the analysis 
window in computing 
spectrum) 
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Short-term spectrum 
•  Frequency selectivity of hearing 

 
Project on spectral weights 

•  Non-equal spectral resolution of hearing 
 
 
Take logarithm 

•  make distribution more Normal  
 
Cosine transform 

•  de-correlate 
 

Mel cepstrum 

Segment of signal (~ 20 ms – windowed) 



Perceptual Linear Prediction 
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Optimal Amount of Spectral Smoothing 
(order of PLP autoregressive model) 

•  cross-speaker ASR (trained 
on one speaker and tested 
on another) 

•  all speaker-dependent 
information harmful 



adult male 

4 year old child 

short-term spectrum 5th order PLP spectrum 



•  affiliate vowel with sine wave tone 
(forced judgment)  

•  peak of histograms would 
correspond to resonance frequency 
of uncoupled front cavity in 
production of a given vowel 
–  Fant 1947 

•  Perceptual F2’ 
–  position of second peak in two-

peak simulation of vowels 



X-rays of Male and Child Vocal Tract  in 
Production of Vowels 

•  In production of vowels, 
the front part of the 
vocal tract appears to be 
less speaker dependent 
than its back part 
–  Hermansky and Broad 1990 



Female vocal tract from male 
Ursula Goldstein, MIT PhD. Thesis 1980 

– Start with male vocal tract x-ray 
–  implement male-female anatomical differences 
–  change “resting dimensions” to “female” 



Front Cavity - F2’ Hypothesis 

•  F2’ correlates with 
resonance frequency 
of  decoupled front 
cavity of vocal tract 
in production of 
vowels 
–  Fant 1960 

•  Front part of the vocal 
tract 
–  grows relatively little 

during lifetime 
–  is easy to manipulate 

without special training 
–  for many consonants, the 

front part dominance is 
well accepted 



Voiced and fricative speech 



PLP-estimated F2’ and Front 
Cavity Resonance Frequency 

•  Articulatory Synthesis  
–  formants known 
–  resonance frequency of decoupled front cavity 

can be computed 
–  synthetic speech is available for analysis by 

PLP (F2’ can be estimated) 
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“quarter wave resonator” 
F1 = 500 Hz, F2=1500 Hz, f3=2500 Hz,… 
if the length = 17 cm and c = m/s 

front cavity resonance modes 
back cavity resonance modes 



Front Cavity Resonance Experiment  Using 
Articulatory Synthesis 



Result of Experiment with Synthetic Vowels 

•  correlations on about 11 000 synthetic front vowels  
–  (back vowels for which PLP formed only one peak were excluded) 
–  tract length varied between 14 and 24 cm 

      tract length  front cavity  
        resonance 
 Second peak of PLP model  -0.18   0.9 

 
 formants (averaged)   -0.71   0.22   



X-ray Microbeam Experiment 
(Broad and Hermansky 1989) 

•  Shape approximated by 
cosine with period of 2L 
and amplitude Φ 

•  Resonance frequency given 
by L and Φ (Schroeder, 
Mermelstein) 



Results of X-Ray Microbeam Experiment 

•  two male speakers 
–  “where were you a year” three times each 

•  front cavity resonance from articulations 
•  PLP-estimated F2’ from acoustic data 

CORRELATION BETWEEN RESONANCE FREQUENCY 
OF FRONT CAVITY AND PLP-DERIVED F2’ 

speaker 1   correlation 0.95 
speaker 2   correlation 0.96   



Front Cavity - F2’ Hypothesis 

•  Our limited experimental data do not 
contradict the hypothesis 
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RASTA processing ���
	

 	

Hermansky and Morgan 1990	
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band-pass	


filters	



spectrum from RASTA-PLP	



linear	


distortion 	





/k/ /k/ /k/ /k/ 

need to know the following vowel before 
identifying the consonant ? 
 
recognize whole syllables ? 

Potter, Kopp, and Green, Visible Speech 1947 

recognize phonemes but use information from 
syllable-length segments of the signal ! 

•  V. A. Kozhevnikov and L. A. Chistovich, Speech: Articulation and 
perception. 1967 

 



time 

about 70 ms 

about 200 ms 

>      200 ms 

classifier 



periphery higher 
levels 

 

cognitive signal sounds cortical	
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Frequency Domain Perceptual Linear Predicton (FDPLP)   
  

     -with Marios Athineos, Dan Ellis, Sriram Ganapathy and Samuel Thomas 

Straightforward alleviation of effects of  linear distortions and , reverberations .	
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Decomposition into AM and FM components.	





FDLP decomposition of the signal 

signal	



AM component 
(temporal envelope)	



FM component 
(carrier)	





Varying communication channels���
(convolution with a short impulse response of a channel)	



Full model	



Model without its gain component	



Convolution turns into addition in log spectral domain	



Ignoring FDPLP model gain 
makes the representation 
invariant to linear distortions 
introduced by the 
communication channel.  



Reverberant speech���
(convolution with a long impulse response of the room)	



3 s window	



Model without its gain component	



30 s window	



Convolution turns into addition in log spectral domain,  as long as the 
most of the room impulse response fits into the analysis 
window!	


	


Ignoring FDLP model gain makes the representation invariant to revebs. 	





32 features at each of 14 frequencies	


	


448 dimensional vector of features every 10 ms	


	


multi-resolution band-pass filtering of modulation spectrum	



MRASTA	


Hermansky and Fousek 2005	
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Training of the artificial neural net 

data representing 
phoneme 4	

 artificial 

neural 
net 
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 trained on  
large amounts  
of labeled data 

Spectrogram	
  	
  	
  	
  	
  	
  	
  

preprocessing 

preprocessing 

preprocessing 

preprocessing 

/f/	
  

/ay/	
  

/v/	
  

time 

Posteriogram	



Optimal (lowest dimensionality) features are 
posterior probabilities of classes 	
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TANDEM Features for HMM/GMM System	



/f/	



/ay/	



/v/	



Hermansky, Ellis, and Sharma 2000 

good attributes for state-of-the-art ASR systems 
should be Normally distributed and uncorrelated 



Serial hierarchical estimation"
" " " "(Pinto et al, Interspeech 
2008)"
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Also,	
  Ketabdar	
  and	
  Bourlard,	
  
Interspeech	
  2008	
  	
  
Grezl	
  et	
  al,	
  Interspeech	
  2009
(universal	
  context	
  nets)	
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Parallel hierarchical estimation"
 "
Valente and Hermansky, ICASSP 08, Interspeech 2008 "

•  one-stage processing on coarse (slow modulations) representation  
•  two-stage processing of finer (faster modulations)  representation 
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Auditory cortical spectro-temporal receptive fields (STRFs) 	



indicate “optimal” stimulus that 
excites a given cortical neuron	



(41% of variance)	

compute principal 
components along 
temporal axis of 
about 300 STRFs 

Nima Mesgarani (in 
preparation) 

higher components	


similar but shifted in 
time	





Auditory cortical spectro-temporal receptive fields (STRFs) 	



indicate “optimal” stimulus that 
excites a given cortical neuron	



align maxima of STRFs in 
frequency and compute 
principal components 
along frequency axis of 
about 300 STRFs 

Nima Mesgarani (in preparation) 

Principal components of spectral axis 



Principal components of temporal axis Principal components of spectral axis 

•  principal components of about 300 STRFs 
– Nima Mesgarani (in preparation) 



4 - posteriors	


3  - for TANDEM	


2  - HATS	



	



HATS (bootleneck features)	


	

 	

 	

 	

Chen et al 2005, Grezl et al 2007  	
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hearing periphery does spectral analysis to allow for 
separation of corrupted signal elements at higher levels of 
auditory processing 

spectral components inside the (critical) band interact differently 
with components inside the band than they do with components, 
which are outside the band	





Demster-Shafer	


fusion	



Speech signal	



Hilbert transform of the 
signal 	



FDLP 
envelope 	



Static compression 
of the envelope 	



Dynamic compression 
of the envelope.	



	





Data-guided FIR RASTA filters 	


	

 	

van Vuuren and Hermansky 1997, Valente and Hermansky 2006  	





Data-guided (LDA-based) FIR RASTA filters 	


	

 	

van Vuuren and Hermansky 1997, Valente and Hermansky 2006  	



impulse responses	



first 4 temporal linear discriminats	



frequency responses	
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•  A-forward masking	



•  B-backward masking	



•  C-gap detection	



•  D-overestimation of short 
burst duration	



•  E-loudness decrement	



•  F-JND in frequency	



	


N. Cowan, On Short and Long Auditory Stores,  Psychological Bulletin 1984	





Riezs 1928	
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Kozhevnikov and Chistovich 	


(Speech: Articulation and 
Perception, 1965) 
	


	



•  reaction times for 
identifying consonants 
and vowels in CV 
syllables 	



•  consonant always 
identified before a 
vowel	



consonants	



vowels	



To recognize phoneme one needs to collect information distributed 
over the whole syllable 

 


