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Word Segmentation

I one of the first tasks children have to master is to break

speech into smaller units (e.g. words)
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“you want to see the book”

I learning to segment utterances ↔ learning a lexicon for the

language
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Bayesian Word Segmentation

I observed utterances are produced by drawing words from an

unknown lexicon and concatenating the words

I given unsegmented data, infer the segmentation and the

lexicon

I Bayesian bit: prefer smaller lexicons

I MDL approaches dating back to de Marcken, Brent and others

I State-of-the-art: Adaptor Grammars encoding linguistically

motivated knowledge (syllable structure, tones,...)

I here: non-parametric model introduced by Goldwater 2007
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The Goldwater Model for Word Segmentation

I lexicon is a distribution over words

I data assumed to arise from i.i.d. draws from (unknown)

lexicon

I don’t know number nor nature of the words in advance

I ⇒ lexicon is a draw from a Dirichlet Process Prior

I ⇒ the base-distribution is a distribution over all possible words

I ⇒ the lexicon assigns probability mass to a subset

I in a Bigram model, there is a special lexicon for each word,

and a shared back-off lexicon (hierarchical DP)
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Inference

I data is corpus (unsupervised task)
I find posterior distribution over hypotheses, given data
I hypotheses are segmentations ⇔ lexicons
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Inference

I intractable to calculate posterior analytically

I MCMC sampling algorithms produce samples from the

posterior

I ⇒ Monte Carlo approximation using the samples

I requires multiple iterations over the training data
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Why Particle Filters?

I online (or sequential) learning algorithm

I “make use of observations one at a time, [...] and then discard

them before the next observations are used” (Bishop 2006:73)

I practical interest, e.g. large datasets or sequentially arriving

data

I scientific interest, e.g. whether algorithm behaves similar to

human learners

I this work: starting point for adressing these questions by

showing how to build a Particle Filter for models like this
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Particle Filters — The Idea

I update the posterior distribution, one observation at a time

I not exactly a new idea for Bayesians

I consider a hypothesis H, and two observations O1,O2

I P(H|O1) ∝ P(O1|H)P(H)

I P(H|O1,O2) ∝ P(O2|H)P(H|O1)

I “posterior at time t is prior at time t + 1”

I approximate each posterior with weighted set of samples or

particles (Monte Carlo method, if number of particles goes to

infinity, approximation converges on the true posterior)

I to get new posterior, simply update each particle and

calculate weights
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Updating an individual Particle

I each particle is a lexicon (cum grano salis)
I updating a lexicon corresponds to

I sampling a segmentation given the current lexicon
I adding the words in this segmentation to the lexicon
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Updating a set of Particles

I weighted particles ⇒ finite approximation of posterior over lexicons

I updating weights based on likelihood of the observation

I here: also corrects for use of a proposal distribution during

propagation (no efficient sampling method for true distribution)

I one particle tends to take all the mass ⇒ resample (SISR algorithm)
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Experiments

I unsupervised segmentation of the Brent (1999) data
I 9790 phonemically transcribed CDS utterances

I compare to a batch learner, and Pearl et al.’s DPS learner

I two questions of interest
I recovering true posterior ⇒ look at log-probability of training

data at end
I expect to find a high probability solution

I (doing Word Segmentation ⇒ look at segmentation metric)

I it’s known to be a hard task...
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Pearl et al. (2011)’s algorithms

I an utterance based Metropolis Hastings sampler
I batch learner, run for 20,000 iterations

I Dynamic Programming Sampling algorithm
I samples a segmentation, given current lexicon
I adds the words to the lexicon, considers next utterance
I ⇒ a 1 particle Particle Filter
I no possibility at all to correct earlier mistakes
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Bigram model — token f-score

I Particle Filters considerably worse than batch learner

I 1 (DPS) vs 50 particles makes big difference

I seems to ceil rather quickly ⇒ presumably, even larger

numbers of particles required
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Bigram model — log probability

I clear trend that more particles lead to higher probability

solutions

I again, large improvement in going from 1 to 50
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Bigram model — discussion

I marked difference between 1 and 50 particles

I trend that larger numbers lead to better performance

I Particle Filter “never looks back”, which may explain the need
for large numbers

I correcting earlier mistakes only indirectly by keeping many

alternatives
I number of possible segmentations is exponential

I ⇒ possibly relaxing the strict online nature is an alternative to

the use of ever larger numbers of particles
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Conclusion and Outlook

I presented a Particle Filter algorithm for Bayesian Word

Segmentation

I a strict online learner can only get so far (theoretical

guarantee, but...)

I starting point for extensions to the basic algorithm
I already started experimenting with “resampling the past”
I framework to study learning trajectories

I can track learners progress in time

I idea ought to be applicable to other Bayesian Non-Parametric

models (e.g. Adaptor Grammars)
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The Goldwater Model for Word Segmentation

I lexicon is a distribution over words
I data assumed to arise from i.i.d. draws from (unknown)

lexicon
I don’t know number nor nature of the words in advance
I ⇒ lexicon is a draw from a Dirichlet Process Prior
I ⇒ the base-distribution is a distribution over all possible words
I ⇒ the lexicon assigns probability mass to a subset
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The Goldwater Unigram Model

θphon ∼ Dirichlet(αphon)

Pphon(x |θphon) = θphon,x

P0(w = x1 . . . xn|θphon) =

(
n∏

i=1

Pphon(xi |θphon)

)
Pphon(stop|θphon)

Lex |γ,P0, θphon ∼ DP(γ,P0)

Wi |Lex ∼ Lex

I prior on θphon allows us to learn a distribution over phonemes

from the lexicon

I in practice, integrate out θphon and Lex ⇒ Chinese Restaurant

Process over words

I cum grano salis: utterance boundaries as special word
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Chinese Restaurant Process as Generative Process
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Illustration

Pdata = P0(a)
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Illustration

Pdata = P0(a)× γP0(kitty)
γ+1
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Illustration

Pdata = P0(a)× γP0(kitty)
γ+1

× γP0($)
γ+2

23 / 17



Illustration

Pdata = P0(a)× γP0(kitty)
γ+1

× γP0($)
γ+2

× 1
γ+3
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Unigram model — token f-score

I higher is better

I known that lower probability solutions “look” better (next

slide)
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Unigram model — log probability

I smaller is better

I batch algorithm wins by a large margin

I trend that more particles lead to better log probability
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Unigram model — discussion

I Brent heuristic does extremely well for an online learner

I large numbers of particles required ⇒ unlikely to scale

I high dimensional state space (number of possible

segmentations exponential)

I relaxation of “don’t look back” most likely to make Particle

Filters useful in practice
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