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Constraints on learning 

 Many generalizations are possible.  What constrains the 

learner? 

 Innate constraints (domain-general or domain-specific). 

 Previously (or simultaneously) acquired knowledge: 

bootstrapping. 

 

 

 How do these interact with each other and the input? 

 How can we implement them in machines to improve 

coverage and accessibility of language technology? 

 



Modeling approach 

 Bayesian framework: a structured probabilistic approach.  

 Probabilistic: learner can exploit partial or uncertain information 

to help solve the bootstrapping problem. 

 Structured: models explicitly define representations, biases 

(constraints), and use of information. 



Bayesian modeling 

 An ideal observer approach. 

 What is the optimal solution to the induction problem, given 

particular assumptions about representation and available 

information? 

 In what ways might humans differ from this ideal learner, and 

why? 

 

 



Outline 

1.  Introduction 

2.  Basic model: word segmentation from phonemic input 

3.  Lexical-phonetic learning from phonetic input 

4.  Word extraction from acoustic input 



Word segmentation (idealized) 

at doggie 

the friendly 

she look 

so looks 

see … 

lookatthedoggie 

seethedoggie 

shelookssofriendly 

… 

look at the doggie 

see the doggie 

she looks so friendly 

… 

Input:  Output: 

segmented 

word tokens 

continuous  

speech  

text 
lexicon 



Research questions 

 Machine learning: 

 Can we develop a generative probabilistic model and effective 

inference method to discover the words? 

 I.e., can we learn an n-gram language model without knowing 

the words in advance? 

 Cognitive science: 

 What kinds of assumptions must a learner make in order to 

discover words correctly? 

 Is a simple unigram model sufficient? 



Bayesian learning 

 Formulate the problem as a Bayesian model: 

 

 

 

 

 Focus is on the goal of the computation rather than on 

using a cognitively plausible learning algorithm. 



lookatthedoggie 

seethedoggie 

shelookssofriendly 

… 

look at the doggie 

see the doggie 

she looks so friendly 

… 

Data:  

Hypotheses: 

lookatthedoggie 

seethedoggie 

shelookssofriendly 

… 

look at thed oggi e 

se e thed oggi e 

sh e look ssofri e ndly 

… 

l o o k a t t h e d o g g i e 

s e e t h e d o g g i e 

s h e l o o k s s o f r i e n d l y 

… 

i like pizza 

what about you 

… 

P(d|h)=1 

P(d|h)=0 
abc def gh 

ijklmn opqrst uvwx 

… 



Bayesian segmentation 

 For segmentation, 

 Data: unsegmented corpus (transcriptions). 

 Hypotheses: sequences of word tokens. 

 Under phonemic assumption, the prior does all the work. 

 

 

 

 

 

 

 

 

= 1 if concatenating words forms corpus, 

= 0 otherwise. 

Encodes assumptions of 

learner. 



Unigram model 

 Assume words are drawn from Dirichlet Process.  Then 

 

 

 

  with             for characters x1…xm. 

 

 

 “Rich-get-richer” process creates Zipfian distribution. 

 Base distribution P0 favors shorter lexical items. 

 Number of lexical items grows with data size. 

 Probabilities don’t depend on immediate context: unigram model. 
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Bigram model 

 Assume words are drawn from hierarchical Dirichlet 

process. 

 

 

 

 

 

 

 Similar assumptions to unigram model, but now words also 

depend on context. 
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Experiments 

 Inference: simple Gibbs sampler. 

 Other methods possible (Mochihashi et al., 2009; Liang and Jordan 2010). 

 Corpus:  

 9790 utterances of phonemically transcribed child-directed 

speech (19-23 months). 

 Average 3.4 words/utterance, 2.9 phonemes/word. 

youwanttoseethebook 

looktheresaboywithhishat 

andadoggie 

youwanttolookatthis 

... 

yuwanttusiD6bUk 

lUkD*z6b7wIThIzh&t 

&nd6dOgi 

yuwanttulUk&tDIs 

... 

14 



Example results 

youwant to see thebook 

look theres aboy with his hat 

and adoggie 

you wantto lookatthis 

lookatthis 

havea drink 

okay now 

whatsthis 

whatsthat 

whatisit 

look canyou take itout 

... 

you want to see the book 

look theres a boy with his hat 

and a doggie 

you want to lookat this 

lookat this 

have a drink 

okay now 

whats this 

whats that 

whatis it 

look canyou take it out 

... 

Unigram model Bigram model 



Conclusions 

 Good segmentations of (phonemic) data can be found 

using fairly weak prior assumptions. 

 Utterances are composed of discrete units (words). 

 Units tend to be short. 

 Some units occur frequently, most do not.  

 Units tend to come in predictable patterns; i.e. context is key. 

 



Further tests 

 Frank, Goldwater, Griffiths, and Tenenbaum (2010): 

 Model captures human performance in an artificial segmentation 

task better than all other models tested.  

 Pearl, Goldwater, and Steyvers (2010):  

 Incremental (but non-optimal) algorithms can sometimes yield 

more accurate results than batch versions. 

 Can “burstiness” be used to our advantage (as humans, or to 

design more efficient computer algorithms)? 

 

 



Outline 

1.  Introduction 

2.  Basic model: word segmentation from phonemic input 

3.  Lexical-phonetic learning from phonetic input 

4.  Word extraction from acoustic input 

 



Phones and words 

 Most models of word segmentation use phonemic input. 

 

 

 

 



Phones and words 

 Abstracts away from phonological and phonetic variation. 

 

 

 

 

 

 But: phonological and word learning occur simultaneously 

and seem to interact. 

 How can we model this kind of joint learning?  Will model 

predictions change? 

 

 

 

 

 



Joint learning 

 

 

 

 

 

 Here: From surface forms, learn a lexicon, a language 

model, and a model of phonetic variation. 

 Method: (unsupervised) noisy channel model. 

 Language model: similar to GGJ09. 

 Phonetic model: MaxEnt model using articulatory features. 



Phonetic model 

 Implemented as weighted finite-state transducer.  Ex: 



Our transducer 

 

 

 

 

 

 

 

 

 

 Prob. of arc depends on features of sounds (same/ 

different voicing/place/manner, etc.).  Weights are learned. 



Results so far (Elsner, Goldwater, and Eisenstein, 2012) 

 Inference: approximate method greedily merges surface 

forms, retrains transducer after each merging pass. 

 Data: simulate phonetic variation in BR corpus by 

sampling phonetic forms from Buckeye corpus. 



Results so far (Elsner, Goldwater, and Eisenstein, 2012) 

 Inference: approximate method greedily merges surface 

forms, retrains transducer after each merging pass. 

 Data: simulate phonetic variation in BR corpus by 

sampling phonetic forms from Buckeye corpus. 

 Results: 

Token F Lexicon F 

Baseline .65 .67 

Unigram LM .75 .76 

Bigram LM .79 .87 



What about segmentation? 

 System also improves lexicon when using inferred word 

boundaries (from GGJ09). 

 But: 

 Overall performance much worse (.44 → .49 vs. .65 → .79). 

 Iterating segmentation and lexicon learning doesn’t help. 

 In progress: new system with beam sampler instead of 

greedy search, simultaneously learns segmentation. 



Conclusions 

 First joint model of phonetic and word learning using 

word-level context info on phonetic corpus data. 

 Additional evidence that word and phone learning can 

inform each other. 

 As in phonemic model, word-level context is important—

helps disambiguate similar-sounding words (e.g., 

what/wet). 

 Dealing with segmentation ambiguity also is hard. 



Outline 

1.  Introduction 

2.  Basic model: word segmentation from phonemic input 

3.  Lexical-phonetic learning from phonetic input 

4.  Word extraction from acoustic input 

 



Learning words from acoustics 

 Goal: investigate incremental (online) learning in a model 

of whole-word extraction from speech. 

 Method: modify Park and Glass (2008) algorithm to be 

(more) incremental. 



Algorithm 

1.  Compare pairs of utterances to extract pairs of 

acoustically similar speech fragments: 

 

 

 

 

 

 

 Uses a slightly modified version of P&G’s Segmental DTW. 

 Compares only with fixed-size window of utterances. 

 

Look at the doggie 

 

Where’s the doggie 

 

Yeah, look at that 



Algorithm: 

2.  Cluster together extracted fragments pairs into larger 

groups: lexical items. 

 
1 

4 
3 

7 
6 

2 

5 

8 

2  

5 

1  3 

4 

6  7 

8 



Experiments: 

 Test on recordings from parents of 9-15 month-olds. 

 Measure entropy reduction and examine words found. 

 Results: 

 Original corpus: Little difference between using limited window 

(10-20 utterances) or full batch mode. 

 Permuted corpus: Limited window results are much worse. 

 ‘Mommy’ and child’s name are found in most sessions.  



Conclusions 

 Frequent nearby repetitions are helpful to the 

incremental learner: limited memory is almost as good 

as batch learning. 

 Simple pattern-matching can extract word-like units, but 

boundaries not always accurate. 

 Open issues:  

 Online clustering method. 

 Relationship between these units and sub-word units. 

 Word extraction vs. word segmentation. 



Issues/ideas for future work 

 Extending Bayesian models to work from acoustics. 

 Lee & Glass (2012) a great start on phonetic clustering; can we 

build in higher-level dependencies and learn a lexicon? 

 Consider intermediate levels of representation (syllables). 

 Developing better inference methods. 

 Efficient for machine learning; cognitively plausible for human 

models. 

 Can we exploit structure that isn’t captured by our generative 

models (e.g., burstiness) to design better inference methods? 

(Or should we design more accurate models?) 

 Using non-acoustic information (e.g., articulatory 

gestures, visual context, gesture). 



 



 



Bayesian model 

Assumes word wi is generated as follows: 

1.  Is wi a novel lexical item? 
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Bayesian model 

Assume word wi is generated as follows: 

2.    If novel, generate phonemic form x1…xm : 

 

 

 

 

 If not, choose lexical identity of wi from previously occurring 

words: 
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Learning algorithm 

 Model defines a distribution over hypotheses.  We use 

Gibbs sampling to find a good hypothesis. 

 Iterative procedure produces samples from the posterior 

distribution of hypotheses. 

 

 

 

 

 

 A batch algorithm, assumes perfect memory for data. 

P(h|d) 

h 



Inference 

 We use a Gibbs sampler that compares pairs of 

hypotheses differing by a single word boundary: 

 

 

 

 

 Calculate the probabilities of the words that differ, given 

current analysis of all other words. 

 Sample a hypothesis according to the ratio of 

probabilities. 

 

whats.that 

the.doggie 

yeah 

wheres.the.doggie 

… 

whats.that 

the.dog.gie 

yeah 

wheres.the.doggie 

… 



Incremental Sampling 

 

 

 

 

 

 Online algorithm 

 Limits memory for corpus data 

 

(Particle filter: more particles  more memory) 

 

For each utterance: 

• Sample a segmentation from the posterior distribution 

given the current lexicon. 

• Add counts of segmented words to lexicon. 



Testing model predictions 

 Saffran-style experiment using multiple utterances. 

 Synthesize stimuli with 500ms pauses between utterances. 

 

 

 

 

 

 

 Training: adult subjects listen to corpus of utterances. 

 Testing: 2AFC between words and part-word distractors 

 Compare our model (and others) to humans, focusing on 
changes in performance as task difficulty is varied. 

 

 

 

 

 

 

 

 Solution: compare changes in model performance 
relative to humans as task difficulty is varied. 

lagitigupibavulukabitudulagikipavazi 

dazukipavazibavululagitigupikabitudu 

kipavazitigupidazukabitudulagitigupi  

…  

lagi 

dazu 

tigupi 

bavulu 

kabitudu 
kipavazi 



Experiment 1: utterance length 

 Vary the number of words per utterance. 

#vocab # wds/utt # utts tot # wds 

6 1 1200 1200 

6 2 600 1200 

6 4 300 1200 

6 6 200 1200 

6 8 150 1200 

6 12 100 1200 



Experiment 2: exposure time 

 Vary the number of utterances heard in training. 

#vocab # wds/utt # utts tot # wds 

6 4 12 48 

6 4 25 100 

6 4 75 300 

6 4 150 600 

6 4 225 900 

6 4 300 1200 



Experiment 3: vocabulary size 

 Vary the number of lexical items. 

#vocab # wds/utt # utts tot # wds 

3 4 150 600 

4 4 150 600 

5 4 150 600 

6 4 150 600 

9 4 150 600 



Human results: utterance length 



Human results: exposure time 

 



Human results: vocabulary size 



Model comparison 

 Evaluated six different models. 

 Each model trained and tested on same stimuli as 
humans. 

 For testing, produce a score s(w) for each item in choice 
pair and use Luce choice rule: 

 

 

 

 Calculate correlation coefficients between each model’s 
results and the human data. 
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Models used 

 Several variations on transitional probabilities (TP) 

 s(w) = minimum TP in w.  

 Swingley (2005) 

 Builds lexicon using local statistics and frequency thresholds. 

 s(w) = max threshold at which w appears in lexicon. 

 PARSER (Perruchet and Vintner, 1998) 

 Incorporates principles of lexical competition and memory decay. 

 s(w) = P(w) as defined by model. 

 Bayesian model 

 s(w) = P(w) as defined by model.  

 



Results: utterance length 

 Transitional probability  Bayesian model 

Swingley (2005)  PARSER 



Results: exposure time 

 Transitional probability  Bayesian model 

Swingley (2005)  PARSER 



Summary: Experiments 1 and 2 

 For humans, learning to segment is more difficult  

 when utterances contain more words. 

 when less data is available. 

 Only Bayesian model captures both effects: 

 

 

 

 Success is due to accumulation of evidence for best 

hypothesis, moderated by competition with other 

hypotheses. 

TPs Sw05 PARSER Bayes 

Utt length P
 

O O P 

Exposure O O P P
 



Model results: vocabulary size 

 Transitional probability  Bayesian model 

Swingley (2005)  PARSER 



What’s going wrong? 

 TPs: smaller vocab => TPs across words are higher. 

 Bayes: smaller vocab =>  Incorrect solutions have 

relatively small vocabularies with many frequent “words”. 

 

 

 

 

 

 With perfect memory, stronger statistical cues of larger 

vocabulary outweigh increased storage needs. 

lagitigupi kabitudulagi 

tigupi lagi kabitudulagi 

kabitudulagi kabitudu tigupi 

lagi kabitudu lagitigupi 

kabitudulagi tigupi kabitudu 
…  



Memory limitations 

 Modified Bayesian model has limited memory for data 

and generalizations. 

 Online learning algorithm processes one utterance at a time, one 

pass through data. 

 Random decay of items in lexicon. 

 Learner is no longer guaranteed to find optimal solution. 



Results: memory-limited learner 

 Good fit to all three experiments: 

 

 

 

 

 

 

 Simulating limited memory in TP also improves results 

but not as much. 



Summary 

 Humans behave like ideal learners in some cases. 

 Longer utterances are harder – competition. 

 Shorter exposure is harder – less evidence. 

 Humans are unlike ideal learners in other cases. 

 Larger vocabulary is harder for humans, easier for model. 

 Memory-limited learner captures human behavior in all 

three experiments. 



Targets vs. distractors 

 


