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RealiFes	
  of	
  our	
  world	
  

Now what is the message there? The message 
is that there are no "knowns." There are things 
we know that we know. There are known 
unknowns. That is to say there are things that we 
now know we don't know. But there are also 
unknown unknowns. There are things we do not 
know we don't know. So when we do the best we 
can and we pull all this information together, and 
we then say well that's basically what we see as 
the situation, that is really only the known 
knowns and the known unknowns. And each 
year, we discover a few more of those unknown 
unknowns. It sounds like a riddle. It isn't a 
riddle. It is a very serious, important matter. 
 

Former Secretary of Defense Ronald Rumsfeld 
 



H = − pi
i
∑ log pi

information value of surprise 

C =W log2
S + N
N

noise (unwanted information)   



acoustic 
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(data) 

language 
& lexicon 
(priors) 

P(W | x) =max
w

{P(x |W )P(W )} / P(x)

x  - signal     W  - model of an utterance

Problems with unexpected data 
 

•  words not in the lexicon (OOVs) 
•  acoustic data not seen in training (noise) 

Works very well as long as the test data is 
similar to the training 



Unknown	
  unknown	
  

 
•  How the unseen data affect the system  

unexpected 
data  

system 
(prior experience) 

unpredictable 
response 

outlier – a data item that does not fit the rest of the data 
unexpected – a data item that was not seen by the system 



Noise 

White noise, car noise, babble noise,  
factory noise, destroyer noise, 
machine-gun noise,… ? 

•  Unpredictable and previously 
unseen distortions of a signal 

 
•  Ultimate destroyer of an 

information (Shannon) 

Shannon 1949 

In low SNRs it may be 
better to ignore parts of 
the spectrum where noise 
dominates  

C =W log2
S + N
N

The best way to combat noise 
is through redundancy. 
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x –	
  typically based on short-term 
spectrum 

•  break the spectrum into parts ? 
•  figure out how to de-emphasize 

unreliable elements ? 

The best way to combat noise 
is through redundancy. 

Change in shape of the vocal 
tract affects all frequencies 
of the spectrum. 



Fletcher and colleagues (1920-1950)	


nonsense CV,VC, and CVC in carrier sentences, well-trained listeners	


low-pass and high-pass filtering	



varying SNR 	
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A(s) = log10 (1− s)
log10 (1− smax )

transformaFon	
  

makes	
  the	
  contribuFons	
  from	
  high	
  and	
  low	
  band	
  addiFve	
  for	
  all	
  condiFons	
  
€ 

p(error) = p(errorhighband )p(errorlowband )

Since	
  (1-­‐s)	
  =	
  p(error),	
  the	
  logarithms	
  of	
  
probabiliFes	
  of	
  errors	
  are	
  addiFve,	
  i.e.	
  

True	
  for	
  up	
  to	
  20	
  
bands	
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How	
  do	
  Human	
  Listeners	
  Recognize	
  Words	
  in	
  Context?	
  

	
  
p(error	
  context)	
  	
  =	
  p(error	
  no	
  context)	
  p(	
  error	
  context	
  channel)(k-­‐1)	
  	
  
	
  
Final	
  error	
  is	
  dominated	
  by	
  the	
  error	
  in	
  the	
  more	
  efficient	
  channel	
  

	
  
	
  

p(error	
  context)	
  =	
  p(error	
  no	
  context)k	
  
	
  
k	
  >	
  1	
  (k	
  ≅	
  2.7)	
  
	
  

J.B. Allen: Articulation and Intelligibility, (2005)  

…the context is qualitatively 
equivalent to adding statistically 
independent channels of sensory 
data to those already available from 
the speech units themselves. 

 
(Boothroyd and Nittrouer 1988) 



MulFstream	
  InformaFon	
  Processing	
  	
  

different projections of the signal 
unexpected input corrupts only some streams 
 

fusion 
compare  

is the signal corrupted (unexpected data) ? 
 combine  

alleviate corrupted streams (product of error probabilities) 

fusion	
  

external	
  world	
  

decision	
  

priors	
  



stream	
  formaFon	
  in	
  auditory	
  percepFon	
  ?	
  



from S. Shamma’s lab, U. of Maryland 
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Examples of Different STRF Shapes

time [ms] 

Typically frequency localized and quite long (250 ms?) 



Architecture of human auditory perception	
  

bo^om-­‐up	
   top-­‐down	
  



Engineering 

Multi-stream recognition of phonemes 
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POSTERIOGRAM – a sequence of vectors of posteriors 
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Bottom-up Estimates of Posterior Probabilities of Phonemes 
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feed-forward neural net 
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MRASTA 
pre-processing 

~ 1 s 



MRASTA	


Hermansky and Fousek 2005	
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frequency 
localized 
band-pass 
filtering 

~ 1 s 

32 features from each of 14  critical bands 
 
448 dimensional vector of features every 10 ms 
 
multi-resolution band-pass filtering of modulation spectrum 
 
remove mean value of log spectral trajectoriy at each  critical band 

time	
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1000 ms	
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impulse responses of 2-D time-frequency filters at each critical band fc 

Multi-resolution frequency-localized filtering 



Well-­‐trained	
  arFficial	
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  net	
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/f/ 

/ay/ 

/v/ 

time 

artificial neural 
network trained  
on large amounts 
of labeled data 

pre-processing 

Reasonable emulation of categorical perception in 
ideal conditions. 
 



signal form 
streams 

estimate 
phoneme 
posteriors 

fuse 

How to fuse ? 

How good is the result of the fusion ? 
Does the result make sense ? 



Result	
  that	
  makes	
  sense	
  

We	
  know	
  what	
  informaFon	
  we	
  should	
  get	
  

We	
  know	
  some	
  properFes	
  of	
  the	
  code	
  

Statistics of the classifier output derived on 
its training data and during the operation ? 



Classifier	
  with	
  performance	
  monitoring	
  	
  

Engineering assumptions 
 
•  A classifier will never work better than 

it does on its training data 
•  System performance can be 

summarized by statistics of the 
classifier output 

•  Corruptions of the data show in the 
statistics of the classifier output  

•  Modify the classifier (an/or  data) 
to output training-like statistics   

 

testing data class 
probability 
estimator 

training data trained 
class 

probability 
estimator 

compare 
statistics 

output 

compute 
statistics 

compute 
statistics 



processing	
  
	
  streams	
  

fusion	
  world	
   decision	
  

compare	
  
training	
  and	
  

test	
  staFsFcs	
  in	
  
streams	
  

Feed-­‐forward	
  

Modifying multi-stream classifier  

Evaluate performance of individual 
streams and alleviate unreliable 
streams 

processing	
  
	
  streams	
  

fusion	
  world	
   decision	
  

compare	
  
training	
  and	
  
test	
  staFsFcs	
  
a`er	
  fusion	
  

Feed-­‐back	
  

Evaluate performance of whole 
classifier and modify the fusion to 
improve the system 



StaFsFcs	
  of	
  classifier	
  output:	
  autocorrelaFon	
  of	
  posteriogram	
  

AC = 1
N

P(i)
i=1

N

∑ P(i)T ,   

where  
P(i)− posterior probability 
vector at time i,
N  - length of the data 
to be described

Mesgarani	
  et	
  al,	
  	
  JASA	
  AcousFc	
  Le^ers	
  2011	
  
Varianni	
  and	
  Hermansky,	
  Interspeech	
  2012	
  

clean data noisy data 

/w/ 

/a/ 

/n/ 

/a/ 

/n/ 
/th/ 

/r/ 

/iy 

/f/ 

/ay/ 

/v/ 

/ey/ 

/t/ 

/w/ 
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EsFmate	
  of	
  “quality”	
  of	
  classificaFon	
  
Mesgarani	
  et	
  al,	
  	
  JASA	
  AcousFc	
  Le^ers	
  2011	
  

•  training data 
autocorrelation matrix 
from all training data 

•  in the test about 4 s of 
data yield useful 
autocorrelation matrix 

•  matrix comparison 



AdaptaFon	
  

	
  adapt	
  the	
  weights	
  
(parFcle	
  filtering)	
  

Mesgarani	
  et	
  al,	
  	
  INTERSPEECH	
  2011	
  



Result 
Mesgarani	
  et	
  al,	
  	
  INTERSPEECH	
  2011	
  



result 
sensors 

and 
peripheral 
processing 

prediction  
using past  
experience 

bottom-up 
recognition 

fuse 

bottom-up 

top-down 

Boothroyd’s model of human speech recognition 

clean signal – streams with weak priors dominate 
corrupted signal – streams with strong priors  dominate 

Ketabdar, PhD Thesis 1990 
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and 
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bottom-up 
evaluation 

compare 

bottom-up 

top-down 

Dealing with unexpected words ? 
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from HMM 
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Indicate Out-of-Vocabulary (OOV) Word  

•  telephone	
  quality	
  conFnuous	
  digits	
  	
  
•  one	
  digit	
  (here	
  “three”	
  )	
  le`	
  out	
  from	
  the	
  lexicon	
  (OOV	
  word)	
  

Ketabdar et al 2007  



Conclusion 

Multistream recognition: 
 
a way towards human-like robustness to unexpected 
acoustic inputs 

unseen acoustic distortions (noises) 
unexpected words 

comparison/fusion	
   decision	
  

external	
  world	
  

priors	
  


