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Word Segmentation

I breaking speech into smaller units (e.g. words)
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“you want to see the book”

I “learning to put boundaries at the right places”

I Goldwater introduced non-parametric Bayesian

segmentation models building on the Dirichlet Process

I assign a probability to every sequence of words ⇒ define a

posterior distribution overs segmentations for any given

sequence of segments
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The Goldwater Model for Word Segmentation

I infinite number of possible words, but only expect to observe

a few

I ⇒ model underlying lexicon G as draw from a Dirichlet
Process

I a distribution over all possible words
I but mass concentrated on a (relatively) small subset

I integrating out the lexicon gives rise to a Chinese

Restaurant Process

I just need to store a seating arrangement for previous word

tokens instead of explicitly representing the “infinite” G
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Inference
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Particle Filtering for Word Segmentation

I infeasible to determine posterior exactly ⇒ approximations

I SISR Particle Filter is asymptotically correct online inference
algorithm

I “make use of observations one at a time, [...] and then discard

them before the next observations are used” (Bishop 2006: 73)

I maintains multiple weighted hypotheses (= particles) and

updates these incrementally

I each particles corresponds to specific seating arrangement

that summarizes previous segmentation choices

I described in Börschinger and Johnson, 2011
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Problems for Particle Filtering

I “make use of observations one at a time, [...] and then

discard them before the next observations are used” (Bishop

2006:73)

I ⇒ once you made a decision, you can’t really change it
I exponential number of possibilities
I “errors” propagate
I later evidence may be relevant for evaluation of early evidence

[example next slide]
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Problems for Particle Filtering, Illustration
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Addressing the problem - Rejuvenation

I using more and more particles? ⇒ practical limitations (and

loss of cognitive plausibility)
I relax the online constraint ⇒ Rejuvenation (Canini et al.

2009)
I given current knowledge, see if “better” alternatives to

previous analyses now available
I ⇒ re-analyse fixed number of randomly chosen previous

observations
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Rejuvenation

I after each utterance, for each particle
I do N times

I randomly choose previously observed utterance
I remove words “learned” from that utterance from particle
I sample novel segmentation for utterance, given modified state

and add new analysis back in

I can use sampling method also used in utterance based MCMC
sampler (Mochihashi et al., 2009)

I ⇒ doesn’t affect asymptotic guarantee
I if we do (too) many rejuvenation samples, at last utterance

turns into batch sampler

I requires storage of previous observations ⇒ not strictly online

I but still incremental ⇒ processes evidence as it becomes

available
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Evaluation

I evaluate on de-facto standard, Bernstein-Ratner corpus as per
(Brent 1999)

I 9790 phonemically transcribed utterances of child directed

speech

I focus on Bigram model (Unigram model in paper)

I compare 1- and 16-particle filter with 100 rejuvenation steps
to

I “original” (online) particle filters (Börschinger and Johnson,

2011), including a 1000-particle filter
I utterance-based (“ideal”) batch sampler (with annealing)
I 1-particle filter with 1600 rejuvenation steps (vs 16-particle

filter w. 100)
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Evaluation

I online particle filters have low Token F-scores

I 1-particle filter with rejuvenation outperforms all online

particle filters

I with 16 particles, performance similar to batch sampler

I 1-particle filter with 1600 rejuvenation steps outperforms

batch sampler

Learner TF

MHS 70.93 (∼ Goldwater results)

Online-PF1 49.43

Online-PF16 50.14

Online-PF1000 57.88

Rejuv-PF1,100 66.88

Rejuv-PF16,100 70.05

Rejuv-PF1,1600 74.47
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Conclusion and outlook

I Rejuvenation considerably boosts particle filter performance...

I ...but requires storage of observations

I in the future:
I exploring variants of rejuvenation, i.e.

I only remembering a fixed number of observations
I choosing previous observations according to their recency

(Pearl et al. 2011)
I only rejuvenating at certain intervals
I adapting the number of rejuvenation steps
I ...

I making the models more realistic (phonotactics, ...)
I applying particle filters to other tasks (Adaptor Grammars)
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Particle Filtering for Word Segmentation
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Updating an individual Particle

I each particle is a lexicon (cum grano salis1)
I updating a lexicon corresponds to

I sampling a segmentation given the current lexicon
I adding the words in this segmentation to the lexicon

1
more precisely: a seating arrangement
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Evaluation, inference

I what about inference performance?
I compare log-probability of training data at end
I particle filters with rejuvenation much better than without but

still considerable gap
I even the Bigram model seems to benefit from “biased” search

(see also Pearl et al. (2011))
I suspect that batch samplers suffer from too much data due to

spurious “global” generalizations

Learner TF log-probability (×103)

MHS 70.93 -237.24

Online-PF1 49.43 -265.40

Online-PF16 50.14 -262.34

Online-PF1000 57.88 -254.17

Rejuv-PF1,100 66.88 -257.65

Rejuv-PF16,100 70.05 -251.66

Rejuv-PF1,1600 74.47 -249.78 16 / 13
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