ACOUSTIC




Machine recognition of speech

w = argmaX(P(M(wi)/x))

The “best” model found through Bayes rule

w oc argmax(p(x | M (w)P(M(w,))

1. How to find w ?
2. What is the model M(w) ?
3. What is the data x ?



Machine Recognition of Speech

speech signal (message, speaker, environment,...)
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* Info left must be dealt with later




Data x ?

Speech signal ? » Describes changes in acoustic pressure
— original purpose is reconstruction of
speech

— rather high bit-rate

» additional processing is necessary to
alleviate the irrelevant information

» besides information lost and
retained, additional requirements
on x may exist (Normal
distributions, de-correlated,..)
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Spectrogram
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M/\/ — Z “,f Joseph Fourier
periodT _period T (1768-1830)

Student of Lagrange
Adviser of e.g. Dirichlet or Navier

One of Fourier ideas

— Describe a periodic signal by an (infinite) sum of other well
defined periodic signals (sines and cosines)



Orthogonality

T
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f(t) = DC+ E [a cos(—) +b, 1n(—) =DC +a, cos( ) +b, sm( ) +a cos( ) +b s1n( ) +a, cos( ) +b s1n(T) +
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Magnitude spectrum Phase spectrum

I

0 1/T 2/T 0 1/T 2/T
frequency frequency

Spacing of spectral components is 1/T

Periodicity in one domain (here time) implies discrete
representation in the dual domain (here frequency)



Sinusoidal signal (pure tone)
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Sinusoidal signal (pure tone)
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Non-stationary turns into periodic




Time domain
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Concept of the first “real” automatic
speech recognizer(R.H. Galt 1951)
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Potter, Kopp, and Green, Visible Speech 1947
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frequency [kHZz]

o0

S (e’) = Es(m)- w(n -m)e ™

m=—OO

Fourier transform of the signal s(m) multiplied by the window w(n-m)

Spectrum is the line spectrum of the signal convolved with the
spectrum of the window

Spectral resolution
of the short-term
Fourier analysis is
the same at all
frequencies.

1.2



Spectral Basis from LDA

LDA gives basis for projection of
spectral space

frequeney
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LDA vectors from Fourier Spectrum
(OGI 3 hour stories hand-labeled database)

Discriminant Vector 1 Discriminant Vector 2
0 3—————— . 03— » Spectral resolution of LDA-derived
63 7o 16 §/° | spectral basis is higher at low
T Lo frequencies
Psychophysics:

_ ) L Critical bands of human hearing
o 1 2 3 4 0 1 2 3 4 are broader at higher
Discriminant Vector 3 Discriminant Vector 4 frequencies

B ———— 08—~
12 % 2% |
Physiology:

Position of maximum of
traveling wave on basilar
membrane is proportional to

03— 1 sl logarithm of frequency
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Frequency (kHz) Frequency (kHz)




Sensitivity
o ©
o o
NN o)

O
@)
N

o

Sensitivity to Spectral Change

Cosine basis
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(Malayath 1999)
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Spectral weights

A # of triangles = # of mel-filters = length of mel-spectrum
maxFreq
/\ .
I frequency
minFreq
g matrix of weights
z :
short-term g g % v
signal = Fourer =& | 8 | X = o logarithm > o et e
transform 2 % ¢
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Logarithmic magnitude

500

1000

1500

2000 2500
Frequency [Hz]

30003 3500

4000

» Spectral resolution
decreases with

frequency.

» Temporal resolution
stays the same (given by
the length of the analysis
window in computing

spectrum)
cosine Mel
transform cepstrum
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Mel cepstrum

Segment of signal (~ 20 ms — windowed)

|

FET Short-term spectrum
* Frequency selectivity of hearing

¢ Spectrum
Mel scale
Filterbank

v

Logarithmation

Project on spectral weights
» Non-equal spectral resolution of hearing

Take logarithm
* make distribution more Normal

; Cepstrum
Discrete Cosine
Transtorm (DCT)

MFCC feature
vector

Cosine transform
e de-correlate




Perceptual Linear Prediction
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PERCEPTUAL WEIGHTING FUNCTIONS

FREQUENCY [ FFT SPECTRAL POINT )

spectrum

summation windows

spectrum with auditory-
like resolution



Loudness rating

intensity = signal 2 [w/m?]

300

200+

100

0

2

4 6
Sound pressure

loudness [Sones]

loudness = intensity 9-33

intensity
(power spectrum)

|_ |O.33

loudness



Not all spectral details are important

a) compute Fourier transform of the auditory spectrum and truncate it (cepstrum)

b) approximate the auditory spectrum by an autoregressive model

6th order AR model
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Perceptual Linear Prediction (PLP)
Autoregressive fit to the auditory-like
spectrum

power V) N
(loudness) S

frequency (tonality)



SPEECH

l

CRITICAL BAND
ANALYSIS

l

EQUAL LOUDNESS
PRE-EMPHASIS

;

l

INVERSE DISCRETE
FOURIER TRANSFORM

;

SOLUTION FOR
AUTOREGRESSIVE
COEFFICIENTS

INTENSITY-LOUDNESS
CONVERSION

1

!

ALL-POLE MODEL



Recognition Accuracy [%]

D
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Optimal Amount of Spectral Smoothing
(order of PLP autoregressive model)
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 cross-speaker ASR (trained

on one speaker and tested
on another)

all speaker-dependent
information harmful



short-term spectrum 5t order PLP spectrum

adult male 5000

4000

3000f

Frequency

2000f °

1000

4 year old child A

Frequency

01 02 03 04 05 06 10 20 30 40 50 60
Time



Sine wave test.
Number of responses.
Average from 3 tests.

Harmonic spectrum

sustained vowels.

A-curve correction

\ T
20 o, (U] to
“"A] M "
| YWY D™ PO | 40
07 - et T 2 g 4 s
0 500 1000 2000 3000 4000 cA
. a8
20 d«l [Oi] 0
10 l J 20
¢4 ! 40
0 500 1000 2000 3000 4000 ¢/s
48
20 d, [a) P
10 20
L..IIII!“JL “
o 500 1000 2000 000 4000 c/s
8
20 03 eﬂ
10 2
o+ = : 4 40
0 500 1000 2000 000 4000 ¢/s

500 1000

2000

affiliate vowel with sine wave tone
(forced judgment)

peak of histograms would
correspond to resonance frequency
of uncoupled front cavity in
production of a given vowel

— Fant 1947

Perceptual F2’

— position of second peak in two-
peak simulation of vowels



X-rays of Male and Child Vocal Tract in
Production of Vowels

 In production of vowels,

the front part of the
vocal tract appears to be L/\ Lm /
less speaker dependent L ﬁ :

than its back part
— Hermansky and Broad 1990




Female vocal tract from male
Ursula Goldstein, MIT PhD. Thesis 1980

— Start with male vocal tract x-ray
— 1mplement male-female anatomical differences

— change “resting dimensions” to “female”




Front Cavity -

« F2’ correlates with
resonance frequency
of decoupled front
cavity of vocal tract
in production of
vowels

— Fant 1960

F2" Hypothesis

* Front part of the vocal
tract
— grows relatively little
during lifetime
— 1s easy to manipulate
without special training

— for many consonants, the
front part dominance i1s
well accepted
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SPECTRAL PEAK
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Voiced and fricative speech
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PLP-estimated F2' and Front
Cavity Resonance Frequency

 Articulatory Synthesis
— formants known

— resonance frequency of decoupled front cavity
can be computed

— synthetic speech 1s available for analysis by
PLP (F2' can be estimated)



“quarter wave resonator”
F1 =500 Hz, F2=1500 Hz, f3=2500 Hz,...

constriction if the length = 17 cm and ¢ = m/s
. . front cavity resonance modes
hps glOttlS .
back cavity resonance modes
5000 T T T T
4500
4000 -
Lrrrrnnnnnnnnnnnns > 3500 L
length of the 3000 -

front cavity I;
2500

2000

F1 1500 |
log spectral F2 o3

amplitude F4 1000

500

0 1 1 1 1 1 1 | 1

frequenc
q y length of the

front cavity ¢



Tonality [Bark]

Front Cavity Resonance Experiment Using
Articulatory Synthesis

Front Cavity Constriction
Length | | Length |

V/

Constn‘cti n

Q\\\\\\‘\\\\ N
N\
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e
3

Area

2

W

-------------- resonance frequencies of synthetic vocal tracts (formants) Voo Traci Lergth

- ==  first resonance of the front cavities of synthetic vocal tracts

— frequencies of peaks of the 5" order PLP autoregressive models

Overall tract length 24 cm Overall tract length 18 cm Overall tract length 14 cm
L ——————
1.5 6.0 1.5 6.0 1.5 6.0

length of the front cavity of the synthetic vocal tracts [cm]



Result of Experiment with Synthetic Vowels

 correlations on about 11 000 synthetic front vowels

— (back vowels for which PLP formed only one peak were excluded)

— tract length varied between 14 and 24 cm

Second peak of PLP model

formants (averaged)

tract length

-0.18

-0.71

front cavity

resonance
0.9

0.22



X-ray Microbeam Experiment
(Broad and Hermansky 1989)

Hard Palate L =kl -aX
X = X tip cosf + yﬁp sind
D-lip =k +blInD,_

| x
L

S

1
xetip

e Shape approximated by (b) a2
cosine with period of 2L Y ¢ 24 @
and amplitude ®

« Resonance frequency given (0 PARAMETERS:
by L and @ (Schroeder, Kl K2, « 6, bl, b2

Mermelstein)



Results of X-Ray Microbeam Experiment

 two male speakers

— “where were you a year~ three times each

» front cavity resonance from articulations

PLP-estimated F2’ from acoustic data

CORRELATION BETWEEN RESONANCE FREQUENCY
OF FRONT CAVITY AND PLP-DERIVED F2’

speaker 1 correlation 0.95
speaker 2 correlation 0.96



Front Cavity - F2' Hypothesis

MESSAGE
006@ O@O

¢ 5

22,
Vocal Tract Effective Perceptual
Front Cavity <:| Second Formant F2’

Speech Production
Speech Perception

Whole |:> Formants
Vocal Tract

* Our limited experimental data do not
contradict the hypothesis



frequency

RASTA processing

Hermansky and Morgan 1990
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ki (key)

Potter, Kopp, and Green, Visible Speech 1947

need to know the following vowel before
identifying the consonant ?

recognize whole syllables ?

recognize phonemes but use information from
syllable-length segments of the signal !

* V. A. Kozhevnikov and L. A. Chistovich, Speech: Articulation and
perception. 1967
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hidden markov model
artificial ™% —
# # .
signal  wep spectrgl rof;sesin neural == post => | acoustic :)) - strmg.of d
analysis p g network :)) processing :)) model = search recognize
— — sounds
— T
posterior
probabilities priors
of speech
sounds
. . higher .\
signal =  periphery =  cortical => levels — cognitive — sounds



Frequency Domain Perceptual Linear Predicton (FDPLP)

-with Marios Athineos, Dan Ellis, Sriram Ganapathy and Samuel Thomas

[——> preprocessing —> autoregressive —> PLP spectrum

model
speech signal N ‘l'

time

cosine
transfrorm .
—> time

autoregressive —> FDLP —> 3 : -
| ’ model spectrum
—> time

N

frequency

into AM and FM components.

Straightforward alleviation of effects of and

frequency

frequency




=

FDLP decomposition of the signal

(a)

5000
= signal
_50000 100 260 300 ) 400 560 600 700
8 000 AM component
Y © é 2000 I I
£ (temporal envelope)
00 100 260 300 400 560 600 700
| - 5 ()
g FM component
= (carrier)
—20 100 260 300 400 560 600 700

Time (ms)



Varying communication channels
(convolution with a short impulse response of a channel)

Full model

Amplitude (dB)
N (=2
[ [
T

O
(=1
T

== (lean Speech

===Telephone Speech

0

(
Model without its gain component

]
=
T

. Amplitude (dB)

o
=1
13
LI

(=}

| |

=
T

I

== lean Speech

===Telephone Speech

| |

700 800

Convolution turns into addition in log spectral domain

Ignoring FDPLP model gain
makes the representation
invariant to linear distortions
introduced by the
communication channel.




Reverberant speech ]

(convolution with a long impulse response of the room)

Convolution turns into addition in log spectral domain, as long as the

most of the room impulse response fits into the analysis
window!

lgnoring FDLP model gain makes the representation invariant to revebs.

3 s window 30 s window

Log Envelope (dB)

Log Envelope (dB)

Band = 660

| | 1 1 B 1 ! | L
0.625 1.25 1.875 25 400 6.25 12.5 18.75 25
sec, sec,



MRASTA

Hermansky and Fousek 2005

1000 ms
<+“—>
f—> ™= - " " :: :: :: :: Or
~10f
m
© —20¢
" " Il | :; :: :: :l _30¢(
~40 -
10 10
- = 5 , - T . ' modulation frequency [Hz]

frequency

time

32 features at each of 14 frequencies
448 dimensional vector of features every 10 ms

multi-resolution band-pass filtering of modulation spectrum




frequency

Optimal (lowest dimensionality) features are

posterior probabilities of classes

Spectrogram

—

E

>

time

1:> preprocessing |:>

preprocessmg |:

preprocessing |:>

= |:> preprocessing |:>

Training of the artificial neural net

data representing
phoneme 4

artificial
> nheural

net

artificial neural
network
trained on
large amounts
of labeled data

NN

OO OO-~000

VYVYVYYY

_, time



TANDEM Features for HMM/GMM System <:

Hermansky, Ellis, and Sharma 2000

good attributes for state-of-the-art ASR systems
should be Normally distributed and uncorrelated

histogram of

one feature \//‘
/\»\N\»MW

1 10

10 4 2 0 2 4

0
_’
_>
e —>
pre- > principal =
softmax  — component — O HMM
—> . . -
outputs — projection

correlation
matrix
of features




— frequency

Serial hierarchical estimation

(Pinto et al, Interspeech

2008)

230 ms

40
time (x10 ms)

Also, Ketabdar and Bourlard,
Interspeech 2008

Grezl et al, Interspeech 2009
(universal context nets)

10 20 30 40
time (x10 ms)

50




Parallel hierarchical estimation -

Valente and Hermansky, ICASSP 08, Interspeech 2008

* one-stage processing on coarse (slow modulations) representation
two-stage processing of finer (faster modulations) representation

high frequency : ‘

Audltory Spectrogram B
modulations

J fast modulation
| — ANN_I — posteriors

ZANN, —» fina

Bark \
. —> 2 .
I lJ _ ‘ ’ ' posteriors
Time Iow frequency " slow modulation

modulations
features

Time



Auditory cortical spectro-temporal receptive fields (STRFs)
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compute principal
components along

temporal axis of
about 300 STRFs

Nima Mesgarani (in
preparation)

. . 1] . kL] .
indicate "optimal” stimulus that
excites a given cortical neuron

\
250
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1st principal component

(41% of variance) 1t component frequency response
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Auditory cortical spectro-temporal receptive fields (STRFs)

(o)

frequency [kHZz]

|
time (ms) 250

from Shihab Shamma

align maxima of STRFs in
frequency and compute
principal components
along frequency axis of
about 300 STRFs

Nima Mesgarani (in preparation)

0.6

041

0.2r

-0.2-

-0.4-

-0.6-

-0.8

ol—

. . 1] . kL] .
indicate "optimal” stimulus that
excites a given cortical neuron

Principal components of spectral axis

25 -2 -15 -1 -05 0 05 1 15 2 25

octave




 principal components of about 300 STRFs
— Nima Mesgarani (in preparation)

Principal components of temporal axis Principal components of spectral axis

0.6

0 20 40 60 80 100 120 140 160 180 200 __'2.5 -2 15 -1 -05 0 0.5 1 15 2 25
time(ms) octave




HATS (bootleneck features)

Critical Band
Hidden Units
"Matched Filters"

Output:

. Critical Band

¢ Class Posterior
Probabilities

Softmax Output
Unit (Zoomed)

Sigmoidal Hidden
Unit (Zoomed)

4 -
3 - for TANDEM

2

Chen et al 2005, Grezl et al 2007

posteriors

- HATS







critical

simultaneous W
masking

i B

h

spectral components inside the (critical) band interact differently
with components inside the band than they do with components,
which are outside the band

hearing periphery does spectral analysis to allow for
separation of corrupted signal elements at higher levels of
auditory processing




Speech —

FDLP

™ |compression

Static
compression

statically compressed sub—bands envelopes

Adaptive

adaptively compressed sub—bands envelopes

-

frequency

4

/ time

sub—bands envelopes

modulation
features

—_—

auditory
features

Posterior
probability
estimator

Posterior
probability |-
estimator

Time (ms)

Demster-Shafer
fusion

Speech signal

Hilbert transform of the
signal

FDLP
envelope

Static compression
of the envelope

Dynamic compression
of the envelope.



frequency

Data-guided FIR RASTA filters

van Vuuren and Hermansky 1997,Valente and Hermansky 2006

fil W 1al fil lol fil ol time



Data-guided (LDA-based) FIR RASTA filters

van Vuuren and Hermansky 1997,Valente and Hermansky 2006

first 4 temporal linear discriminats

impulse responses frequency responses
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forward
masking

critical
time

N\ interval
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A-forward masking

A \ B
B-backward masking \ *\o
C-gap detecti - \\_‘
gap detection
D-overestimation of sh ‘ 0 | E F
burst duration
E-loudness decrement " " ’

F-JND in frequency R
MSEC

N. Cowan, On Short and Long Auditory Stores, Psychological Bulletin 1984



AM threshold AI/I [%]

N W A O

Riezs 1928

10 100

modulation frequency [HZ]



Kozhevnikov and Chistovich

(Speech: Articulation and 300 3
Perception, 1965) :
g 200
N |
-l consonants
* reaction times for
identifying consonants T B R
and vowels in CV ¢’ Iz i m
3 H
syllables 7w

Puc. 6.6. 3ajepkkm GyKBeHHOI
3aIMCH COTJIACHEIX B 3aBHCHUMOCTH
oT MX KadvecTBa (I) H 3aJlepiKKIL
OyKBeHHO# 3aliCH TJIACHHX B 3a-

* consonant always

identified before a BICHMOCTH OT KadvecTBa TIpejIe-

CTBYIONIAX COTJIACHRIX (2 — TBEp-

vowel AR COIrJIACHHIN, 3 — MATKHH cCO-
IJacHBIN).

To recognize phoneme one needs to collect information distributed
over the whole syllable



