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Semantic search

text2im

description

Searching personal photos

Emiliy cherry blossom

gift cityscape

Obama John Cleese
kneeling jacket and tie
beach phone




Captioning and summarisation

im2text

description

This picture shows one person,
one grass, one chair, and one
potted plant. The person is
near the green grass, and in
the chair. The green grass is by
the chair, and near the potted
plant

a cow with sheep with a gray sky  people with boats a brown cow people at
green grass by the road a wooden table

[Kulrani et al. 11, Mitchell et al. 12]



Human-centric machine vision

language
text2im

semantic search

im2text

description / summarisation




Semantic tasks in computer vision

image classification object detection

& S

Coarse semantics.



Beyond categories: objects in detall

Most human-centric tasks require
understanding the details of objects.

object class viewing conditions

bICyC|e right-facing

parts, materials, colours, ...

chrome-blue gear  white frame  handle bar seat




Advantages of detailed understanding

Better support for human-centric tasks.

Current models are opaque, semantically shallow:

representation interpretation

bicycle?

-
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- ~
- ..

A semantically decomposed model is easier to
understand, diagnose, and improve.



Not just objects: texture semantic

segmenting stuff

. road

Blorass [Pwater [oidg  Ilmntn  [fg obj.

input representation interpretation

grass?

-— ..
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honeycombed

latticed

netlike

mottled

meshed

Stuff in detail

Texture models for human-centric tasks.
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Opening a path to detailed semantic analysis

Problem Data Time frame Progress
Image Classification Caltech-101 2003-06 SIEI TEeEk
BoW
Object Detection PASCAL VOC 2006-12 DPMs,

large scale learning

Parts & Attributes ? 2012-7? ?

|

what can you do
in six weeks?



Obijects in Detalil

Parts & attributes

* A new dataset

An object lexicon
Localising parts

Layouts

Recognising attributes
The cost of data collection

Overview

Stuff in Detalil

Texture

* A texture lexicon
* A new dataset

 Transformation invariant
semantic

Parsing
Bottom-up inference

e Learning to merge
» Cascading

e Scoring regions by
attributes
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The need for a dataset
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Why annotated data:

1. Evaluation
2. Training

headlight

Detailed semantic tasks:

« which type of motorcycle is this?

» where is the right exhaust pipe?

« what is the tail-light shape?

« what is the colour of the panniers?
* is the head light visible?

* is there a rider?



The need for a new dataset
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CORE Dataset
[Farhadi Endres Hoiem 2010]

Sharing of parts

X Accurate recognition of parts
and their attributes

L]
-

category
airplane
alligator
bat
bicycle
blimp
boat

bus
camel

car
carriage
cat

cow

crow

dog
dolphin
eagle
elephant
elk
hovercraft
Jetski
lizard
monkey
motorcycle
penguin
semi

ship
snowmobile
whale

# parts / object
9.49
8.90
8.55
6.62
5.29
3.76
11.32
12.15
8.15
5.43
11.50
10.93
8.08
13.17
6.17
8.01
11.97
11.47
4.81
3.64
9.27
11.90
9.03
6.95
11.51
4.29
5.99
4.82



Objects in Detall
Anew détaset of parts and attributes




Designing a dataset of parts & attributes

e Motivation

= we know that parts & attributes are useful for sharing, etc.
= but how well can we recognise parts & attributes?

e Aims of the dataset

- objeectrecognition — parts & attributes recognition

= benchmarking: measure and encourage progress
= inspire new technical challenges

e How

= high-quality annotations (e.g. PASCAL VOC)
= sufficiently large to be representative of data variability
- the object class and location is given
- define new tasks and metrics
m part localisation
m attribute recognition
B joint tasks



An rich object category
With parts and attributes
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Spotters: an effective data source

Aircraft Spotters htip://www.airliners.net/

Selected about 7,500 for annotation.

Trivial extension to other classes

railways: http://railpictures.net/
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Part annotations

wheel
Part # train # val # test # total
1,859 1,854 3,713 7,426
1,885 1,866 3,742 7,493
1,848 1,845 3,700 7,393
3,007 3,047 5,958 12,012

4,919 4,958 9,917 19,794



Examples
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Part

aeroplane
aeroplane
aeroplane
aeroplane
aeroplane
aeroplane
aeroplane
aeroplane
aeroplane
aeroplane
wing

wing
vertical stabilizer
nose
wheel
wheel
wheel

wheel

Attribute annotations

Attribute
airline
model
isAirliner
isCargoPlane
isMilitaryPlane
isPropellorPlane
isSeaPlane
facingDirection
planelLocation
planeSize
wingType
wingHasEngine
tailHasEngine
noseHasEngineOrAntenna
undercarriageArrangement
coverlype
groupType
location

Values

2Excel Aviation,ACE Transvalair,ATA Airlines,ATE Avic
AESL Airtourer T2,AESL Airtourer T5 Super 150,AESL Gl
yes,no

yes,no

yes,no

yes,no

yes,no

E,SE,S,SW,W,NW,N,NE

on ground/water,landing/taking off,in air

small plane,medium plane,large plane

single wing plane,bi-plane,tri-plane
1-on-bottom,1l-on-top,2-on-bottom,2-on-top,3-on-botton
1-middle-top,2-on-sides,3-on-top-and-sides,no-engine
has-antenna,has-engine,none

not visible,one-front-two-back,other,two-front-one-bc
fixed-inside, fixed-outside,fixed-outside-with-cover,r
1-wheel-1-axle,14-wheels-7-axles,2-wheels-1-axle,4-wt
back-left,back-middle,back-right, front-left, front-mic



Is airliner: yes




wheel - group type: 1-wheel-1-axle

'
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wheel - group type: 2-wheels-1-axle
ol of N ochol N K N
wheel - group type: 4-wheels-2-axles
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wheel - group type: 6-wheels-3-axles
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Complete annotation examples

(1) aeroplane
isAirliner:no (0.8)
isCargoPlane:no (1.0)
isMilitaryPlane:no (0.8)
isPropellorPlane:yes (1.0)
isSeaPlane:no (1.0)
facingDirection:SW (0.8)
planeLocation:on ground/water (1.0)
planeSize:small plane (0.6)
wingType:bi—plane (1.0)
undercarriageArrangement:two—front—one—back (1.0)
noseHasEngineOrAntenna:has—engine (1.0)
tailHasEngine:no—engine (1.0)
wingHasEngine:no-engine (1.0)
airline:none
model:De Havilland DH-82A Tiger Moth I

2) verticalStabilizer

3) nose

4) wing

5) wing

6) wing

) wing
) wheel

coverType:fixed-outside (1.0)

groupType:1-wheel-1-axle (1.0)

location:front-right (0.8)

(9) wheel
coverType:fixed—outside (1.0)
groupType:1-wheel-1-axle (1.0)
location:front-left (0.8)

(
(
(
(
(
(
(

7
8




(1) aeroplane
isAirliner:yes (1.0)
isCargoPlane:no (0.8)
isMilitaryPlane:no (1.0)
isPropellorPlane:no (1.0)
isSeaPlane:no (1.0)
facingDirection:NW (0.4)
planeLocation:landing/taking off (0.6)
planeSize:large plane (1.0)
wingType:single wing plane (1.0)
undercarriageArrangement:one—front—two—back (0.6)
noseHasEngineOrAntenna:none (0.8)
tailHasEngine:no-engine (0.6)
wingHasEngine:1-on-bottom (1.0)
airline:Monarch Airlines
model:Airbus A300B4-605R

coverType:retractable (0.8)
groupType:2-wheels-1-axle (0.8)
location:back-left (0.6)

(7) wheel
coverType:retractable (0.6)
groupType:2-wheels-1-axle (0.8)
location:back-right (0.4)




(1) aeroplane

isAirliner:no (1.0)

isCargoPlane:no (1.0)

isMilitaryPlane:no (0.8)

isPropellorPlane:yes (1.0)

isSeaPlane:no (0.6)

facingDirection:E (0.8)

planeLocation:on ground/water (0.8)

planeSize:small plane (0.8)

wingType:single wing plane (1.0)

undercarriageArrangement:two—front—-one-back (1.0)

noseHasEngineOrAntenna:has-engine (1.0)

tailHasEngine:no-engine (1.0)

wingHasEngine:no-engine (1.0)

airline:2Excel Aviation

model:Extra EA-300L

verticalStabilizer

nose

wing

wheel

coverType:fixed—outside—with—cover (1.0)

groupType:1-wheel-1-axle (1.0)

location:front-right (1.0)

(6) wheel
coverType:fixed—outside-with—cover (1.0)
groupType:1-wheel-1-axle (1.0)
location:front-left (1.0)

(7) wheel
coverType:fixed—outside (1.0)
groupType:1-wheel-1-axle (1.0)
location:back-middle (1.0)

(2
3
(4
(5

= = =




(1) aeroplane
isAirliner:no (0.6)
isCargoPlane:no (1.0)
isMilitaryPlane:yes (0.8)
isPropellorPlane:yes (1.0)
isSeaPlane:no (0.8)
facingDirection:W (0.6)
planeLocation:on ground/water (1.0)
planeSize:small plane (0.6)
wingType:single wing plane (1.0)
undercarriageArrangement:two-front—-one-back (1.0)
noseHasEngineOrAntenna:has-engine (1.0)
tailHasEngine:no-engine (0.8)
wingHasEngine:no-engine (0.8)
airline:none
model:Messerschmitt Bf-109G-4
verticalStabilizer
nose
wing
wheel
coverType:retractable (0.6)
groupType:1-wheel-1-axle (1.0)
location:front-left (1.0)
(6) wheel
coverType:retractable (0.6)
groupType:1-wheel-1-axle (1.0)
location:front-right (1.0)
(7) wheel
coverType:retractable (0.8)
groupType:1-wheel-1-axle (1.0)
location:back-middle (1.0)

@
@
(
(
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(1) aeroplane
isAirliner:yes (0.8)
isCargoPlane:no (1.0)
isMilitaryPlane:no (0.8)
isPropellorPlane:no (1.0)
isSeaPlane:no (1.0)
facingDirection:SW (1.0)
planeLocation:on ground/water (1.0)
planeSize:large plane (1.0)
wingType:single wing plane (1.0)
undercarriageArrangement:not visible (0.6)
noseHasEngineOrAntenna:none (1.0)
tailHasEngine:3-on-top—and-sides (0.6)
wingHasEngine:no-engine (0.8)
airline:British Airways
model:Hawker Siddeley HS-121 Trident 3B
= (2) verticalStabilizer

= (3) wing




(1) aeroplane
isAirliner:no (0.8)
isCargoPlane:no (1.0)
isMilitaryPlane:no (1.0)
isPropellorPlane:no (1.0)
isSeaPlane:no (1.0)
facingDirection:SW (0.8)
planeLocation:on ground/water (0.8)
planeSize:small plane (0.8)
wingType:single wing plane (0.8)
undercarriageArrangement:other (0.6)
noseHasEngineOrAntenna:none (1.0)
tailHasEngine:no-engine (1.0)
wingHasEngine:no—engine (1.0)
airline:none
model:Schempp-Hirth Duo Discus T

(2) verticalStabilizer

(3) nose

(4) wing

(5) wing

(6) wing

(7) wheel
coverType:fixed—inside (0.8)
groupType:1-wheel-1-axle (1.0)
location:front-middle (0.6)

(8) wheel
coverType:fixed—inside (0.6)
groupType:1-wheel-1-axle (1.0)
location:front-left (0.6)




Objects in Detalil

Parts & attributes

* A new dataset

* An object lexicon
Localising parts
Layouts

Recognising attributes

Overview

Stuff in Detail

Texture

* Atexture lexicon

* A new dataset

* Transformation invariant
semantic

Parsing
Bottom-up inference

e Learning to merge

» Cascading

» Scoring regions by
attributes



Lexicon of Parts and Attributes
How do people describe objects?

Subhransu Maji
TTI Chicago



Source of Parts and Attribute Lexicons

* Field guides:
— Provides exhaustive lists when available

PETERSON FIELD GUIDES"* Roy’s Field Guide to

: Smithsonian ; S.Itmter Fish

i i : Field Guide to the WE

Butterflies .-
BIRIS x
of North America = .1 =

PRI,

|

wwuw

Ted Floyd

Birding M gl@

Paul A. Opler/Vichai Malikul

Experts vs. Layman



Source of Parts and Attribute Lexicons

Captioned images

o) gt mrenewenesiies)

)
& i Ve Ve Ve Va Pa

Dazzle after dark with Judith Leiber's
decadent oversized crystal-embellished
silver-tone clutch. Carry this fabulous extra
to add high-octane glamour to an LBD and
teetering heels. Shown here with an Emilio
Pucci dress and Givenchy shoes.

The 12K pink and green gold leaves
gently cascade down on these delicate
beaded 10K gold earrings.

Rock and roll in these sexy, strappy heels from Report
Signature. The smoldering Rockwell features a grey patent
leather upper with pleated satin crossing at the open-toe
atop a 1 inch platform, patent straps closing around the
ankle with a gold buckled, and finally a 5 inch patent cone
heel. Sizzle in these fierce mile-high shoes.

Limited by sources of such text
(not always visual attributes)

Berg et al., ECCV 2010



Parts and Attributes: Why?
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Object Categories:
animal, land animal,
domestic, mammal,
carnivore, cat

Viewpoint/pose: lying

. down, left side, facing

camera

High-heel Blue Shoe
g Other likely parts: four

legs

Helps differentiate instances of an object
Communication requires a lexicon



What are good attribute lexicons?

Goals: Differentiation + Communication



Discriminative Description

Describe the (visual) differences between the two



Description Discriminative Description

list properties list differences

propeller plane vs. passenger plane

. lane . .
. Eas engine one engine vs. four engines

. red color vs. white color
* red color

round rudder vs. pointy rudder
* has rudder

Helps elicit a lexicon that enables fine grained discrimination
Is task specific by design



The Annotation Task Interface

Find differences between the two aeroplanes

Click here to see example answers.

o

T ";‘; -
ey

List 5 differences between the two aeroplanes




The Annotation Task Interface

Find differences between the two aeroplanes
Click here to see example answers.

yellow and red rudder vs blue rudder
two wings vs one wing

yellow body vs blue body
facing right vs facing left

o o o o

4

left facing vs right facing

red rudder vs white rudder
passenger plane vs propeller plane
wings near bottom vs wings on top
two side engines vs one side engine

® o o o o

Outputs in free form English separated by vs”
amazon mechanical turk

Artificial Artificial Intelligence



Example Annotations

e _— ... facing right
powered plane @@= propeller powered plane
e Yy . shorter tail

propeller to the body propeller to the wing
one rudder i two rudders
thin body q’_ fa 1

1o m
SCEF-H333T »':2:
n



Example Annotations

black and white wings
white body

yellow black body
pointy beak
short tail

black spot over
short leg

Images are from CUB 200 dataset



sparrow like

white fur

pointed beak

long tail

black red beak e

long beak

long tail

grey wings
black marked he.
red legs

red black beak black beak

sitting flying

;Mhite f(_?athers gLay feafhers ¥
ong tai P‘ short tai -
red leg e black leg" -

Different properties are revealed in each pair



Frequencies of Properties

- blue wings

- black beak

- long tail

- blue head

- short beak

- blue white body
: blue whlte fur

; shorF tail

big body

- black leggs

' black legs

- black wings

- blue body

- blue color head

ray body

- long bird

orange white body
- short wings

- slim body

white and blue fur



Frequencies of Properties

T G W G NP SR G NPT N WO NN S DN WO W N O G G W U G G G 01 i ] 1y POCO-&'-

- yellow head

- short beak

fat bod

- long tail

- short tail

- small tail

- big body

- black sharp beaks
- black wings

- broad body

- brown wing

rey yellow body

- having tail

mixe yellow body
S multi colour

) orangg white body

oint beak

: small beak
csmall size
csmall wings

- thick fur
cvery fat body
S Wings

yellow and brown color
yvellow black wings
yvellow color head
yvellow color wing
yvellow feather

vellow fur

- yellow neck



Discovering parts & attribute lexicons

* Analyzing sentence pairs

— Words that repeat across
a sentence pair are parts

list differences

(nouns)
— Words that are different
Red rudder vs. White rudder across a sentence pair are
Pointy nose vs. Round nose from the same semantic
modifier category

— Each sentence has only
one noun and modifier
topic

{Red, White} mms=) Color
{Pointy, Round} m====) Shape



Bipartite Topic Translation Model for Sentence Pairs

Q

O

J

/

(O—D

N

a
/
i
-OT—©
Q

©

For each sentence pair es, fs, s € {1,..., N}

e Sample relation z; ~ Multinomial(0)

e For each word positionz € 1,..., s ineg
— Sample topic ts,; ~ Multinomial (£22,)
— Sample word e, ; ~ Multinomial (Fts,i>

e For each word position 7 = {1,...,Js} in fs
— Sample a; € {1,...,1} x 7w(|a; — j]),
— Sample word f; ; ~ Multinomial (\I/eaj 7taj>



Bipartite Topic Translation Model for Sentence Pairs

@ @ /Topic specific word-word translation

e t f

yellow 28~Tvlack
beak | 5~ 0 hite
\beak

™S

Topics encode parts and modifiers

Bipartite topics: Each sentence has one noun and one modifer topic



Parts & Attributes of Planes

wheel engine wings  front
wheels plane engines rudder wing back  nose 'n body

Pt

tail GLOBAL

one color  pointy propeller smaII white top open right on
two black  round passenger big red bottom closed left near
no sky flat jet large blue middle opened slightly off
single light pointed only medium green down close
three whiteblue sharp military yellow
double ordinary point cargo gray
four colored square orange
dark brown
whitegreen
whitered

200 images, 1000 pairs, 1c/pair



Parts & Attributes of Planes

wheel engine

wheels plwﬁs rudder

wings  front
wing back
3 J

nose fa&g body tail GLOBAL

one color pointy propeller small | white top open right on
two black  round passenger big red | bottom closed left near
no sky flat jet large blue | middle opened slightly  off

single light pointed only mediumj green § down close
three whiteblue sharp military yellow
double ordinary point cargo gray
four colored square orange
dark brown
whitegreen

whitered



Parts & Attributes of Planes

engine wings front

color  pointy propeller smaII white top open right on

black  round passenger big red bottom closed left near
no sky flat jet large blue middle opened slightly  off
single | light pointed only medium green down close
three hiteblue sharp military yellow
double fordinary point cargo gray
four Jcolored square orange

dark brown

whitegreen

whitered



Parts & Attributes of Planes

wheel engine wings  front

wheels pIWer wing back  nose | facing | body tail GLOBAL

one color pointy propeller small  white top open
two black  round passenger big red bottom closed
no sky flat jet large blue middle opened] slightly

single light pointed only medium green down close
three whiteblue sharp military yellow
double ordinary point cargo gray
four colored square orange
dark brown
whitegreen

whitered



Attributes of Birds

feather

bird wings feathers neck head
(g 3

eyes

t

sparow brown black fat sharp

short pointyf duck § blue white slim round
sparow fyellow orange silm flat

small pointed
large  point gray lean normal
big bend} eagle § red shaped
bended dove [green curved
pointlyy pigeon Bpotted blunt

slightl ind ash little
light rounded
ordinary

in

fur
3

GLOBAL
J

200 images, 1600 pairs, 1c/pair

One image per category CUB200



Parts & Attributes of People

hand shap the
hands hair facing snape picture spectacles in glass bag watch  glasses GLOBAL
) ) > £

. = |
;%/

. o 5 c © 0/ . d » [ ® 2 3

J J J

towards man baby shirt wearing  asian side black single dark fat female full indoor inside long women  young two sitting no
left lady adult tshirt not caucasian back white couple light slim male half outdoor outside  short men old one standing  with
right woman child jacket  smiling africans  front blue 2 fair normal of door out small  womens older three  walking without
backwards  boy kid dress  having asians backside brown non tee thin sleeve homely handed shot middle both riding alone
forward girl children coat latin frontal blonde double sky lean only stage mature somebody cycling bald
sidewards ladies adults  tshirts western  toward red group show fit fully elderly  weight sleeping
turn green couples bright average sleeveless dancing
turned gray many lighter  skinny jeens driving
rear yellow 3 design close
sideways colored medium partial
upright pink thick rain
us orange thinning
torso
waist

400 images, 1600 pairs, 1c/pair
random images from PASCAL VOC 10



Summary

* Discriminative description is an effective way to
obtain a lexicon of parts and attributes that are

useful for fine-grained discrimination

e Simple analysis of such text can help discover topics
that encode parts, modifiers and their relations.



Obijects in Detalil

Parts & attributes

A new dataset

* An obiect lexicon

Layouts
Recognising attributes

Overview

Stuff in Detalil

Texture

e A texture lexicon

A new dataset

* Transformation invariant
semantic

Parsing
Bottom-up inference

e Learning to merge

« Cascading

» Scoring regions by
attributes



Localizing parts

Ross Girshick

University of Chicago

"
— ]



Find airplanes with propellors on their noses

N R Not on nose!
.i A histogram ;c spatial histogram bad . .
G BRI Mg Confusing occlusion
Context?
Coarse model

(e.g., BoW black box)

Use parts to align vision models with language




Overview of approach

Q: Propellor on nose? 1. Candidate part detections (this talk)




Why semantic parts?

Deformable parts model Detection

............

: : ” ‘\~ [
v \ - N et et 5 1 —aal ’
USNUSEISED! [N WSO Id LS EIRILE Y & AL PR A T
e - :/
SIS i e Object detection o
: | X

Structured, but not aligned
(parts learned without supervision) Vertical stabilizer

?
(but we don’t know that!) Nose:

® \Without semantic parts

- the semantic alignment is unknown or nonexistent
B show me the vertical stabilizer
- no ground-truth for debugging performance bottlenecks

B are the part detectors failing?  is the spatial model too rigid?

PP Tt et e Lt Sk o




Part detection: evaluation metric

® Task: predict part bounding boxes

Part detection

Test image Scored candidate detections

® PASCAL VOC Challenge evaluation

- Sort candidate detections by confidence score
- @Grade each as true positive or false positive (overlap > 0.5)
- Precision-recall curve & average precision (AP)

Ground truth B,

_ |Bgt N By

precision

By B,

overlap(Bgt, Bp)

a |Bgt U Bp| ZE _L_‘_

0 0.1 0.2 0.3 04 0.5 0.6 07 0.8 0.9 1
Predicted B o recall



Training data

Vertical stabilizers

-

2 1l




Baseline part detector

® Model: mixture of filters on gradient orientation (HOG) features

Vertical stabilizer (k

[
2

Nose (k=6)

® \Weak supervision (bounding box only; position, scale, mixture all latent)

® Trained with latent SVM

- mixtures initialized by aspect ratio clustering



Precision

Precision

Baseline part detector results

Nose

0.5r

0.4r

0.3

02{ — AP 0.573 (k=6)
..l— AP 0.608 (k=20)
AP 0.647 (k=40)
00 011 012 013 014 0.5 016 017 018 0‘.9 1‘
Recall

Wings (grouped)

—AP 0.158 (k=6)
— AP 0.200 (k=20)
AP 0.228 (k=40)
0 011 012 013 014 016 017 018 0‘.9 1‘

0.5
Recall

Precision

Precision

Vertical stabilizer

o2t — AP 0.423 (k=6)
o:.||— AP 0.555 (k=20)
AP 0.570 (k=40)
00 ‘ ‘ 013 014 0.5 016 0‘.7 018 019 1‘
Recall
Wheels (grouped)
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
ol AP 0.399 (k=6)
— AP 0.461 (k=20)
00 ‘ ‘ 013 014 016 0‘.7 018 019 1‘

0.5
Recall



Improving part detectors

® Method I: unsupervised left vs right orientation clustering

Vertical stabilizer (k=6) Nose (k=6)

® Method 2: use segmentation masks for shape clustering
does not rely on aspect ratio

X requires additional annotations (ok, we have them)



Leveraging shape annotations

Nose Vertical stabilizer



Precision

Precision

Left-right and shape clustering results

Nose

02— AP 0.647 (k=40) baseline
o.|— AP 0.676 (k=40) I/r
—AP 0.700 (k=40) shape
00 011 012 013 014 015 016 017 018 0‘.9
Recall
Wings (grouped)
1
0.9
0.8
0.7
*T — AP 0.228 (k=40) baseline
— AP 0.269 (k=40) I/r
oal — AP 0.287 (k=40) shape
0.3
0.2
0.1

I
0.1

I
0.2

1
0.3

I I I I I
0.4 0.6 0.7 0.8 0.9

0.5
Recall

Precision

Precision

Vertical stabilizer

021 — AP 0.570 (k=40) baseline
ol — AP 0.589 (k=40) I/r
— AP 0.621 (k=40) shape
O0 011 012 013 014 015 016 0‘.7 018 019
Recall
Wheels (grouped)
! (no shape annotations)
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
ol —AP 0.461 (k=20) baseline
—AP 0.475 (k=20) I/r
00 011 012 013 014 ‘ 016 0‘.7 018 019

0.5
Recall



Localizing parts: summary

® Semantically aligned parts: good for applications and debugging
® Unsupervised left vs right helps tease out shape information

® Shape masks initialization works even better (good for square parts!)



Objects in Detalil
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Estimating Layouts

Putting parts in context

Subhransu Maji
TTI Chicago



Putting Parts in Context

This talk

Similarity of Color & Texture
Shape compatibility
Contour continuity




Spatial Layout Variability

Viewpoint Structural Variability

The need for mixture models



Aeroplane Vert. Stab.

‘ Wings ‘ ‘ Nose ‘ Wheel (Grp.)

Layouts of planes facing east

43 | —— [ ' Dl‘:'|_" 5—‘
East

= dJ0 U 8o 6O

R = =

=
He= _jJ )




Efficiently Sampling Layouts
e Start from top k detections for each of the n parts
* Naive solution : O(k") — all combinations

* Faster solution :‘Hough voting — O( n k #layouts)

. Hough Voting = Voting + Grouping
—— ] ’“VA\ 1--

===y

e -
F ——
d m ey, 24

S -
=l | > || -

LIL\

|
(x12,y12,512,2)

(x11,y11,s11,1) x1n,yln,sln,n)

] - ’:I 'J’_ I 1=

(x21,y21,521,1) (x22,y22,522,2) (x2n,y2n,s2n,n)

Grouping



Scoring and Evaluating a Layout

Measuring overlap

ANB -
AUB

T

Loss(x) = Z Loss(x;) + max(0, #true — #predicted)
" overlap predicting too few

Score of a layout: WTCID(X)

@(X) - features extracted from the part locations

Weights trained using MIL learning



Aeroplane Vert. Stab. Wings Nose Wheel (Grp.)

Independent Predictipn Joint Prediction




Aeroplane Vert. Stab.

‘ Wings ‘ Nose Wheel (Grp.)

Independent Prediction Joint Prediction

W ——
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Part Detections

|

Wheels (Grouped)
F r e 1




Part Detections
Vert. Stab. Wheels (Grouped)




Precision

Precision

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.1

Aeroplane

Part Detection Results

T

T

T

T

T

T

T

— Aeroplane AP 0.932 (Layout)
— Aeroplane AP 0.859

0.1

0.2

0.3

04 05
Recall

Vertical Stabilizer

0.6

0.7

0.8

0.9

— Vertical Stabilizer AP 0.635 (Layout)
— Vertical Stabilizer AP 0.578

0

01

02

03

04 05
Recall

0.6

0.7

0.8

0.9

Precision

Precision

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Nose

T

T

T

T

T

T

T

T

— Nose AP 0.721 (Layout)
— Nose AP 0.670

01 02 03 04 05
Recall

06 07

0.8

0.9

Wheels (Grouped)

Wheels (Grouped) AP 0.519 (Layout)

Wheels (Grouped) AP 0.371

0.1 0.2 0.3 0.4
Recall

05 06

0.7

0.8



Part Detection Results

Wings
1 :

0.9

0.8}

0.7

0.6

0.5

Precision

0.4}

0.3}

0.2

0.1H —— Wings AP 0.094 (Layout) R
0 — Wings AP 0.140

0O 005 01 0.15 0.2 025 03 035 04 045 0.5
Recall

The model has learned to ignore the wing detections




Precisio

0.1f

Layout Estimation Task

(allowed one layout per image)

—— AP=91.2 (82.8) aeroplane

—— AP=66.1 (63.3) nose

—— AP=56.3 (54.5) verticalStabilizer
AP=39.8 (31.5) wheelPhrase

—— AP=05.9 (08.2) wingPhrase

0.2

0.4 0.6 0.8
Recall



How many layouts necessary?

Aeroplane
1
0.97
0.8
0.7r
c
o
5 0.6
o
o
0.5¢
0.4r
— Aeroplane AP 0.859
0.3/| — - Aeroplane AP 0.891 (I = 50)
——-Aeroplane AP 0.932 (I = 134)
2 : ‘ : w
0 0 0.2 0.4 0.6 0.8
Recall

Vertical Stabilizer

—— Vertical Stabilizer AP 0.578

0.1 ——-Vertical Stabilizer AP 0.594 (I = 50)
——-Vertical Stabilizer AP 0.635 (I = 134)
0 I I I L
0 0.2 0.4 0.6 0.8

Recall

Precision

Precision

Nose
1 T
Vo~ ::f:._\:*‘___: .
0.9l SN .
‘ \\\:\\*
0.8} N ]
\\\ \
0.7 \\\ \\\ i
0.6 \ 1
0.5 N ]
. \ \
0.4 \ g
\\\ \\
0.3r \\\ R
0.2r, i
——Nose AP 0.670
0.1 ——-Nose AP 0.669 (I = 50) :
——-Nose AP 0.721 (I = 134)
O T T Il Il
0 0.2 0.4 0.6 0.8 1
Recall
Wheels (Grouped)
1 . 1‘1_4 ‘
0.9 K f
0.8} hONR ]
0.7r -\'\. i‘-& “\1\ B
0.6f AN ]
*\\ A \
0.51 % \‘ i
N \
\ \
L \ i
0.4 \ : \\
0.3r N i
\\
0.2’ \\\ |
—— Wheels (Grouped) AP 0.371
0.1H ——-Wheels (Grouped) AP 0.461 (I = 50) g
——-Wheels (Grouped) AP 0.519 (I = 134)
0 I I L
0 0.2 0.4 0.6

Recall



Summary

Planes have wide variety of layouts due to the view
point and structural differences.

This is a unique property of this dataset, which
enables new directions in research about part
detection (i.e. beyond a few mixture models)

We explored a possible way of representing such
spatial layouts and showed that it improves
detection quite a bit

Appearance layouts will be explored in the future.
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Obijects in Detail

Parts & attributes

* A new dataset
* An object lexicon
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Attributes

isAirliner: ‘yes’
isMilitaryPlane: ‘no’
isSeaPlane: ‘no’

facingDirection: ‘W’
planelLocation: ‘on ground’

wingType: ‘single-wing plane
tailHasEngine: ‘no-engine’
wheel-coverType: ‘retractable




Bag of Visual Words

image dense keypoints  SIFT descriptors  vocabulary

—_

.

visual words histogram spatial histogram

classifier




Current Methodology

representation interpretation
PRI
052
west ¢
’0
i ?
edges, blobs, > b'CVC.|e-
textures > has rider?
g has wheel?

semantic gap



Context is Important

left signaling light



Predict the Attributes

Where is the plane located ?  What kind of aeroplane is it ?

What type of wing does it have ? What direction is it facing ?
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Objects in Detail

Image

Aeroplane

Parts

— Background

— Vertical Stabilizer
— Nose

— Wing

— Wheel

— Fuselage

Undercarriage



isMilitaryPlane:‘yes’

isMilitaryPlane




Image : isMilitaryPlane

.'TZTE'I —tv
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isMilitaryPlane: ‘yes’

Image AP :73.92
Aeroplane

Parts

— Background

— Vertical Stabilizer

— Nose

— Wing

— Wheel

— Fuselage

Undercarriage



Aeroplane
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isMilitaryPlane: ‘yes’

Image

Aeroplane

Parts

— Background

— Vertical Stabilizer
— Nose

— Wing

— Wheel

— Fuselage

Undercarriage

AP :73.92
AP : 83.88

13



Background

14



isMilitaryPlane: ‘yes’

Image
Aeroplane
Parts

— Background

— Vertical Stabilizer
— Nose

— Wing

— Wheel

— Fuselage

Undercarriage

AP :73.92
AP : 83.88

AP :45.23

15



Vertical Stabilizer




isMilitaryPlane: ‘yes’

Image
Aeroplane
Parts

— Background

— Vertical Stabilizer
— Nose

— Wing

— Wheel

— Fuselage

Undercarriage

AP :73.92
AP : 83.88

AP :45.23
AP :71.30

17



Nose

18



isMilitaryPlane: ‘yes’

Image

Aeroplane

Parts

— Background

— Vertical Stabilizer
— Nose

— Wing

— Wheel

— Fuselage

Undercarriage

AP :
: 83.88

AP

AP

AP :
AP :

73.92

:45.23

71.30
75.21

19



Wing

20



isMilitaryPlane: ‘yes’

Image

Aeroplane

Parts

— Background

— Vertical Stabilizer
— Nose

— Wing

— Wheel

— Fuselage

Undercarriage

AP :
: 83.88

AP

AP

AP :
AP :
AP :

73.92

:45.23

71.30
75.21
52.80

21



Wheel

22



isMilitaryPlane: ‘yes’

Image

Aeroplane

Parts

— Background

— Vertical Stabilizer
— Nose

— Wing

— Wheel

— Fuselage
Undercarriage

AP :
: 83.88

AP

AP

AP .
AP :
AP :
: 45.99

AP

73.92

:45.23

71.30
75.21
52.80

23



“Fuselage”

24



isMilitaryPlane: ‘yes’

Image

Aeroplane

Parts

— Background

— Vertical Stabilizer
— Nose

— Wing

— Wheel

— Fuselage
Undercarriage

AP :
: 83.88

AP

AP

AP .
AP :
AP :
: 45.99
: 80.87

AP
AP

73.92

:45.23

71.30
75.21
52.80

25



Undercarriage

26



isMilitaryPlane: ‘yes’

Image

Aeroplane

Parts

— Background

— Vertical Stabilizer
— Nose

— Wing

— Wheel

— Fuselage
Undercarriage

AP :

73.92

AP

: 83.88

AP

AP .
AP :
AP :
: 45.99
: 80.87
:45.63

AP
AP
AP

:45.23

71.30
75.21
52.80

27



background

nose
verticalStabilizer

wing

wheel

fuselage

Combined parts

v

v

v

v

v

v

J \

Combined
parts

28



isMilitaryPlane: ‘yes’

Image
Aeroplane
Parts

— Background

— Vertical Stabilizer
— Nose

— Wing

— Wheel

— Fuselage
Undercarriage
Combined parts

AP
AP

AP

AP .
AP :
AP :
: 45.99
: 80.87
:45.63

AP
AP
AP

: 73.92
: 83.88

:45.23

71.30
75.21
52.80

AP

: 87.92

29
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Parts & Attributes - fuselage

sisAirliner (1.5;nose)
sisCargoPlane (18.19)
"isMilitaryPlane (5.66)
"isPropellorPlane (0.68;nose)
sisSeaPlane (42.51)
=isGlider (9.43)

"planeSize (7.52)
"noseHasEngineOrAntenna
(0.53;n0se)

"wingHasEngine (1.34;nose)
"wheel-coverType (6.8)




Parts & Attributes - wheel

"planelocation (1.72;background)
"undercarriageArrangement (8.98)
*wheel-location (2.69)

32



Parts & Attributes - nose

=facingDirection (3.96)
"wheel-groupType
(1.18;fuselage)

33



Parts & Attributes - wing

"wingType (1.94;fuselage)

34



Parts & Attributes - verticalStabilizer

"tailHasEngine (3.28)

35



AP
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Attribute Recognition :
Using Part detections

::V\//“f\ i

40

=% Part Detections
—m- Ground Truth
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Conclusions

Some regions of an image are more informative
than others for a given task

Utilizing part segmentations to add structure to Bag
of Words improves performance significantly

Fuselage and Wheel are the two most important
parts accounting for 13/17 attributes

Understanding which parts are more important can
help focus effort in part detection stage
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Attribute prediction using part-based models

e Task:

* Isairliner? (yes/no)

* Is military plane? (yes/no)

— * Isfacing East? (yes/no)

* Does nose have engine? (yes/no)
* |s Lufthansa plane? (yes/no)

Given an object detection, predict the attributes of the object.

Here we focus on geometry based features which encode spatial
layout of object’s parts



Layout features

* We cluster the geometric layouts of parts

* Given 5 airplane parts we concatenate their 5 bounding boxes into a 20-
dimensional feature vector and perform kmeans clustering

* The closest cluster centers for a few ground truth detections:

* Each detection is assigned to the closest one of the k clusters
= k-dimensional binary feature vector to attribute classifiers



Layout features when the number of parts is varying

Some detections may have all the parts but some may have less parts

We cluster all possible detection configurations separately (16 in total)

We get different layout vocabularies for different configurations

We train attribute classifiers separately for each configuration
(but training data is partly shared)

In order to enhance robustness to hallucinated parts, the final feature
vector is obtained by concatenating the layout features of all sub-
configurations



Example

 Can you say whether this layout refers to a jet airliner or a propellor plane?

il

e Precision-recall curves for ground truth boxes in the test set:

isAirliner (yes) (pos/neg 31.4% / 68.6%) isPropellorPlane (yes) (pos/neg 56.4% / 43.6%)
e e — L B B L S S — — N A R
09 f i ........ ....... R
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06k ......... ........ ........ ........ ........ ........
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137 RSO USROS SUUUROE SOSUPUPN SUUUOROS UURUOTE SOUTURON: SOOPUPRE SUTROOE ORI

03k P e IO PO e s P P e | : : : p
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Additional examples

* Precision-recall curves for ground truth boxes in the test set:

facingDirection (E) (pos/neg 17.4% / 82.6%) noseHasEngine (yes) (pos/neg 44.2% / 55.8%)
'——_ T T T B e s s S N S S S

09F 09F

08F 08F

07F 07k

06F 06F

05F 05F
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Using both layout and bags-of-words from all parts

 We extract the layout features (as explained on previous slides)

 We train first-layer attribute classifiers for each part+attribute pair
using a single bag-of-words histogram as a feature

 We take the scores from the first-layer classifiers of detected parts
and use them with the layout features to train the final second layer
classifier for each attribute

* At test time, we apply the classifier that is designed for this particular
detection configuration, i.e., different classifier for "airplane+nose”
detections than for “airplane+nose+tail” detections



Results

Bag-of-words features from all parts + layout features give best results:

68.6%)

=

0gf--
08}
07F
06}
05f
0.4

03F

isAirliner (yes) (pos/neg 31.4% /

T

02F

01k
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Layout)
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1
0 0.1
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07F
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03F
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01
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noseHasEngine (yes) (pos/neg 44.2% /
e

55.8%)

AP 0.93
AP 0.91
— AP 0.95

(
(
(
(

BoWpart)
Layout)

BoWpart+Layout) |:

0

1
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0.3
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Mean average precision over all 54 binary attributes:
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Layout 0.43

BoWpart 0.53

1
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BoWpart+Layout 0.56



a|rI|ne (France Alr Force) (pos/neg 1 4% / 98.6%) a|rI|ne (EasyJet Alrllne) (pos/neg 0. 7% / 99 3%)
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Conclusion

Part detections have potential to improve attribute predictions
Part detections can be utilized in many ways

Experiments show that bag-of-words features and layout features are
complementary and best results are obtained by using both

In future it would be necessary to combine object detection (object
+parts) and attribute prediction into a single pipeline

In addition, one could consider object detection and attribute
prediction jointly (e.g. by using feedback from attribute classifiers to

choose the best combination of part detections)



Overview

Objects in Detall Stuff in Detall Parsing

Parts & attributes Texture Bottom-up inference
. _ * A texture lexicon * Learning to merge

* An object lexicon * A new dataset * (Cascading

* Localising parts * Transformation invariant * Scoring regions by

* Layouts semantic attributes
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The Annotation Process

Image Collection

bad

verification
by CLSP
participants

initial filter
by CLSP
participants

good



Collecting Data: Parts and Attributes

Check the examples below carefully.

« To add a polygon. Click on the point where you want the new polygon to start, then on the second point, the third, and so on. The polygon is completed
by going back to the first point, closing the figure.

To edit an existing polygon. Click and drag any of the blue points on the polygon to adjust it.

To select a polygen. Click on a control peint or near a segment. The selected polygon appears in red.

To delete the selected polygon. Pressd or D.

To delete all polygons. Press R (capital R).

Good Annotations ‘Bad Annotations

Good: marks the two wings separately; includes the whole extent until . N S N P, -
the junction with the fuselage; includes the wing flaps. Bad: does not mark the right wing; marks an horizontal stabilizer as a wing.

DA



Getting To Know The Data

- —




K-Means




PCA: Eigenplanes




Gaussian: Unlikely
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Annotation Problems

v

Instructions had bounding boxes and polygons in same picture.
Turkers didn’t read instructions.

v

» Thought they had to trace every outline.
» Ended before desired end of nose or wing.

Turkers were careless.

» Miss parts.
» Loose outlines.

v

v

Didn't realize they were annotating a new part.

v

Didn't bother annotating anything.
Got frustrated.

v




Verifying Annotations: Manually

» Juho and Esa created tools for manually verifying annotations.

» 7700 planes, 10 parts, 3 annotations per part per plane per
pass-through, some required several pass-throughs.

» Tool for correcting borderline polygons.



Verifying Annotations: Automatically

» PCA

» SVM

> l|dentify worst annotators, invite only best back to annotate
other parts.



SVM: Metadata

> features

mask pixels

vertex count

annotator ID

time spent annotating

L1 normalized histogram of angles in polygon

PCA likelihood: Likelihood of annotation being an annotation
of a different airplane part.

v

vV vy vy VvYy

» combinations

baseline: Accept every annotation.

mask

vertex count, annotator ID, time

angle, vertex count, annotator ID, time

mask, vertex count, annotator ID, time

angle, vertex count, annotator ID, time, PCA likelihood

v

vV vy vy VvVYy



SVM: Results

airplane vert stabilizer nose
baseline 76 92 94
mask 80 94 94
angle, CAT 80 92 95
CAT 79 92 95
mask, CAT 82 92 94
angle, mask, CAT, PCA 76 02 94

CAT = vertex Count, Annotator ID, Time spent annotating



Future Work

» Polygon edge-feature edge similarity
> Use new part classifiers to bootstrap validation

> Incorporate these tools more into verification process
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Nameable textures

Visual texture

— Natural processes

Man-made structures

REMALE WANMLAF O WOWEEIU M 8 AE rimessias waess

The number of possible intensity images
notes the number of allowable gray level:
direct search, even for small (m = 64), t
Consequently, one is usually obliged 1
assumptions about the image and degrac
a5 compromises at the computational si
putational problem is overcome by expl
servation that the posterior distribution i
approximately the same neighborhood
nal image, together with a sampling m
the Gibbs Sampler. Indeed, our princ
tribution is a general, practical, and mat
approach for investigating MRF's by sa1
and by computing modes (Theorem




Nameable textures

What defines a texture?

« What is common in these images?

— No common deterministic model
— Statistical properties..

“What features and statistics are characteristics of a texture pattern, so that texture
pairs that share the same features and statistics cannot be told apart by pre-attentive
human visual perception?” ---- Julesz 1960s-1980s




Nameable textures

Texture analysis and image processing

:1;2—|— 2
2D Gabor-filters ~ Guywo,o (. Y) !

) exp(jwrx + way)

|

“periodicity detectors’




Nameable textures

Multi-scale and multi-orientation texture analysis

Multiband Demodulation

~ Analysis
A% -




Nameable textures

Texture analysis and visual words’

« K-means on SIFT descriptors ~ textons
« Bag-of-Words/Spatial Pyramid models

input representation




Nameable textures

What can we do with texture?

High-dimensional description of an image patch

Roughly translation invariant (stationarity assumption)
Potentially scale & orientation invariant

Texture = features




Nameable textures

Texture segmentation

Y
Zhu & Yuille, Region Competition, PAMI 1996

Delong et al, Fast Approximate Energy Minimization with Label Costs, IJCV 2012




Nameable textures

Texture classification

Brodatz 98 textures (Caltech 101 of the 90’s)

L L !
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Nameable textures

Texture-based labelling

sky
bullding

aeroplane bicycle

building
grass building bullding

sky
bullding

bullding

aeroplane bicycle

building grass

Figure 3. (Best viewed in color). Example images (top), and segmentations using PLSA (middle) and PLSA-MRF (bottom), with topics
learned from image labels.

gion Classification with Markov Field Aspect Models, Verbeek and Triggs, CVPR 07

building | building
car bicycle

road road

Textonboost for image understanding, Shotton et al, IJCV 07




Nameable textures

What can we do with texture? (revisited)

Soaring heights and unfathomable lows of vision (recognition, segmentation)
We want something in between

Not too high: decoupled from object-specific aspects (color, pose, occlusion..)

-stationary & "pure’
-shareable across categories

Not too low: semantic (e.g. “striped’, "dotted’, "honeycombed’, etc.)

-interpretable by humans
-categorical
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Nameable textures

Nameable textures

Human-centric merit: use texture in image queries

Vision-centric merit: stratification of “texture jungle’, "debuggable’ vision models

Is there a proper lexicon for textures?

COGNITIVE SCIENCE Vol 21 (2) 1997, pp. 219-246 ISSN 0364-0213
Copyright ©® 1997 Cognitive Science Society, Inc.  All rights of reproduction in any form reserved.

The Texture Lexicon:
Understanding the Categorization
of Visual Texture Terms and Their

Relationship to Texture Images

NALINI BHUSHAN
Smith College

A. RAVISHANKAR RAO
IBM Watson Research Center

GERALD L. LOHSE
The Wharton School, University of Pennsylvania

In this paper we present the results of two experiments. The first is on the cat-
egorization of texture words in the English language. The goal was to deter-
mine whether there is a common basis for subjects’ groupings of words related
to visual texture, and if so, to identify the underlying dimensions used to cate-
gorize those words.

Eleven major clusters were identified through hierarchical cluster analysis,
ronlgilJlg from ’nrndorln' to "ropoﬁﬁ!:’. These lclushr: rom?inod infac:‘t in. a




Nameable textures

COGNITIVE SCIENCE Vol 21 (2) 1997, pp. 219-246 ISSN 0364-0213
Copyright ® 1997 Cognitive Science Society, Inc.  All rights of reproduction in any form reserved.

The Texture Lexicon:
Understanding the Categorization
of Visual Texture Terms and Their

Relationship to Texture Images

NALINI BHUSHAN
Smith College

A. RAVISHANKAR RAO
IBM Watson Research Center

GERALD L. LOHSE
The Wharton School, University of Pennsylvania

In this paper we present the results of two experiments. The first is on the cat-
egorization of texture words in the English language. The goal was to deter-
mine whether there is a common basis for subjects’ groupings of words related
to visual texture, and if so, to identify the underlying dimensions used to cate-
gorize those words.

Eleven major clusters were identified through hierarchical cluster analysis,
rongigg from ’r?ndom’ to ’lropoﬁﬁv‘:’. These ::Ius'on rom::inod intact in a

Intended to be a thorough list of words
used in describing surface texture.

Started with a list of 367 words, cut
down to 98.

Examples: entwined facetted fibrous flecked flowing fractured freckled frilly furrowed gauzy gouged
grooved holey interlaced intertwined knitted lacelike latticed lined matted meshed messy mottled
netlike perforated periodic pitted pleated porous potholed random regular repetitive rhythmic ridged
rumpled scaly scrambled spattered spiralled sprinkled stained stratified striated studded twisted veined

webbed winding wizened woven




Nameable textures

Challenges

Several words are not easy to pin down:

Scrambled, regular, messy, jumbled, random, disordered, indefinite, complex...

Based on a Google image query for each word, we assigned to each word a
level of difficulty.

List of words with difficulty <7/10:

Uniform, Smooth, Dotted, Checkered, Grid, Spotted, Polka-Dotted, Waffled, Marbled,
Zigzagged, Corrugated, Honeycombed, Speckled, Fibrous, Flecked, Facetted, Flowing,
Fractured, Flecked, Frilly, Furrowed, Gauzy, Gouged, Grooved, Holey, Interlaced, Intertwined,
Knitted, Lacelike, Latticed, Whirly, Swirly, Ribbed, Cracked, Banded, Wrinkled, Crosshatched




Nameable textures
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Nameable textures

Google query results for Ribbed’

"Wrong’
Additional challenges: duplicates, watermarks, resolution, blur, noise

Strategy: get good data for now, and leave partial data for later




Nameable textures

Amazon Turk instructions

lAnnotation instructions for Honeycombed textures

Task: classify images as Good, Partially good, Bad.

IAnnotation instructions for Polka-dotted textures

Task: classify images as Good, Partially good, Bad.

IGood: most (more than 90%) of the image is Honeycombed.
[Partially good: only part (less than 90%) of the image is Honeycombed.

[Bad: the image has no Honeycombed region.

IGood: most (more than 90%) of the image is Polka-dotted.
[Partially good: only part (less than 90%) of the image is Polka-dotted.
[Bad: the image has no Polka-dotted region.

[To decide between good and partially good, estimate the number of pixels that are Polka-dotted.

[To decide between good and partially good, esti the ber of pixels that are Honeycombed

IGood Pl.ka~dotted ples: (most than 90% of the image is Polka-dotted)




Nameable textures

Validation results: honeycombed

3/3 goo
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© oboy * www.ClipartOf.com/77933




Nameable textures

Validation results: polka-dotted

3/3 good

3/3 bad




Nameable textures

Validation results: cracked

Folowers

ASOY

—esignereal




Nameable textures

Validation results: marbled

© arena creative * www.ClipartOf.com/90675

2008/10 48




Nameable textures

Validation results: swirly

Brodatz:

3/3 bad

Stripy,

What Are PMTERNS’S
=, i




Nameable textures

Validation results: waffled
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Nameable textures

Validation results: wrinkled

© www.harrycutting.com
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Nameable textures

Validation results: spotted
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Nameable textures

Validation results: holey

Ko-VALLT-minbag-12

Ko-VALLT-minbag-01
Ko-VALLT-minbag-05.
/

Ko-VALT-minbag09  Kb-VALLT-minbag-10
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Nameable textures
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Nameable textures

Baseline results

SVM classifier for bag-of-words with k-chi kernel k(z,y)

Confusion matrix (39.58 % accuracy)

chequred
corrugated
cracked
dotted

frilly

holey
honeycombed
intertwined
knitted
marbled
polka-dotted
spotted
striated
swirly
waffled

wrinkled

chequwenugaterdckediotted frilly hdlepeycontbewindditte chariplelifa-dokpdttestriatedswirlyw affledrinkled



Nameable textures

Intra-category variability

Images for "banded’ category

Scale and orientation: nuisance parameters




Nameable textures

Sneaking in

mom’s keychain grandma’s keychain dad’s keychain

@

We know that dad cannot enter

Which key should we try?

Slide Credit: B. Babenko/T. Dietterich




Nameable textures

Multiple Instance Learning

Typical Learning Multiple Instance Learning

S ={(",y")} S ={({="" .. a1y}

N

y' € {0,1} 2* € X B;
F:X —{0,1}

Positive bag: at least one instance should be positive max F(Qj) — yi

Negative bag: no instance should be positive rcB;




Nameable textures

Multiple Instance Learning + BOW

Confusion matrix (40.42 % accuracy)

chequred
corrugated
cracked
dotted

frilly

holey
honeycombed
intertwined
knitted
marbled
polka-dotted
spotted
striated
swirly
waffled

wrinkled

chequenugatedckediotted frilly hdlepeycontbdwin&dittechariplelta-dokpdttestriatedswirlyw affledrinkled



Nameable textures

Fisherfeatures

BOW problem: part of the signal is “lost in quantization’

"Fisherfeatures’ : replace vector quantization through GMMs

T. Jaakkola and D. Haussler, Exploiting Generative Models in Discriminative Classifiers. NIPS 1998

F. Perronnin, J. Sanchez, and T. Mensink. Improving the fisher kernel for image classification. ECCV, 2010.

K. Chatfield, A. Vedaldi, L. Victor, and Z. Zisserman. The devil is in the details: an evaluation of recent
feature encoding methods, BMVC 2011




Nameable textures

The more, the merrier

Confusion matrix (23.37 % accuracy)

10 20 30 40 50 60 70 80



Nameable textures

Nameable textures: a roadmap for visual textures
A new dataset for texture category classification

Multiple Instance Learning & Fishervectors for texture models

sliding window/superpixel-based scoring

texture-based superpixel merging

Future work: texture-based object detection

semi-supervised learning




Nameable textures

Texture lexicon: a stratification of visual textures

A new dataset for nameable texture classification

98 Categories, 30-100 words per category

Cast texture representation in multi-class classification terms

Multiple Instance Learning of texture models
4

S




Bottom-Up Image Parsing
Part 1

Karén Simonyan, David Weiss,
Andrea Vedaldi, Ben Taskar



What Is Bottom-Up Image Parsing?

* Image parsing: decomposing an image into a set of
meaningful structures (e.g. objects, parts, boundary-
aligned segments)

* Bottom-up parsing: start with a set of primitives (e.g.
super-pixels) and gradually merge them into larger
structures



Motivation

High-level
reasoning using
rich models

object
segmentation detection
fast image parsing
into a multi-scale
pool of segments



Our Approach

Greedy merging (agglomerative clustering):
e start with over-segmentation into super-pixels

* at each step, spatial neighbors with the highest score are
merged

merging video



Related Work

Super-pixel grouping

e C(Classification Model for Segmentation [Ren, 2003]

e Optimal Contour Closure [Levinshtein, 2010]

* Efficient Region Search for Object Detection [Grauman, 2011]

Greedy merging

* gPb-owt-ucm [Arbelaez, 2010]
e Selective Search for Object Recognition [van de Sande, 2011]

Top-down merging
* Unifying Segmentation, Detection, and Recognition [Tu, 2003]



Scoring a Merge

Scoring model for segments (.51, .52) :

f (Sl, SQ) — g (Sl U SQ) — ad(Sl, SQ)

"objectness” distance
of segments union between segments

Complementary cues:
e distance is effective on uniform areas

* objectness captures appearance cues
= how an object/part should look like
" inter-segment variability can be high




Scoring Function Learning

f (Sl, SQ) — g (Sl U SQ) — ad(Sl, SQ)

Discriminative learning from ground-truth
segmentation

low score

Goal — learn a scoring model:
e pairinside an object — high score

e pair crossing the object — low score

Two research directions:

e Distance metric learning

high score

* Objectness learning (next talk)



Distance Learning

- . _ 1 v (i) o)
Segment distance: dA(Sl,SQ)_mn;j:1dA(Sl ;S50

distance
between
super-pixels

Mahalanobis distance for super-pixels:

da(U,V) = (¢v — ¢v)" Algu — ¢v)

Learn A from the constraints:

c da(Up,Vp) < A; if segments belong to the same class
cda(Un,VNn) > As if segments belong to different classes



Distance Learning (2)

Convex max-margin objective:

. A
glé% Z max(da(Up, Vp)—A1,0)+ Z maX(AQ—dA(UN,VN)»@"‘EHA”%
(Up,Vp) (Un,VN)

Solver: stochastic projected sub-gradient method

* projection on the cone of P.S.D. matrices by eigenvalue
truncation

e stepsize y; = 1/(At) due to strong convexity



Super-Pixels and Visual Features

* Super-pixels
" Graph-based [Felzenszwalb, 2004]
= SLIC [Achanta, 2012]

« Conventional features: bags of visual words
. 5 .
* Dense multi-scale SIFT (500-D histogram)

= Lab color (200-D histogram)

 Work in progress: boundary and shape features

= Boundary strength, smoothness
= Segment perimeter to area ratio



Datasets

* PASCALVOC 2011
= 20 classes, single model
" training & validation - 1111 images
= testing- 1112 images

* Airplanes
" single class
" training & validation - 2958 images
= testing - 2979 images




Evaluation Measures

* Segmentation proposal recall

= each segment is treated as a putative

segmentation mask P . | gy
|GT N Prop| TSSSSSSS =
|GT U Prop| S

= recall —ratio of objects for which a good

proposal (s > 0.5) exists

* ground-truth overlap ratio: s =

e Overlap Ratio Best Case (ORBC)

= "pest case" segmentation — union of
segments with high ground-truth overlap

= ORBC - overlap ratio of the "best case"
segmentation

...........

" upper bound on segmentation accuracy s=0.95



ORBC

Results: Learnt vs Euclidean

0951 Alrplanes 095 PASCAL VOC 2011
09
09 r 085
0.8
085
) 0.75
@
o
O o7t
08
0.65
075 e
=== Euclidean distance A8 T === Euclidean distance
Learntdistance Learnt distance
0? 1 1 I I ] 05 1 1 I I ]
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Segments number Segments number

ORBC

| Airplanes | PASCALVOC2011

Euclidean 0.638 0.601
Learnt 0.673 0.601

Proposal recall



Summary

Fast bottom-up parsing — a pre-processing step for high-
level vision algorithms (< 2 s/image)

Two complementary merging cues
= distance between segments
" appearance of segment union

Distance learning leads to slight improvement with off-
the-shelf features

Appearance learning — 2" part of the talk...



Learning Appearance
Models for Bottom-Up
Parsing (LAMBUP)

David Weiss, Karen Simonyan,
Ben Taskar, Andrea Vedaldi



Re-cap: Greedy Merging



Re-cap: Greedy Merging

Objective:
s(i,j) = Objectness(Union(i,j)) - Distance(i,))



Re-cap: Greedy Merging

Objective:
s(i,j) = - Distance(i,))

] | 5T ”
i i e | R TS
o ~;,___vi‘f~‘u-




Objectness Features

Objective:
s(i,j) = Objectness(Union(i,j))

s(1,7) = WTf(ZEi, T;)

f = [color, texture, - Distance(i,)) ]



Learning the VVeights

Bad merges
:l[ el L6
i it




Learning the VVeights

Good merges
el o8
i i




Learning the VVeights

N:Bad merges P: Good merges x:lmage

1
min —||w||?
2
w ' f(2y,2,) < -1+, Y(u,v) € N”

w' f(z;,z;) >1-¢&5, VY(i,j) € P°

“Standard SVM” Formulation




Learning the VVeights

In practice, difficult to score all positives
above threshold

Not all pairs need to be merged: Labels are
ambiguous

Can incorporate into learning for more
robust procedure



Learning the VVeights

N:Bad merges P: Good merges x:lmage

min%HWHQwLCZ &g, + &

r (u,v)EN?®
w ' f(2y,2,) < -1+, Y(u,v) € N”
1 -
WTf@j vy X Lo, ) > V(6 fpe P

(i,7)€P*
“Ambiguous Labels” Formulation




Learning the VVeights

“Ambiguous Labels” Formulation

Bads

i “‘%.\ ' ‘ ““““ mﬁ i@— .»?‘_J
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Evaluation

® Output destined for object detector

® Propose object segmentations

® One merge = One Proposal



Evaluation Proposals

® One merge = One Proposal




Evaluation Proposals

0.7399

e Compute
Intersection
over Union

(loU)

® loU>=05=
(‘hit”

® Measure
recall




Evaluation Proposals

Distance Only 67.0
Standard SVM 71.5
Ambiguous Labels 72.9




Improving Iraining Data
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Improving Iraining Data

| Recall
Viethod necall \
(Improved)
Distance Only 67.0 --
Standard SVM 71.5 75.9
Ambiguous Labels 72.9 75.7

Fixing data --> easier to learn



Work-In-Progress

® Merging = Changing Feature
Distribution

® Model should adapt

® Solution: novel cascade architure

Implemented, but not enough features



Objectness Helps!

T

;
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aeroplane
bicycle
bird

boat
bottle

bus

car

cat

chair

cow
diningtable
dog

horse
motorbike
person
pottedplant
sheep
sofa

train
tvmonitor

0.42
0.07
0.67
0.26
0.39
0.41
0.34
0.80
0.38
0.66
0.44
0.65
0.65
0.49
0.37
0.39
0.52
0.69
0.39
0.59

0.44
0.07
0.63
0.27
0.30
0.25
0.35
0.76
0.36
0.63
0.46
0.66
0.65
0.47
0.40
0.38
0.53
0.66
0.39
0.59

FS
0.50
0.06
0.71
0.27
0.35
0.41
0.35
0.84
0.36
0.62
0.49
0.65
0.62
0.46
0.39
0.39
0.52
0.75
0.42
0.59

FP
0.40
0.06
0.63
0.27
0.33
0.25
0.33
0.78
0.37
0.66
0.49
0.65
0.65
0.47
0.39
0.40
0.52
0.69
0.42
0.60

Base
0.53
0.08
0.67
0.40
0.39
0.46
0.38
0.85
0.43
0.62
0.54
0.57
0.58
0.61
0.38
0.40
0.46
0.75
0.63
0.68



Improving Iraining Data

H/ o\ ale
o [ .\C\.a.t
<Iay ale

K
»
ct

(@
0)
7,9
(q
.

[

(Improved)

Distance Only 52.0 --

Standard SVM 47.8 48.7

Ambiguous Labels 46.3 46.7
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. "
,







LabSIFTPairwise+LabSIF TUnary




Objects in Detail

Parts & attributes

* Anew dataset

* An object lexicon

* Localising parts

* Layouts

* Recognising attributes

Overview

Stuff in Detall

Texture

* Atexture lexicon

* Anew dataset

* Transformation invariant
semantic

Parsing
Bottom-up inference

* Learning to merge

‘Cask




Part/Attribute Queries

@ A person may be interested in querying a set of images for
objects that have certain properties

» An aeroplane with a red, pointy nose




Bottom Up Proposals of Parts/Attributes




Scoring Functions

@ First approach: train a discriminative classifier for every possible
class/part/attribute

fcat([) ﬁurry(]) ﬁ’urry-{-cat(I)

17.3 16.8 19.2

14.6 -3.2 -0.6



A Naive Independence Assumption

@ k mutually-exclusive class/parts, m binary attributes —
(k 4+ 1)2™ — 1 possible scoring functions

@ Insufficient sample of complex part/attribute combinations

@ Exponential training cost

p(brown’fu/r-ry’ Cat) 6fbrown(1) . effurry(l) . efCat(I)

x
—
In p(brown, furry, cat) = forown() + frury(I) + feat(I) + D

@ Linear training cost

@ Disregards the high statistical dependence between cat and furry



Joint Discriminative Training

@ Formulation as regularized risk

geQ

@ |Q| is exponential, and we therefore need to sample a subset of
basis queries, ()

q€Q

@ () is a very general parametrization of discriminative models



Basis Queries

@ For simplicity, consider only conjunctions: brown A furry A cat

@ Encode as a binary matrix

cat dog brown furry
q 1 0 0 0

» 0 1 0 0
q3 0 0 1 0
a 0 0 0 1



Relationship to Graphical Models

@ Hammersley-Clifford theorem

In p(JJ Z fc(CEc) +b

Cecl(G)

cat dog brown furry
o 10 0 0 Cat Dog

@ /

43
Furry Brown

44
a5
de
qr

OO~ O OO
== O OO
O O OO
R O R~k OO



Vector Valued Functions / Query

Covariances

@ A vector valued function returns a vector ouput for any input.
@ One may specify a covariance structure, B, between outputs.

o With a separable kernel, k(z, y,i,2",y',5) = k(z,y,2', y')B;
and Kg = Kjoint ® B

@ B, ; should be large if outputs 7 and j are similar, and small
otherwise.

@ We will set each of our outputs to be the scoring function of a
prediction for a given part/attribute query, and B will measure
how similar those scoring functions should be.



Application to Part/Attribute Queries

@ A part/attribute query can be encoded in a binary string as
nose ... wing | striped red pointy

1 ... 0 0 1 1
call the mapping of a query, ¢, to this binary string ¢(q)

follows: we will

o Set Bi; = (@), v(4))
@ We specify a set of basis queries, @ = {q1,..., ¢k}

@ Train vector valued regression with the submatrix By
corresponding to the basis queries

@ Infer functions for novel queries using their relationship to basis
queries



Joint Kernel between Images and Boxes:

Restriction Kernel

o Note: z |, (the image restricted to the box region) is again an
image.

@ Compare two images with boxes by comparing the images within
the boxes:

kjoint((x7 y)7 (‘Z./; yl) ) = k’image(x ’y’ xl |y’7)

@ Any common image kernel is applicable:
» linear on cluster histograms: k(h,h') =", hih!,

hi—h!)>?
» x*-kernel: ky2(h,h') = exp <—%, > (hi+’:z{) )

» pyramid matching kernel, ...

@ The resulting joint kernel is positive definite.



Restriction Kernel: Examples

is large.

is small.

could also be large.
@ Note: This behaves differently from the common tensor products

Fjoint ( (2,y), (2", 9/) ) # k(z, 2")k(y, ) !



Evaluating Bounding Boxes

@ Area of Overlap (AO) Measure

Ground truth B,

__ |Bgt N Byl
iy AO(Bgt, Bp) = 15, JB,|

gt P

Predicted BP

@ Set a threshold such that AO(B,, B,) > t indicates a correct
detection: 0.5

PASCAL VOC

o Define a loss function A(By, B,) =1 — AO(By, B,).



Structured Output Ranking

@ Given a joint kernel map, ¢, learn an objective that orders
outputs correctly

min  AQ(w) + % Z §ij (1)

weH,E
(i,7)e€
margin rescaling
—_—~
s.t. (w, (@i, yi)) — (w, 0(z, 95)) = By — Dy — &
éij
A — A,
slack rescaling

§; >0 (2)

or  (w,p(z, y;)) — (w, (75, 9;)) > 1 -



Transferring to Previously Unseen Queries

@ Given basis queries, we may jointly learn a set of functions by
combining ranking objectives subject to a joint regularization of
basis queries: Q(fi,..., /i) = a’K ® Ba

@ Using our covariance function, we may construct a ranking
objective for previously unseen queries by taking a linear
combination of basis queries:

fi= > Bif

iEbasis



@ VOC Dataset - 20 categories
@ Features and attributes described in Farhadi et al., CVPR 2009
@ Texture + Color + HOG =~ 9K features

@ 64 attributes - many of which are highly correlated with a
specific class label

@ We will focus on the “furry” attribute and related classes



esults
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Results

Precision recallfor attibute horse (posiheg 2.4% / 97.6%) Precision recal for atribute horse+Fumy (posineg 2.2% /97 8%)

——— AP 0.33 (NonTrivial), horse|
AP 0.30 itrvia), horse

—— AP 0.23 (NonTrival). horse+Fury|
AP 0.21 (trvial, horse+ Furry

py

Precision
Precision

"

02 e 02 \ 1

06 07 08 09 1 ] 01 02 03 04

o5 08 07 08 09 1
Recall



Results

Precision recal for atibute cat (posieg 3.0% / 97.0%) Precision recal for atrbute cat+Furry (posieg 2.8% /97.2%)
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Overview and Future QOutlook

@ Discriminative training of a scoring system for
object/part+attributes queries

@ A general regularized risk framework that relates basis queries to
a graphical model structure

@ Natural extension to novel queries at test time

@ Significantly improved performance over a naive independence
assumption

@ Extensions to queries beyond conjunctions

@ Automatic learning of basis query set (structure of graphical
model)

» Modeling accuracy + sparsity penalty
@ Integration with top down inference system



Matthew Blaschko

Center for Visual Computing A
Ecole Centrale Paris & INRIA Saclay - lle-de-France

matthew.blaschko@inria.fr



Obijects in Detalil

Parts & attributes

* A new dataset

An object lexicon
Localising parts

Layouts

Recognising attributes
The cost of data collection

Summary

Stuff in Detalil

Texture

* A texture lexicon
* A new dataset

 Transformation invariant
semantic

Parsing
Bottom-up inference

e Learning to merge
» Cascading

e Scoring regions by
attributes



Contribution: A framework for annotation

Annotation software

Draw polygons, mark
attributes, display

instructions ...
Submitted Validate more than
JS magic ~200,000 30,000 part
Amazon Turk HITs annotations in a few
days
\_ \_ J

-

Submission software

Manage money,
revisions, and data

Validation software

Coordinate people, fix
errors

|

A special thanks to Esa and
Juho!



Contribution: A new part & attribute dataset

Problem Data Time frame Progress
Image Classification Caltech-101 2003-06 SIEL MEEEk:
BoW
Object Detection PASCAL VOC 2006-12 DPMs,

large scale learning

Parts & Attributes OoID 2012-? ?

First dataset in this class
New benchmark and challenges
See it grow in the future!




Contribution: a new semantic texture dataset

honeycombed

latticed

netlike

mottled

meshed

KRR
R

-

o




Contribution: models & methods

Parts and geometry

Part models, semantic
clustering boxes & shapes

Part layouts

improving part detection with context

Attributes

Attributes from appearance
local-global appearance and attribute interactions

Attributes from geometry
many attributes can be predicted from layouts

Learning to merge

Generic
metric learning

Class specific

union & ambiguous labels

Proposals

covariant attribute modelling

Texture

nuisance-invariant models



Future

e The start of a new challenge

= the life after 7 years of PASCAL VOC
® |arge scale but basic understanding (e.g., ImageNet)
m detailed understanding

= Objects in detail
® a multi-year challenge

= Texture in detail

e Pushing the technical barrier

= modelling local & global information
= fast inference
= detailed features for subtle attributes



Thank you!

CLSP team

& sanjeev, jason,

monique, ruth,
lauren, mani

Sponsors
NSF, Google, DoD
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