
Using Bayesian Approaches to Study 
Human Sound and Word Learning 

Naomi Feldman 
University of Maryland 

CLSP Miniworkshop:  
Zero Resource Speech Technologies 

 and Models of Early Language Acquisition 
July 17, 2012 

Joint work with Erin Bennett, Sharon Goldwater, Tom Griffiths, Yakov 
Kronrod, James Morgan, Emily Myers, Katherine White 



Language Acquisition 
Infants have a machine learning problem to solve… 
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How are sound categories learned? 

What is the link between perceptual 
patterns and category knowledge? 
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Alternating trials (da1-ta8-da1-ta8) 
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✔ Bimodal Unimodal ✘ 
(Maye, Werker, & Gerken, 2002) 



To create a corpus 

A Generative Model 

Phonetic Categories 

Corpus 



To create a corpus 
1.  Generate a phonetic category inventory 

A Generative Model 

Phonetic Categories 

Corpus 



To create a corpus 
1.  Generate a phonetic category inventory 

  Sample a mean, covariance, and frequency of 
occurrence for each Gaussian category 

A Generative Model 

Phonetic Categories 

Corpus 



To create a corpus 
1.  Generate a phonetic category inventory 

  Sample a mean, covariance, and frequency of 
occurrence for each Gaussian category 

2.  Generate a corpus 

A Generative Model 

Phonetic Categories 

Corpus 



To create a corpus 
1.  Generate a phonetic category inventory 

  Sample a mean, covariance, and frequency of 
occurrence for each Gaussian category 

2.  Generate a corpus 
  For each sound, sample a phonetic category 

according to its frequency 

A Generative Model 

Phonetic Categories 

Corpus 



To create a corpus 
1.  Generate a phonetic category inventory 

  Sample a mean, covariance, and frequency of 
occurrence for each Gaussian category 

2.  Generate a corpus 
  For each sound, sample a phonetic category 

according to its frequency 
  Generate an acoustic value from the Gaussian 

distribution associated with that category 

A Generative Model 

Phonetic Categories 

Corpus 



A Generative Model 
D

im
en

si
on

 1
 

Dimension 2 



A Generative Model 
D

im
en

si
on

 1
 

Dimension 2 



Distributional Learning 
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Corpus of 6,409 vowel tokens generated from Gaussian categories from 
Hillenbrand et al. (1995); frequencies match corpus frequencies 
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(Feldman, Griffiths, Goldwater, & Morgan, in prep; see also Dillon, Dunbar, & Idsardi, in press) 

F-score: 0.483 

(Vallabha et al., 2007) 
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Hypothesis 

Infants use top-down constraints 
from words when acquiring 

phonetic categories 

(see also Swingley & Aslin, 2007; Swingley, 2009; Thiessen, 2007, 2011) 
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  Sample a length and frequency of occurrence 
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Minimal pairs: 
add vs. Ed 

Typically taken as evidence 
that sounds are different 
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Mistakes from Minimal Pairs 
Extra category includes: 

  find, found 
  think, thank 
  will, we’ll, well 
  give, gave 
  made, mad, mid 
  big, bag 
  way, we 

     as well as lexical items that were 
not minimal pairs 

(Feldman, Griffiths, Goldwater, & Morgan, in prep) 



Mistakes from Minimal Pairs 

  Tested on Spanish corpus 
  Categories based on production data 
  Words frequencies from CHILDES 

  Model confused by 
morphological patterns 

Lexical-Distributional Model 
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(Bennett, Kronrod, & Feldman, in progress) 



Word and Sound Learning 
  A developing lexicon can help an ideal learner separate 

overlapping categories 

  Non-minimal pairs in the lexicon are critical for learning 

  Predicts that children should be sensitive to word-level 
information (non-minimal pairs) during phonetic learning 
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model would predict 
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Are infants sensitive to word-level 
cues during the time when they are 
first learning phonetic categories? 
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Non-alternating 

Alternating Non-Minimal Pair Minimal Pair 
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Marginally significant 
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interaction, p<0.07 

* 

(Feldman, Myers, White, Griffiths, & Morgan, submitted) 

Non-Minimal Pair Minimal Pair 



Data from Children 
Test 8-month-olds in a non-referential task 

(Feldman, Myers, White, Griffiths, & Morgan, submitted) 

Test stimuli   
Alternating trials (tah-taw-tah-taw) 
Non-alternating trials (tah-tah-tah-tah, taw-taw-taw-taw) 

✔ Non-Minimal Pair Minimal Pair ✘ 

Non-Minimal Pair 

gutah, gutah 
litaw, litaw 

Minimal Pair 

gutah, gutaw 
litah, litaw 



Hypothesis 
Infants use top-down constraints from words when 
acquiring phonetic categories 

1.  Formalize a model that can simultaneously learn 
sounds and words 

2.  Show that infants are sensitive to words in ways the 
model would predict 



Language Acquisition 
Infants have a machine learning problem to solve… 
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Scaling Up to Real Speech 
Just defining the phonetic emission 
model more realistically won’t work 

  No way of accounting for predictable 
phonological variability 

  Can’t even do speaker normalization 
(not interchangeable; every sound in a 
word is uttered by the same speaker) 

  What can we draw from this work? 
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Corpus 
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The Right Generative Model 
  Phonetic categories are part of the prior 

distribution over lexical items 
  Can be learned by computing statistics 

over the developing lexicon 
  Knowledge of phonetic categories allows 

rapid learning of new words, without re-
estimating parameters each time 

  Many other parts of this prior distribution 
  Anything that can best be learned by 

computing statistics over the lexicon 
  Phonological alternations, phonotactics, 

morphology 

Phonetic Categories 

Lexicon 

Corpus 



Evidence from Bilinguals 
  Catalan-Spanish bilinguals’ vowel discrimination shows a surprising pattern 

(Bosch & Sebastián-Gallés, 2003; Sebastián-Gallés & Bosch, 2009): 

Erin Bennett 
Yakov Kronrod 

Contrast 4 months 8 months 12 months 

[e]-[ɛ] (Catalan only) ✔ ✘ ✔ 

[o]-[u] (both languages) ✔ ✘ ✔ 

  S&B (2009) suggested 8-
month-olds might be 
confused because of high 
number of  cognates 
e.g., ‘boat’ [barko]~[barku] 

  Preliminary results: Need a 
way to represent parallels 
across languages 



Prior Distribution Over Words 
  What is the form of this prior distribution? 

  Can we learn the form of the prior distribution, rather 
than specifying it in advance? 

  How can we define a prior distribution that represents 
parallels across multiple languages? 
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