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information value of surprise

H = _Epi log p,

noise (unwanted information)

S+N

C =Wlog, I,




aCOUStiC |anguage
model & lexicon
(data) (priors)

N/

P(Wlx)=max{P(xIW)P(W)}/P(x)

x -signal W - model of an utterance

Works very well as long as the test data is
similar to the training

Problems with unexpected data

« words not in the lexicon (OOVs)
« acoustic data not seen in training (noise)



Unknown unknown

unexpected unpredictable

data response
system

(prior experience)

outlier — a data item that does not fit the rest of the data
unexpected — a data item that was not seen by the system

* How the unseen data affect the system



Noise « Unpredictable and previously
unseen distortions of a signal

White noiSey
factory noj « Ultimate destroyer of an

ne-gun noise,... information (Shannon)

S+N
N

C =Wlog,

Shannon 1949

The best way to combat noise
is through redundancy.

In low SNRs it may be
better to ignore parts of
the spectrum where noise
dominates



frequency

X —typically based on short-term
spectrum

w\me
frequency

log(P(w)

break the spectrum into parts ?
figure out how to de-emphasize
unreliable elements ?

Glottls

Frequency (kHz)

The best way to combat noise
is through redundancy.
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Change in shape of the vocal
tract affects all frequencies
of the spectrum.



Fletcher and colleagues (1920-1950)

nonsense CV,VC, and CVC in carrier sentences, well-trained listeners
low-pass and high-pass filtering

varying SNR

high SNR low SNR

100% minimal error = 1.5%

high-passed “—  equal error
probability minimal error >> 1.5 %
of correct : )
" low-
recognition ow-passed “ equal error
of phoneme
0%

> frequency — * frequency



Make the equal error at 0.5

0.985 1
S
probability log(1-s) 0.5
of correct
recognition Iog (0.05)
0 0
transformation Since (1-s) = p(error), the logarithms of
lo 1—s probabilities of errors are additive, i.e.
A(S) — glO( )
1o g, (1 _ Smax) p(error) = p(error,, ... )P(€rror,, ,...)

makes the contributions from high and low band additive for all conditions

True forup to 20 p(e) = Hp(g )
bands



How do Human Listeners Recognize Words in Context?
J.B. Allen: Articulation and Intelligibility, (2005)

1.0
4 random words‘

in an utterance

...the context is qualitatively
equivalent to adding statistically
independent channels of sensory
data to those already available from

the speech units themselves.

10 |

word recognition error [%]

meaningful
4 word
sentences

(Boothroyd and Nittrouer 1988) 0.1

-9 0 9

signal to noise ratio [dB]

p(error p(error

) = )
context no context

k>1(k=2.7)

p(error context) = p(error no context) p( error context channel)(k-l)

Final error is dominated by the error in the more efficient channel



Multistream Information Processing

priors >
external worl>

different projections of the signal
unexpected input corrupts only some streams

—> fusion —> decision

2222222

fusion
compare
IS the signal corrupted (unexpected data) ?
combine
alleviate corrupted streams (product of error probabilities)



stream formation in auditory perception ?



Examples of Different STRF Shapes
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from S. Shamma’ s lab, U. of Maryland

Typically frequency localized and quite long (250 ms?)



Architecture of human auditory perception

cortex
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Engineering

Multi-stream recognition of phonemes



Bottom-up Estimates of Posterior Probabilities of Phonemes

feed-forward neural net

MRASTA
pre-processing

FREQUENCY
phoneme class

i

/n/

PHONEME
INDEX




FREQUENCY

Multi-resolution frequency-localized filtering

MRASTA

Hermansky and Fousek 2005

~1s

: frequency
=) localized
=) band-pass
: filtering
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32 features from each of 14 critical bands
448 dimensional vector of features every 10 ms
multi-resolution band-pass filtering of modulation spectrum

remove mean value of log spectral trajectoriy at each critical band



frequency

—>

Well-trained artificial neural net

artificial neural

, network trained
pre-processing on large amount

of labeled data

il

Reasonable emulation of categorical perception in
ideal conditions.

v/

lay/



estimate

phoneme
posteriors
- - -

form ==
signal -— ->
streams —
%
%

How to fuse ?

How good is the result of the fusion ?
Does the result make sense ?



Result that makes sense

‘ We know what information we should get

@ We know some properties of the code

Statistics of the classifier output derived on
its training data and during the operation ?



Classifier with performance monitoring

training data trained
class

probability
estimator

testing data class

probability
estimator

compute
statistics

compute
statistics

compare
statistics

output

Engineering assumptions

. A classifier will never work better than
it does on its training data

. System performance can be
summarized by statistics of the
classifier output

. Corruptions of the data show in the

statistics of the classifier output

. Modify the classifier (an/or data)
to output training-like statistics



Modifying multi-stream classifier

Evaluate performance of individual
streams and alleviate unreliable
streams

d-forward

training an
test statistics in
streams

usion =»  decision

Evaluate performance of whole
classifier and modify the fusion to

improve the system

Feed-back

processing I- ===

streams

| worc>§ fusion =

compare

training and
test statistics " decision

after fusion



Statistics of classifier output: autocorrelation of posteriogram

Mesgarani et al, JASA Acoustic Letters 2011
Varianni and Hermansky, Interspeech 2012

POSTERIOGRAM - a sequence of vectors of posteriors
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P(i) - posterior probability
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N - length of the data
to be described

SEsss=s

EESEEE

sl
sl fyl it/ feh fae!fahf ow! I faol fey! Iyl oyl lawlow! ¥ 11 iyl Ml fexl Imi I ing [k i [ ol 1 e fgf f/ ¥ K [zl )sh/ 1§/ g Ilgarty
Rowl Rl faol eyl ay loyl faw!lowl V- 1t iyl Ml Jexl I/ I’ Ing/Iehi i [V 1oV 1/ fe/ [/ fpl /¥ K/ [zl IS NI AV Il Ivigartd



Estimate of “quality” of classification
Mesgarani et al, JASA Acoustic Letters 2011
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 training data
autocorrelation matrix
from all training data
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* in the test about 4 s of 35
data yield useful
autocorrelation matrix
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* matrix comparison
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Adaptation

Mesgarani et al, INTERSPEECH 2011

adapt the weights
(particle filtering)

processing - -
streams l I
\ 4
evaluation of
world fusion = _qua“ty_Of =» decision
information

after fusion



Phoneme recognition accuracy (%)

Result

Mesgarani et al, INTERSPEECH 2011
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Clean Ripple1 Ripple2 Babble Jet F16
Condition (SNR +20)

Before adaptation
After adaptation

Tank White




Boothroyd” s model of human speech recognition

orediction  top-down
_,  Using past
experience _l
Sensors
’ and | fuse —  result
peripheral
processing | bottom-up J
recognition
bottom-up

clean signal — streams with weak priors dominate
corrupted signal — streams with strong priors dominate

Ketabdar, PhD Thesis 1990



Dealing with unexpected words ?

praseneneanansses update---------------,
v
prediction top-down
using past
_>experience
sSensors :

E and ] compare —» deC'd.e for» describe
peripheral action
processing bottom-up J

— evaluation
’ bottom-up



Indicate Out-of-Vocabulary (OOV) Word

* telephone quality continuous digits
« one digit (here “three” ) left out from the lexicon (OOV word)

from ANN  “five” “three” “zero’
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Kullback-Leibler
divergence

time Ketabdar et al 2007



Conclusion

priors >

—> comparison/fusion = —> decision

2222222

external worl>

Multistream recognition:

a way towards human-like robustness to unexpected
acoustic inputs

unseen acoustic distortions (noises)

unexpected words



