Using Rejuvenation to improve Particle Filtering for Bayesian Word Segmentation

Benjamin Börschinger*,+ Mark Johnson*

*Macquarie University, +Heidelberg University

July 10, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Bayesian Word Segmentation

Particle Filtering

Rejuvenation

Evaluation

(ロ) (部) (重) (重) (重) (至) (2/13)

Word Segmentation

breaking speech into smaller units (e.g. words)

 $\begin{array}{c} j\mathrel{{}_{\bigtriangleup}} u\mathrel{\scriptstyle{\blacktriangle}} w\mathrel{{}_{\bigtriangleup}} \alpha\mathrel{{}_{\bigtriangleup}} n\mathrel{{}_{\bigtriangleup}} t\mathrel{\scriptstyle{\bigstar}} t\mathrel{\scriptstyle{\bigtriangleup}} u\mathrel{\scriptstyle{\bigstar}} s\mathrel{{}_{\bigtriangleup}} i\mathrel{\scriptstyle{\bigstar}} \eth \mathrel{\scriptstyle{\circlearrowright}} \circ\mathrel{\scriptstyle{\bigstar}} b\mathrel{{}_{\bigtriangleup}} \sigma\mathrel{{}_{\bigtriangleup}} k \\ \\ \text{``you want to see the book''} \end{array}$

- "learning to put boundaries at the right places"
- Goldwater introduced non-parametric Bayesian segmentation models building on the Dirichlet Process
- ► assign a probability to every sequence of words ⇒ define a posterior distribution overs segmentations for any given sequence of segments

The Goldwater Model for Word Segmentation

- infinite number of possible words, but only expect to observe a few
- ► ⇒ model underlying lexicon G as draw from a Dirichlet Process
 - a distribution over all possible words
 - but mass concentrated on a (relatively) small subset
- integrating out the lexicon gives rise to a Chinese Restaurant Process
- ▶ just need to store a seating arrangement for previous word tokens instead of explicitly representing the "infinite" G

Inference

5/13

Particle Filtering for Word Segmentation

- \blacktriangleright infeasible to determine posterior exactly \Rightarrow approximations
- SISR Particle Filter is asymptotically correct online inference algorithm
 - "make use of observations one at a time, [...] and then discard them before the next observations are used" (Bishop 2006: 73)
- maintains multiple weighted hypotheses (= particles) and updates these incrementally
- each particles corresponds to specific seating arrangement that summarizes previous segmentation choices
- described in Börschinger and Johnson, 2011

Problems for Particle Filtering

- "make use of observations one at a time, [...] and then discard them before the next observations are used" (Bishop 2006:73)
- \blacktriangleright \Rightarrow once you made a decision, you can't really change it
 - exponential number of possibilities
 - "errors" propagate
 - later evidence may be relevant for evaluation of early evidence [example next slide]

Problems for Particle Filtering, Illustration

Addressing the problem - Rejuvenation

- ▶ using more and more particles? ⇒ practical limitations (and loss of cognitive plausibility)
- ► relax the online constraint ⇒ Rejuvenation (Canini et al. 2009)
 - given current knowledge, see if "better" alternatives to previous analyses now available
 - $\blacktriangleright \Rightarrow$ re-analyse fixed number of randomly chosen previous observations

Rejuvenation

- ▶ after each utterance, for each particle
 - do N times
 - randomly choose previously observed utterance
 - remove words "learned" from that utterance from particle
 - sample novel segmentation for utterance, given modified state and add new analysis back in
- can use sampling method also used in utterance based MCMC sampler (Mochihashi et al., 2009)
 - \Rightarrow doesn't affect asymptotic guarantee
 - if we do (too) many rejuvenation samples, at last utterance turns into batch sampler
- requires storage of previous observations \Rightarrow not strictly online
- ▶ but still incremental ⇒ processes evidence as it becomes available

Evaluation

- evaluate on de-facto standard, Bernstein-Ratner corpus as per (Brent 1999)
 - 9790 phonemically transcribed utterances of child directed speech
- focus on Bigram model (Unigram model in paper)
- compare 1- and 16-particle filter with 100 rejuvenation steps to
 - "original" (online) particle filters (Börschinger and Johnson, 2011), including a 1000-particle filter
 - utterance-based ("ideal") batch sampler (with annealing)
 - 1-particle filter with 1600 rejuvenation steps (vs 16-particle filter w. 100)

Evaluation

- online particle filters have low Token F-scores
- 1-particle filter with rejuvenation outperforms all online particle filters
- ▶ with 16 particles, performance similar to batch sampler
- 1-particle filter with 1600 rejuvenation steps outperforms batch sampler

Learner	TF
MHS	70.93 (\sim Goldwater results)
Online- PF_1	49.43
$Online\operatorname{-}PF_{16}$	50.14
$Online\operatorname{-}PF_{1000}$	57.88
Rejuv-PF _{1,100}	66.88
Rejuv-PF _{16,100}	70.05
$Rejuv\operatorname{-}PF_{1,1600}$	74.47

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

Conclusion and outlook

- Rejuvenation considerably boosts particle filter performance...
- ...but requires storage of observations
- in the future:
 - exploring variants of rejuvenation, i.e.
 - only remembering a fixed number of observations
 - choosing previous observations according to their recency (Pearl et al. 2011)
 - only rejuvenating at certain intervals
 - adapting the number of rejuvenation steps
 - ► ...
 - making the models more realistic (phonotactics, ...)
 - applying particle filters to other tasks (Adaptor Grammars)

Particle Filtering for Word Segmentation

Updating an individual Particle

- each particle is a lexicon (cum grano salis¹)
- updating a lexicon corresponds to
 - sampling a segmentation given the current lexicon
 - adding the words in this segmentation to the lexicon

3

Evaluation, inference

- what about inference performance?
- compare log-probability of training data at end
- particle filters with rejuvenation much better than without but still considerable gap
- even the Bigram model seems to benefit from "biased" search (see also Pearl et al. (2011))
- suspect that batch samplers suffer from too much data due to spurious "global" generalizations

Learner	TF	log-probability ($ imes 10^3$)			
MHS	70.93	-237.24			
$Online-PF_1$	49.43	-265.40			
$Online\operatorname{-PF}_{16}$	50.14	-262.34			
$Online-PF_{1000}$	57.88	-254.17			
Rejuv-PF _{1,100}	66.88	-257.65			
Rejuv-PF _{16,100}	70.05	-251.66	≅ ⊁ ≅		う
Reiuv-PF1 1600	74.47	-249.78		1	6 /