
Building a
Speech Recognizer

using
Open-source Software

Dan Povey

 http://sites.google.com/site/dpovey/TidigitsTutorial.pdf

http://sites.google.com/naacl_tut.pdf
http://sites.google.com/naacl_tut.pdf

I have created a speech recognition setup that
recognizes connected digits.

Your goal is to reduce the error rate as much as
possible by tuning and tweaking the setup.

I’ll suggest ways to do this.

You will work in groups of 3-4; members of group
with lowest error rate at end get $20 each.

You can tune on the test set; near the end I’ll tell
you how we’ll “really” measure performance.

What we’ll do

Logging in
$ ssh <your-username>@login.clsp.jhu.edu
Linux login 2.6.26-2-amd64 #1 SMP Mon Jun 13 16:29:33 UTC 2011 x86_64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Sat Jun 16 12:29:02 2012 from arnab-laptop.clsp.jhu.edu

login:$ qlogin -q all.q@a*.clsp.jhu.edu
Your job 4156604 ("QLOGIN") has been submitted
waiting for interactive job to be scheduled ...
Your interactive job 4156604 has been successfully scheduled.
Establishing builtin session to host a07.clsp.jhu.edu ...
a07:$
note: you can also ssh directly to a{01,02,03,04,05,07,08,09,10}

The speech-reco system is based on the open-
source software “Kaldi” (which uses OpenFst).

This is designed for large-vocabulary speech
recognition, but here we’ll use it for a toy task.

The database is “TIDIGITS”-- very old, very easy
task, clean recording, people saying digits
(connected digits, i.e. without pauses).

Train and test sets each have ~8k utterances, from
various speakers including children.

The setup

If I had not set it up for you, you’d have to

Order the TIDIGITS data from the
Linguistic Data Consortium

download and compile Kaldi as described at
http://kaldi.sf.net

cd to <kaldi-root>/egs/tidigits/s5

edit run.sh to have correct TIDIGITS path,
cmd.sh to have correct queue name.

Getting Started
a07:$ cp -r ~dpovey/tutorial_skeleton .
a07:$ cd tutorial_skeleton/egs/tidigits/s5
a07:$ # look at run.sh

http://kaldi.sf.net
http://kaldi.sf.net

TIDIGITS is typically evaluated in terms of sentence
error rate.

The SER at the monophone stage is 3.67%, at
triphone is 2.64%.

The command at the end of the run.sh with “diff”
shows you the errors.

Seems to mostly be dominated by insertions of “o”.

The results

Tune the command-line parameters (I never tuned
#states, #Gaussians)

Modify the dictionary (see local/tidigits_prepare_lang.sh)

e.g. make “oh” a two-phone word to make it
harder to insert it

change the silence-insertion probability, currently
0.5 [this is in L.fst]

Things to try (1)

Modify the language-model G.fst, which is currently
a simple phone loop with constant costs.

E.g. change the cost of “o” [which is frequently
inserted], or use unigram likelihoods estimated
from the training data.

Create an FST that only allows sequences of 1, 2,
3, 4, 5, or 7 digits (all TIDIGITS sequences are of
this form).

Things to try (2)

Try out more advanced types of model.

Look at egs/rm/s5/run.sh for examples.

Typical sequence of model-building (for LVCSR,
anyway) is:

MFCC+delta+accel, monophone

MFCC+delta+accel, triphone

MFCC+splice+LDA+MLLT, triphone

+Speaker Adapted Training

+discriminative training (BMMI)

Things to try (3)

Best results in the RM (“Resource Management”
setup are:

After LDA+MLLT+SAT stage, build Subspace
Gaussian Mixture Model (SGMM), then do
discriminative training on this.

Caution: when numbers appear on the command line
in the RM setup (e.g. 2500, 10000, 400), you’ll
typically want smaller numbers for TIDIGITS

These are things like number of clustered states;
number of Gaussians in total systems; number of
Gaussians in “background model”

Things to try (4)

A lot of things will be unclear; I will be around so
ask me.

If you can find a Hopkins student or even faculty
who is willing to help you, that is allowable too.

This makes the competition more like real life,
where asking for help is allowed.

Introduction to Kaldi is available at http://
kaldi.sf.net but it’s aimed at speech experts, and you
won’t be able to read it in one afternoon.

Ask!

http://kaldi.sf.net
http://kaldi.sf.net
http://kaldi.sf.net
http://kaldi.sf.net

The scripts are currently configured so they’ll run
training on the machine you are logged into, and
testing using the queue.

See “cmd.sh”-- you can comment or un-comment
things to change this.

The training scripts use 4 CPUs, which is really
against the rules for our queue (but it’s faster).

If everyone is assigned the same machine it may be
a problem. You might have to try to find a freer
“a” machine.

Try to avoid increasing the num-jobs “--nj” option

The queue

 [will assign groups at this stage]

Around 4:30 I’ll tell you how we’ll “really”
measure the error rate, and will ask the
groups with reasonable error rates to do this
procedure.

Depending how long this takes, the best
group will be selected, and prize awarded,
either around 5:00, or the next day.

Have fun!

The end

