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Abstract

We posit that visually descriptive language offers com-
puter vision researchers both information about the world,
and information about how people describe the world. The
potential benefit from this source is made more significant
due to the enormous amount of language data easily avail-
able today. We present a system to automatically gener-
ate natural language descriptions from images that exploits
both statistics gleaned from parsing large quantities of text
data and recognition algorithms from computer vision. The
system is very effective at producing relevant sentences for
images. It also generates descriptions that are notably more
true to the specific image content than previous work.

1. Introduction
People communicate using language, whether spoken,

written, or typed. A significant amount of this language
describes the world around us, especially the visual world
in an environment or depicted in images or video. Such vi-
sually descriptive language is potentially a rich source of
1) information about the world, especially the visual world,
and 2) training data for how people construct natural lan-
guage to describe imagery. This paper exploits both of these
lines of attack to build an effective system for automatically
generating natural language – sentences – from images.

It is subtle, but several factors distinguish the task of tak-
ing images as input and generating sentences from tasks
in many current computer vision efforts on object and
scene recognition. As examples, when forming descrip-
tive language, people go beyond specifying what objects
are present in an image – this is true even for very low
resolution images [23] and for very brief exposure to im-
ages [11]. In both these settings, and in language in gen-
eral, people include specific information describing not
only scenes, but specific objects, their relative locations,
and modifiers adding additional information about objects.

Figure 1. Our system automatically generates the following de-
scriptive text for this example image: “This picture shows one
person, one grass, one chair, and one potted plant. The person is
near the green grass, and in the chair. The green grass is by the
chair, and near the potted plant.”

Mining the absolutely enormous amounts of visually de-
scriptive text available in special library collections and on
the web in general, make it possible to discover statistical
models for what modifiers people use to describe objects,
and what prepositional phrases are used to describe rela-
tionships between objects. These can be used to select and
train computer vision algorithms to recognize constructs in
images. The output of the computer vision processing can
be “smoothed” using language statistics and then combined
with language models in a natural language generation pro-
cess.

Natural language generation constitutes one of the fun-
damental research problems in natural language process-
ing (NLP) and is core to a wide range of NLP applica-
tions such as machine translation, summarization, dialogue
systems, and machine-assisted revision. Despite substan-
tial advancement within the last decade, natural language
generation still remains an open research problem. Most
previous work in NLP on automatically generating captions
or descriptions for images is based on retrieval and sum-
marization. For instance, [1] relies on GPS meta data to
access relevant text documents and [13] assume relevant
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This picture shows one person, 
one grass, one chair, and one 
potted plant. The person is 
near the green grass, and in 
the chair. The green grass is by 
the chair, and near the potted 
plant
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Human-centric machine vision



Semantic tasks in computer vision 6

image classification

Does this image contain a bike? Yes.

object detection

Where is the bike?

Coarse semantics.



Beyond categories: objects in detail 7

part relations

seat
handle bar

higher

chrome-blue gear white frame

parts, materials, colours, ...
handle bar seat

bicycle
object class

right-facing

viewing conditions

Most human-centric tasks require 
understanding the details of objects.



Advantages of detailed understanding 8

Better support for human-centric tasks.

Current models are opaque, semantically shallow:

A semantically decomposed model is easier to
 understand, diagnose, and improve.

bicycle?

interpretationinput representation
ANY



Not just objects: texture semantic 9

[Stanford]

segmenting stuff 

grass?

interpretationinput representation



Stuff in detail 10

netlike

latticed

honeycombed

mottled

meshed

Texture models for human-centric tasks.



Data

Caltech-101 2003-06

Time frame

Opening a path to detailed semantic analysis 11

Problem Progress

Image Classification star models,
BoW

Object Detection PASCAL VOC DPMs,
large scale learning2006-12

Parts & Attributes ? ?2012-?

what can you do 
in six weeks?
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Parts & attributes

• A new dataset
• An object lexicon
• Localising parts
• Layouts
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• The cost of data collection
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• A texture lexicon 
• A new dataset
• Transformation invariant 
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Parsing
Bottom-up inference

• Learning to merge
• Cascading
• Scoring regions by

attributes

Overview
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gory. Our model outperforms the baseline by a surprising
margin for both tasks, improving recognition of familiar ob-
jects and doubling the recall of unfamiliar objects at a fixed
false positive rate.

Background. The earliest works in object recognition at-
tempted to model objects in terms of configurations of
shared materials, parts, or geometric primitives [32, 14, 6,
15, 26, 25, 4, 31]. Ultimately, these methods gave way
to simpler, more direct and data-driven methods for recog-
nition that avoid hand-coded models. We now have sev-
eral advantages that make it propitious to revisit recogni-
tion with intermediate semantics. First, researchers have
made great strides in basic pattern matching. We show that
an existing detector from Felzenszwalb et al. [13] can learn
appearance models of parts and objects that perform well
in our difficult dataset. Second, digital images are abun-
dant, enabling data-driven, statistical approaches and rigor-
ous evaluation. Finally, annotation is now also easy to ob-
tain, with services such as Amazon’s Mechanical Turk [34].
With an abundance of data, fast computers, large-scale an-
notation services, advanced machine learning methods, and
improved low-level features, we believe that object repre-
sentation is the key to progress in recognition.

Our focus is on creating the right level of abstraction for
knowledge transfer. Others [37, 27, 35, 20, 36, 7, 2, 12,
3, 22] have shown that sharing low-level features can im-
prove efficiency or accuracy, when few examples are avail-
able. But on challenging datasets [10] with many training
examples, these methods have not yet been shown to out-
perform the best independently trained detectors (e.g. [13]).
By providing stronger supervision, we enable more effec-
tive knowledge transfer, leading to substantially better per-
formance than standard object detectors at localization and
naming, while additionally inferring pose, composition, and
function.

In our use of supervised parts to aid detection, we relate
to recent works on learning compositional models of ob-
jects [40, 16, 39, 1]. Compositional models are attractive
because they allow different objects to be represented by
shared components, allowing learning with fewer examples.
Though our aim relates, our models are much simpler, and
we are able to achieve state-of-the-art results on a difficult
dataset.

Our aim to improve generalization through supervised in-
termediate semantics is related to several recent works.
Palatucci et al. [28] study the generalization properties of
systems that use intermediate representations to make pre-
dictions for new categories, with application to interpreta-
tion of neural patterns. Kumar et al. [17] show that pre-
dicted facial attributes, such as fullness of lips, are highly
useful in face verification. More generally, their work
demonstrates the role of intermediate semantics for subcat-
egory differentiation, while ours focuses on generalization
across broad domains. Farhadi et al. [11] and Lampert et
al. [18] show that supervised attributes can be transferred

across object categories, allowing description and naming
of objects from categories not seen during training. These
attributes were learned and inferred at the image level, with-
out localization. In contrast, we learn localized detectors of
attributes and encode their spatial correlations. This allows
us to automatically localize objects and to provide much
more accurate and detailed descriptions.

Contributions. Overall, we demonstrate the promise of an
approach that infers an underlying semantic representation
through shared detectors. By learning about one set of ani-
mals or vehicles, we can localize and describe many others.
This ability is essential when a system must reason about
anything it encounters. In the past, limited availability of
data and annotation has hindered attempts to learn more
integrated models. Our dataset should make such studies
much more feasible. In summary, this paper offers the fol-
lowing contributions:

• Framework for more flexible and integrative recogni-
tion that allows objects within broad domains to be lo-
calized and described

• Techniques for knowledge transfer of appearance, spa-
tial and relational models

• CORE dataset that enables development and study of
object models with intermediate semantics

• Validation of our approach and study of how well
appearance-based detectors of parts and superordinate
categories can generalize across object classes

2. Learning Shared Object Models

We have created a new dataset for studying shared repre-
sentations and cross-category generalization. We use it to
learn shared appearance models, co-occurrence, and spatial
correlations.

2.1. Dataset

Figure 2. Example of an annotation in our dataset.

• Why annotated data:
1. Evaluation
2. Training

Detailed semantic tasks:

• which type of motorcycle is this?
• where is the right exhaust pipe?
• what is the tail-light shape?
• what is the colour of the panniers?
• is the head light visible?
• is there a rider?
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gory. Our model outperforms the baseline by a surprising
margin for both tasks, improving recognition of familiar ob-
jects and doubling the recall of unfamiliar objects at a fixed
false positive rate.

Background. The earliest works in object recognition at-
tempted to model objects in terms of configurations of
shared materials, parts, or geometric primitives [32, 14, 6,
15, 26, 25, 4, 31]. Ultimately, these methods gave way
to simpler, more direct and data-driven methods for recog-
nition that avoid hand-coded models. We now have sev-
eral advantages that make it propitious to revisit recogni-
tion with intermediate semantics. First, researchers have
made great strides in basic pattern matching. We show that
an existing detector from Felzenszwalb et al. [13] can learn
appearance models of parts and objects that perform well
in our difficult dataset. Second, digital images are abun-
dant, enabling data-driven, statistical approaches and rigor-
ous evaluation. Finally, annotation is now also easy to ob-
tain, with services such as Amazon’s Mechanical Turk [34].
With an abundance of data, fast computers, large-scale an-
notation services, advanced machine learning methods, and
improved low-level features, we believe that object repre-
sentation is the key to progress in recognition.

Our focus is on creating the right level of abstraction for
knowledge transfer. Others [37, 27, 35, 20, 36, 7, 2, 12,
3, 22] have shown that sharing low-level features can im-
prove efficiency or accuracy, when few examples are avail-
able. But on challenging datasets [10] with many training
examples, these methods have not yet been shown to out-
perform the best independently trained detectors (e.g. [13]).
By providing stronger supervision, we enable more effec-
tive knowledge transfer, leading to substantially better per-
formance than standard object detectors at localization and
naming, while additionally inferring pose, composition, and
function.

In our use of supervised parts to aid detection, we relate
to recent works on learning compositional models of ob-
jects [40, 16, 39, 1]. Compositional models are attractive
because they allow different objects to be represented by
shared components, allowing learning with fewer examples.
Though our aim relates, our models are much simpler, and
we are able to achieve state-of-the-art results on a difficult
dataset.

Our aim to improve generalization through supervised in-
termediate semantics is related to several recent works.
Palatucci et al. [28] study the generalization properties of
systems that use intermediate representations to make pre-
dictions for new categories, with application to interpreta-
tion of neural patterns. Kumar et al. [17] show that pre-
dicted facial attributes, such as fullness of lips, are highly
useful in face verification. More generally, their work
demonstrates the role of intermediate semantics for subcat-
egory differentiation, while ours focuses on generalization
across broad domains. Farhadi et al. [11] and Lampert et
al. [18] show that supervised attributes can be transferred

across object categories, allowing description and naming
of objects from categories not seen during training. These
attributes were learned and inferred at the image level, with-
out localization. In contrast, we learn localized detectors of
attributes and encode their spatial correlations. This allows
us to automatically localize objects and to provide much
more accurate and detailed descriptions.

Contributions. Overall, we demonstrate the promise of an
approach that infers an underlying semantic representation
through shared detectors. By learning about one set of ani-
mals or vehicles, we can localize and describe many others.
This ability is essential when a system must reason about
anything it encounters. In the past, limited availability of
data and annotation has hindered attempts to learn more
integrated models. Our dataset should make such studies
much more feasible. In summary, this paper offers the fol-
lowing contributions:

• Framework for more flexible and integrative recogni-
tion that allows objects within broad domains to be lo-
calized and described

• Techniques for knowledge transfer of appearance, spa-
tial and relational models

• CORE dataset that enables development and study of
object models with intermediate semantics

• Validation of our approach and study of how well
appearance-based detectors of parts and superordinate
categories can generalize across object classes

2. Learning Shared Object Models

We have created a new dataset for studying shared repre-
sentations and cross-category generalization. We use it to
learn shared appearance models, co-occurrence, and spatial
correlations.

2.1. Dataset

Figure 2. Example of an annotation in our dataset.CORE Dataset
[Farhadi Endres Hoiem 2010] 

category # parts / object # objects
airplane 
alligator 
bat 
bicycle 
blimp 
boat 
bus 
camel 
car 
carriage 
cat 
cow 
crow 
dog 
dolphin 
eagle 
elephant 
elk 
hovercraft 
jetski 
lizard 
monkey 
motorcycle 
penguin 
semi 
ship 
snowmobile 
whale 

9.49 104
8.90 122
8.55 121
6.62 103
5.29 100
3.76 110
11.32 113
12.15 129
8.15 110
5.43 105
11.50 104
10.93 146
8.08 112
13.17 103
6.17 151
8.01 107
11.97 117
11.47 112
4.81 105
3.64 110
9.27 110
11.90 117
9.03 87
6.95 151
11.51 110
4.29 105
5.99 133
4.82 95

✔ Sharing of parts

✗ Accurate recognition of parts 
and their attributes
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Objects in Detail
A new dataset of parts and attributes



Designing a dataset of parts & attributes 17

• Motivation
- we know that parts & attributes are useful for sharing, etc.
- but how well can we recognise parts & attributes?

• Aims of the dataset
- object recognition ⟶ parts & attributes recognition
- benchmarking: measure and encourage progress
- inspire new technical challenges

• How
- high-quality annotations (e.g. PASCAL VOC)
- sufficiently large to be representative of data variability
- the object class and location is given
- define new tasks and metrics 
▪ part localisation
▪ attribute recognition
▪ joint tasks



18An rich object category
  With parts and attributes



Spotters: an effective data source 19

Aircraft Spotters http://www.airliners.net/

Selected about 7,500 for annotation.

Trivial extension to other classes
railways: http://railpictures.net/
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Part annotations 21

aeroplane nosevertical stabiliser wingwheel

Part # train # val # test # total

aeroplane 1,859 1,854 3,713 7,426

vertical stabiliser 1,885 1,866 3,742 7,493

nose 1,848 1,845 3,700 7,393

wing 3,007 3,047 5,958 12,012

wheel 4,919 4,958 9,917 19,794
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Attribute annotations 23

Part Attribute Values

aeroplane airline 2Excel Aviation,ACE Transvalair,ATA Airlines,ATE Aviation,Action Communication,Adobe Globe,Adria Airways,Aegean Airlines
aeroplane model AESL Airtourer T2,AESL Airtourer T5 Super 150,AESL Glos-Airtourer Super 150,ALMS Calao,ALMS Papango,AMS Flight DG-500 El
aeroplane isAirliner yes,no
aeroplane isCargoPlane yes,no
aeroplane isMilitaryPlane yes,no
aeroplane isPropellorPlane yes,no
aeroplane isSeaPlane yes,no
aeroplane facingDirection E,SE,S,SW,W,NW,N,NE
aeroplane planeLocation on ground/water,landing/taking off,in air
aeroplane planeSize small plane,medium plane,large plane
wing wingType single wing plane,bi-plane,tri-plane
wing wingHasEngine 1-on-bottom,1-on-top,2-on-bottom,2-on-top,3-on-bottom,3-on-top,embedded,no-engine
vertical stabilizer tailHasEngine 1-middle-top,2-on-sides,3-on-top-and-sides,no-engine
nose noseHasEngineOrAntenna has-antenna,has-engine,none
wheel undercarriageArrangement not visible,one-front-two-back,other,two-front-one-back,two-front-two-back
wheel coverType fixed-inside,fixed-outside,fixed-outside-with-cover,retractable
wheel groupType 1-wheel-1-axle,14-wheels-7-axles,2-wheels-1-axle,4-wheels-2-axles,6-wheels-3-axles
wheel location back-left,back-middle,back-right,front-left,front-middle,front-right



24is airliner: yes

is airliner: no

is military plane: yes

is sea plane: yes



25wheel - group type: 1-wheel-1-axle

wheel - group type: 2-wheels-1-axle

wheel - group type: 4-wheels-2-axles

wheel - group type: 6-wheels-3-axles
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(1) (2)

(3)

(4)(5)

(6)(7)

(8) (9)

 

 (1) aeroplane
      isAirliner:no (0.8)
      isCargoPlane:no (1.0)
      isMilitaryPlane:no (0.8)
      isPropellorPlane:yes (1.0)
      isSeaPlane:no (1.0)
      facingDirection:SW (0.8)
      planeLocation:on ground/water (1.0)
      planeSize:small plane (0.6)
      wingType:bi−plane (1.0)
      undercarriageArrangement:two−front−one−back (1.0)
      noseHasEngineOrAntenna:has−engine (1.0)
      tailHasEngine:no−engine (1.0)
      wingHasEngine:no−engine (1.0)
      airline:none
      model:De Havilland DH−82A Tiger Moth II
(2) verticalStabilizer
(3) nose
(4) wing
(5) wing
(6) wing
(7) wing
(8) wheel
      coverType:fixed−outside (1.0)
      groupType:1−wheel−1−axle (1.0)
      location:front−right (0.8)
(9) wheel
      coverType:fixed−outside (1.0)
      groupType:1−wheel−1−axle (1.0)
      location:front−left (0.8)

Complete annotation examples
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(1)

(2)

(3)

(4)
(5)

(6)
(7)

 

 (1) aeroplane
      isAirliner:yes (1.0)
      isCargoPlane:no (0.8)
      isMilitaryPlane:no (1.0)
      isPropellorPlane:no (1.0)
      isSeaPlane:no (1.0)
      facingDirection:NW (0.4)
      planeLocation:landing/taking off (0.6)
      planeSize:large plane (1.0)
      wingType:single wing plane (1.0)
      undercarriageArrangement:one−front−two−back (0.6)
      noseHasEngineOrAntenna:none (0.8)
      tailHasEngine:no−engine (0.6)
      wingHasEngine:1−on−bottom (1.0)
      airline:Monarch Airlines
      model:Airbus A300B4−605R
(2) verticalStabilizer
(3) nose
(4) wing
(5) wing
(6) wheel
      coverType:retractable (0.8)
      groupType:2−wheels−1−axle (0.8)
      location:back−left (0.6)
(7) wheel
      coverType:retractable (0.6)
      groupType:2−wheels−1−axle (0.8)
      location:back−right (0.4)
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(1)

(2)
(3)

(4)

(5)
(6)

(7)

 

 (1) aeroplane
      isAirliner:no (1.0)
      isCargoPlane:no (1.0)
      isMilitaryPlane:no (0.8)
      isPropellorPlane:yes (1.0)
      isSeaPlane:no (0.6)
      facingDirection:E (0.8)
      planeLocation:on ground/water (0.8)
      planeSize:small plane (0.8)
      wingType:single wing plane (1.0)
      undercarriageArrangement:two−front−one−back (1.0)
      noseHasEngineOrAntenna:has−engine (1.0)
      tailHasEngine:no−engine (1.0)
      wingHasEngine:no−engine (1.0)
      airline:2Excel Aviation
      model:Extra EA−300L
(2) verticalStabilizer
(3) nose
(4) wing
(5) wheel
      coverType:fixed−outside−with−cover (1.0)
      groupType:1−wheel−1−axle (1.0)
      location:front−right (1.0)
(6) wheel
      coverType:fixed−outside−with−cover (1.0)
      groupType:1−wheel−1−axle (1.0)
      location:front−left (1.0)
(7) wheel
      coverType:fixed−outside (1.0)
      groupType:1−wheel−1−axle (1.0)
      location:back−middle (1.0)
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(1) (2)

(3)

(4)

(5)(6) (7)

 

 (1) aeroplane
      isAirliner:no (0.6)
      isCargoPlane:no (1.0)
      isMilitaryPlane:yes (0.8)
      isPropellorPlane:yes (1.0)
      isSeaPlane:no (0.8)
      facingDirection:W (0.6)
      planeLocation:on ground/water (1.0)
      planeSize:small plane (0.6)
      wingType:single wing plane (1.0)
      undercarriageArrangement:two−front−one−back (1.0)
      noseHasEngineOrAntenna:has−engine (1.0)
      tailHasEngine:no−engine (0.8)
      wingHasEngine:no−engine (0.8)
      airline:none
      model:Messerschmitt Bf−109G−4
(2) verticalStabilizer
(3) nose
(4) wing
(5) wheel
      coverType:retractable (0.6)
      groupType:1−wheel−1−axle (1.0)
      location:front−left (1.0)
(6) wheel
      coverType:retractable (0.6)
      groupType:1−wheel−1−axle (1.0)
      location:front−right (1.0)
(7) wheel
      coverType:retractable (0.8)
      groupType:1−wheel−1−axle (1.0)
      location:back−middle (1.0)
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(1)

(2)

(3)

 

 (1) aeroplane
      isAirliner:yes (0.8)
      isCargoPlane:no (1.0)
      isMilitaryPlane:no (0.8)
      isPropellorPlane:no (1.0)
      isSeaPlane:no (1.0)
      facingDirection:SW (1.0)
      planeLocation:on ground/water (1.0)
      planeSize:large plane (1.0)
      wingType:single wing plane (1.0)
      undercarriageArrangement:not visible (0.6)
      noseHasEngineOrAntenna:none (1.0)
      tailHasEngine:3−on−top−and−sides (0.6)
      wingHasEngine:no−engine (0.8)
      airline:British Airways
      model:Hawker Siddeley HS−121 Trident 3B
(2) verticalStabilizer
(3) wing
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(1)
(2)

(3)
(4)

(5)

(6)

(7)

(8)

 

 (1) aeroplane
      isAirliner:no (0.8)
      isCargoPlane:no (1.0)
      isMilitaryPlane:no (1.0)
      isPropellorPlane:no (1.0)
      isSeaPlane:no (1.0)
      facingDirection:SW (0.8)
      planeLocation:on ground/water (0.8)
      planeSize:small plane (0.8)
      wingType:single wing plane (0.8)
      undercarriageArrangement:other (0.6)
      noseHasEngineOrAntenna:none (1.0)
      tailHasEngine:no−engine (1.0)
      wingHasEngine:no−engine (1.0)
      airline:none
      model:Schempp−Hirth Duo Discus T
(2) verticalStabilizer
(3) nose
(4) wing
(5) wing
(6) wing
(7) wheel
      coverType:fixed−inside (0.8)
      groupType:1−wheel−1−axle (1.0)
      location:front−middle (0.6)
(8) wheel
      coverType:fixed−inside (0.6)
      groupType:1−wheel−1−axle (1.0)
      location:front−left (0.6)
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pair 82/999; 5 good

facing left  facing right
turbofan powered plane  propeller powered plane
longer tail  shorter tail
green rudder  white rudder
passenger door open  baggage hold door open"                                            

pair 65/999; 5 good

propeller to the body  propeller to the wing
one rudder  two rudders
thin body  fat body
low wings  high wings
facing towards left side  facing slightly towards"                                                

Example	
  Annota@ons	
  



pair 10/1600; 5 good

black and white wings  spotted wings
white body  spotted body
large eyes  small eyes
small tail  long tail
v shaped beak  pointed beak"                                                              

pair 43/1600; 5 good

yellow black body  orange brown body
pointy beak  shape beak
short tail  long tail
black spot over head  brown stripe over head
short leg  long leg"                                                                      

Images	
  are	
  from	
  CUB	
  200	
  dataset	
  

Example	
  Annota@ons	
  



Different	
  proper7es	
  are	
  revealed	
  in	
  each	
  pair	
  



Frequencies	
  of	
  Proper@es	
  



Frequencies	
  of	
  Proper@es	
  



•  Analyzing	
  sentence	
  pairs	
  
– Words	
  that	
  repeat	
  across	
  
a	
  sentence	
  pair	
  are	
  parts	
  
(nouns)	
  

– Words	
  that	
  are	
  different	
  
across	
  a	
  sentence	
  pair	
  are	
  
from	
  the	
  same	
  seman@c	
  
modifier	
  category	
  

–  Each	
  sentence	
  has	
  only	
  
one	
  noun	
  and	
  modifier	
  
topic	
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Red	
  rudder	
  vs.	
  White	
  rudder	
  
Pointy	
  nose	
  vs.	
  Round	
  nose	
  

{Red,	
  White}	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Color	
  
{Pointy,	
  Round}	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Shape	
  

Discovering	
  parts	
  &	
  aHribute	
  lexicons	
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270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
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291
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294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

For each sentence pair es, fs, s ⌅ {1, . . . , N}
• Sample relation zs ⇥ Multinomial(�)

• For each word position i ⌅ 1, . . . , Is in es

– Sample topic ts,i ⇥ Multinomial (⇤zs)

– Sample word es,i ⇥ Multinomial
�
�ts,i

⇥

• For each word position j = {1, . . . , Js} in fs

– Sample aj ⌅ {1, . . . , I} ⇤ ⇥(|aj � j|),

– Sample word fs,j ⇥ Multinomial
⇤
⇥eaj ,taj

⌅

Table 1: The generative model of the corpus consisting of sentence pairs {es, fs}. The key novelty
is in how ⇥ and � are estimated. ⇥ is constrained to be bipartite, i.e., is peaked at only one each of
part and attribute topics. � is estimated from a word alignment model, using the intuition that in a
sentence pair, words that are same in both sentences in a sentence pair are likely to be the same part
topic, wheres the words that are different are likely to the from the same attribute topic.

6 Experiments

6.1 Datasets, Annotations, Preprocessing, etc.

We experiment with images from three datasets:

Caltech-UCSD birds. The dataset [12] consists of 200 species of birds and was introduced for fine
grained visual category recognition. We sample 200 images, one random image from each category
for our discovery process. For these images we sample 1600 pairs uniformly at random and collect
comparative text using the annotations interface described in Section 3.
PASCAL VOC Person. A dataset consisting of attributes of people from the PASCAL Visual
Object Challenge (VOC) dataset was introduced by Bourdev et al. [6]. We sample 400 random
images from the trainval subset of the dataset. For these images we sample 1600 pairs uniformly at
random and collect annotations.
Aeroplanes. We collect 200 images from a fan website of aeropane photographers http:
airliners.net. For these images we sample 1000 pairs uniformly at random and collect anno-
tations.

The collected annotations can be noisy and we ignore sentence pairs that do not follow the format,
such as those without the word “vs.”, empty sentences, etc. Typically this leaves about 80� 85% of
the sentences which are then used in our experiments. Figure 2 shows sample annotations collected
overlaid on the images.

6.2 Results

Figure 3, shows the learned topics and relations for aeroplanes, birds and person category. The
learned parts for each category are shown on the top row, attributes on the bottom row, and the bi-
partite relation between parts and attributes is shown using an edges connecting them. The thickness
of the edge is a rough indicator of the frequency of the relation in the dataset.

Table 2 shows the same data with estimated frequencies of parts, attributes and relations for birds.
The discovered parts and attributes, correctly refer to parts of the bird such as the body, beak, wings,
tail, head, etc, and semantic categories such as size, color, shape, etc respectively. The most frequent
relation that discriminates birds is the beak size – small vs. large, followed by the size of the
tail. Other distinguishing features are colors of various body parts such as body, tail and the head,
beak shape, such as pointy vs. round, etc. An interesting relation that is discovered is {like} ⇥
{sparrow, duck, crow, eagle, dove, . . .}. Even though we had 200 species of birds, the annotators
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Topics	
  encode	
  parts	
  and	
  modifiers	
  	
  

Bipar@te	
  topics:	
  Each	
  sentence	
  has	
  one	
  noun	
  and	
  one	
  modifer	
  topic	
  

Topic	
  specific	
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  transla@on	
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Parts	
  &	
  AHributes	
  of	
  Planes	
  

wheel
wheels plane

engine
engines rudder

wings
wing

front
back nose facing body tail GLOBAL

one
two
no

single
three
double
four

color
black
sky
light

whiteblue
ordinary
colored
dark

whitegreen
whitered

pointy
round
flat

pointed
sharp
point
square

propeller
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jet
only

military
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small
big
large

medium

white
red
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green
yellow
gray
orange
brown

top
bottom
middle
down

open
closed
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right
left
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near
off

200	
  images,	
  1000	
  pairs,	
  1c/pair	
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AHributes	
  of	
  Birds	
  

bird wings
feather
feathers tail beak like body leg legs eyes neck head in fur GLOBAL

long
short
small
large
big

v
pointy
pointed
point
bend
bended
pointly
slightly

sparrow
duck
sparow
crow
eagle
dove
pigeon
humming

kite
parrot

brown
blue
yellow
gray
red
green
spotted
ash
light

black
white
orange

fat
slim
silm
lean

sharp
round
flat

normal
shaped
curved
blunt
little

rounded
ordinary
oval

200	
  images,	
  1600	
  pairs,	
  1c/pair	
  	
  

One	
  image	
  per	
  category	
  CUB200	
  



Parts	
  &	
  AHributes	
  of	
  People	
  

hand
hands hair facing

snap
snape

the
picture spectacles in glass bag watch glasses GLOBAL

towards
left
right

backwards
forward
sidewards

man
lady

woman
boy
girl
ladies

baby
adult
child
kid

children
adults

shirt
tshirt
jacket
dress
coat
tshirts

wearing
not

smiling
having

asian
caucasian
africans
asians
latin

western

side
back
front

backside
frontal
toward
turn
turned
rear

sideways
upright
us

black
white
blue
brown
blonde
red
green
gray
yellow
colored
pink
orange

single
couple
2
non

double
group
couples
many
3

dark
light
fair
tee
sky
show
bright
lighter
design
medium
thick

fat
slim

normal
thin
lean
fit

average
skinny

female
male

full
half
of

sleeve
only
fully

sleeveless
jeens
close
partial
rain

thinning
torso
waist

indoor
outdoor
door
homely
stage

inside
outside
out

handed

long
short
small
shot

women
men

womens

young
old
older
middle
mature
elderly

two
one
three
both

somebody
weight

sitting
standing
walking
riding
cycling
sleeping
dancing
driving

no
with

without
alone
bald

400	
  images,	
  1600	
  pairs,	
  1c/pair	
  	
  

random	
  images	
  from	
  PASCAL	
  VOC	
  10	
  



Summary	
  

•  Discrimina@ve	
  descrip@on	
  is	
  an	
  effec@ve	
  way	
  to	
  
obtain	
  a	
  lexicon	
  of	
  parts	
  and	
  aHributes	
  that	
  are	
  
useful	
  for	
  fine-­‐grained	
  discrimina@on	
  

•  Simple	
  analysis	
  of	
  such	
  text	
  can	
  help	
  discover	
  topics	
  
that	
  encode	
  parts,	
  modifiers	
  and	
  their	
  rela@ons.	
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Objects in Detail
Parts & attributes

Stuff in Detail
Texture

• A texture lexicon 
• A new dataset
• Transformation invariant 

semantic

Parsing
Bottom-up inference

• Learning to merge
• Cascading
• Scoring regions by

attributes

Overview

• A new dataset
• An object lexicon
• Localising parts
• Layouts
• Recognising attributes



Ross Girshick
University of Chicago

Localizing parts



Find airplanes with propellors on their noses 7

Use parts to align vision models with language

Not on nose!
Confusing occlusion

Context?
bad results

Coarse model
(e.g., BoW black box)



Overview of approach 8

Q: Propellor on nose?

Nose Vertical stabilizer Wheels

1. Candidate part detections (this talk)

2. Consistent layout generation (next talk)

3. Extract semantically aligned features ...

+
+

––

–
... A: Yes



• Without semantic parts
- the semantic alignment is unknown or nonexistent

▪ show me the vertical stabilizer

- no ground-truth for debugging performance bottlenecks

▪ are the part detectors failing?     is the spatial model too rigid?

Why semantic parts? 9

Deformable parts model

Vertical stabilizer
(but we don’t know that!) Nose?

Object detection

Structured, but not aligned
(parts learned without supervision)

Detection



• Task: predict part bounding boxes

• PASCAL VOC Challenge evaluation
- Sort candidate detections by confidence score
- Grade each as true positive or false positive (overlap ≥ 0.5)
- Precision-recall curve & average precision (AP)

Part detection: evaluation metric 10

( , ) = | � |
| � |

Test image

-0.8
-0.1

+0.7
-0.1

Scored candidate detections

Part detection



Training data 11

Vertical stabilizers

Noses



Baseline part detector

• Model: mixture of filters on gradient orientation (HOG) features

• Weak supervision (bounding box only; position, scale, mixture all latent)

• Trained with latent SVM
- mixtures initialized by aspect ratio clustering

12

Vertical stabilizer (k=6) Nose (k=6)



Baseline part detector results 13
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Improving part detectors

• Method I: unsupervised left vs right orientation clustering

• Method 2: use segmentation masks for shape clustering
✓ does not rely on aspect ratio
✗   requires additional annotations (ok, we have them)

14

Vertical stabilizer (k=6) Nose (k=6)



• Binary oriented edge features from shape masks

• EM (latent translation, scale & cluster) with mixtures of Bernoulli templates 

Leveraging shape annotations 15

Nose Vertical stabilizer



Left-right and shape clustering results 16
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AP 0.647 (k=40) baseline
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AP 0.700 (k=40) shape

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

o
n

Vertical stabilizer

 

 

AP 0.570 (k=40) baseline
AP 0.589 (k=40) l/r
AP 0.621 (k=40) shape
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AP 0.228 (k=40) baseline
AP 0.269 (k=40) l/r
AP 0.287 (k=40) shape
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(no shape annotations)



Localizing parts: summary
• Semantically aligned parts: good for applications and debugging

• Unsupervised left vs right helps tease out shape information

• Shape masks initialization works even better (good for square parts!)

17



• A new dataset
• An object lexicon
• Localising parts
• Layouts
• Recognising attributes

12

Objects in Detail
Parts & attributes

Stuff in Detail
Texture

• A texture lexicon 
• A new dataset
• Transformation invariant 

semantic

Parsing
Bottom-up inference

• Learning to merge
• Cascading
• Scoring regions by

attributes

Overview



Es#ma#ng	
  Layouts	
  
Pu$ng	
  parts	
  in	
  context	
  

Subhransu	
  Maji	
  
TTI	
  Chicago	
  

	
  



Spa#al	
  Layout	
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  Variability	
  

The	
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  models	
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  Layout	
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Aeroplane	
   Vert.	
  Stab.	
   Wings	
   Nose	
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  planes	
  facing	
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Hough	
  Vo>ng	
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  Grouping	
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  Layout	
  

A

B

A \B

A [B
> ⌧

Measuring	
  overlap	
  

overlap	
   predic>ng	
  too	
  few	
  
Loss(x) =

X

i

Loss(xi) + max(0,#true�#predicted)

Weights	
  trained	
  using	
  MIL	
  learning	
  

	
  -­‐	
  features	
  extracted	
  from	
  the	
  part	
  loca>ons	
  	
  

w

T�(x)
�(x)
	
  Score	
  of	
  a	
  layout:	
  	
  



Independent	
  Predic>on	
   Joint	
  Predic>on	
  

Aeroplane	
   Vert.	
  Stab.	
   Wings	
   Nose	
   Wheel	
  (Grp.)	
  



Joint	
  Predic>on	
  Independent	
  Predic>on	
  

Aeroplane	
   Vert.	
  Stab.	
   Wings	
   Nose	
   Wheel	
  (Grp.)	
  



Part	
  Detec>ons	
  
Aeroplane	
   Nose	
   Vert.	
  Stab.	
   Wheels	
  (Grouped)	
   Wings	
  

Independent	
  

Joint	
  

Independent	
  

Joint	
  



Aeroplane	
   Nose	
   Vert.	
  Stab.	
   Wheels	
  (Grouped)	
   Wings	
  Vert.	
  Stab.	
  

Independent	
  

Joint	
  

Independent	
  

Joint	
  

Part	
  Detec>ons	
  



Part	
  Detec>on	
  Results	
  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

is
io

n

Aeroplane

 

 

Aeroplane AP 0.932 (Layout)
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Nose AP 0.721 (Layout)
Nose AP 0.670
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Vertical Stabilizer AP 0.635 (Layout)
Vertical Stabilizer AP 0.578
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Wheels (Grouped) AP 0.519 (Layout)
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Wings AP 0.094 (Layout)
Wings AP 0.140

The	
  model	
  has	
  learned	
  to	
  ignore	
  the	
  wing	
  detec>ons	
  



Layout	
  Es>ma>on	
  Task	
  
(allowed	
  one	
  layout	
  per	
  image)	
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AP=91.2 (82.8) aeroplane
AP=66.1 (63.3) nose
AP=56.3 (54.5) verticalStabilizer
AP=39.8 (31.5) wheelPhrase
AP=05.9 (08.2) wingPhrase



How	
  many	
  layouts	
  necessary?	
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Aeroplane AP 0.859
Aeroplane AP 0.891 (l = 50)
Aeroplane AP 0.932 (l = 134)
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Nose AP 0.670
Nose AP 0.669 (l = 50)
Nose AP 0.721 (l = 134)

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

o
n

Wheels (Grouped)

 

 

Wheels (Grouped) AP 0.371
Wheels (Grouped) AP 0.461 (l = 50)
Wheels (Grouped) AP 0.519 (l = 134)
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Vertical Stabilizer AP 0.578
Vertical Stabilizer AP 0.594 (l = 50)
Vertical Stabilizer AP 0.635 (l = 134)



Summary	
  

•  Planes	
  have	
  wide	
  variety	
  of	
  layouts	
  due	
  to	
  the	
  view	
  
point	
  and	
  structural	
  differences.	
  	
  

•  This	
  is	
  a	
  unique	
  property	
  of	
  this	
  dataset,	
  which	
  
enables	
  new	
  direc>ons	
  in	
  research	
  about	
  part	
  
detec>on	
  (i.e.	
  beyond	
  a	
  few	
  mixture	
  models)	
  

•  We	
  explored	
  a	
  possible	
  way	
  of	
  represen>ng	
  such	
  
spa>al	
  layouts	
  and	
  showed	
  that	
  it	
  improves	
  
detec>on	
  quite	
  a	
  bit	
  

•  Appearance	
  layouts	
  will	
  be	
  explored	
  in	
  the	
  future.	
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A*ributes"
2"

wingType:"‘single8wing"plane"
tailHasEngine:"‘no8engine’"
wheel8coverType:"‘retractable’"
"

isAirliner:"‘yes’"
isMilitaryPlane:"‘no’"
isSeaPlane:"‘no’"
facingDirecEon:"‘W’"
planeLocaEon:"‘on"ground’"
"



Bag"of"Visual"Words"

classifier"

+"
+"

–"
–"

3"



Current"Methodology""
interpretation input representation 

semantic gap 

edges,"blobs,"
textures"

bicycle?"
has"rider?"
has"wheel?"

4"



Context"is"Important"

leV"signaling"light"

5"



Predict"the"A*ributes"

Where%is%the%plane%located%?% What%kind%of%aeroplane%is%it%?%

What%type%of%wing%%does%it%have%?% What%direc7on%is%it%facing%?%

6"



7"



Objects"in"Detail"
•  Image"
•  Aeroplane"
•  Parts"

–  Background"
–  VerEcal"Stabilizer"
– Nose"
– Wing"
– Wheel"
–  Fuselage"

•  Undercarriage"

8"



isMilitaryPlane:‘yes’"
9"



Image":"isMilitaryPlane"

AP%:%73.92%

10"



isMilitaryPlane:"‘yes’"
•  Image " " " " " "AP%:%73.92"
•  Aeroplane"
•  Parts"

–  Background"
–  VerEcal"Stabilizer"
– Nose"
– Wing"
– Wheel"
–  Fuselage"

•  Undercarriage"

11"



Aeroplane"

AP%:%83.88%%

12"



isMilitaryPlane:"‘yes’"
•  Image " " " " "% %AP%:%73.92"
•  Aeroplane " " " " "AP%:%83.88%"
•  Parts"

–  Background"
–  VerEcal"Stabilizer"
– Nose"
– Wing"
– Wheel"
–  Fuselage""

•  Undercarriage"

13"



Background"

AP%:%45.23%

14"



isMilitaryPlane:"‘yes’"
•  Image " " " " " "%AP%:%73.92"
•  Aeroplane" " " " " "%AP%:%83.88%"
•  Parts"

–  Background " " " " ""AP%:%45.23"
–  VerEcal"Stabilizer"
–  Nose"
– Wing"
– Wheel"
–  Fuselage"

•  Undercarriage"

15"



VerEcal"Stabilizer"

AP%:%71.30%

16"



isMilitaryPlane:"‘yes’"
•  Image " " " " " "%AP%:%73.92"
•  Aeroplane" " " " " "%AP%:%83.88%"
•  Parts"

–  Background " " " " "%AP%:%45.23"
–  VerEcal"Stabilizer " " " ""AP%:%71.30"
–  Nose"
– Wing"
– Wheel"
–  Fuselage""

•  Undercarriage"

17"



Nose"

AP%:%75.21%

18"



isMilitaryPlane:"‘yes’"
•  Image " " " " " "%AP%:%73.92"
•  Aeroplane" " " " " "%AP%:%83.88%"
•  Parts"

–  Background " " " " "%AP%:%45.23"
–  VerEcal"Stabilizer " " " ""AP%:%71.30"
–  Nose " " " " " "%AP%:%75.21"
– Wing"
– Wheel"
–  Fuselage""

•  Undercarriage"

19"



Wing"

AP%:%52.8%

20"



isMilitaryPlane:"‘yes’"
•  Image " " " " " "%AP%:%73.92"
•  Aeroplane" " " " " "%AP%:%83.88%"
•  Parts"

–  Background " " " " "%AP%:%45.23"
–  VerEcal"Stabilizer " " " "%AP%:%71.30"
–  Nose " " " " " "%AP%:%75.21"
– Wing " " " " " "%AP%:%52.80"
– Wheel"
–  Fuselage""

•  Undercarriage"

21"



Wheel"

AP%:%45.99%

22"



isMilitaryPlane:"‘yes’"
•  Image " " " " " "%AP%:%73.92"
•  Aeroplane" " " " " "%AP%:%83.88%"
•  Parts"

–  Background " " " " "%AP%:%45.23"
–  VerEcal"Stabilizer " " " "%AP%:%71.30"
–  Nose " " " " " "%AP%:%75.21"
– Wing " " " " " "%AP%:%52.80"
– Wheel " " " " " "%AP%:%45.99"
–  Fuselage""

•  Undercarriage"

23"



``Fuselage’’"

AP%:%80.87%

24"



isMilitaryPlane:"‘yes’"
•  Image " " " " " "%AP%:%73.92"
•  Aeroplane" " " " " "%AP%:%83.88%"
•  Parts"

–  Background " " " " "%AP%:%45.23"
–  VerEcal"Stabilizer " " " "%AP%:%71.30"
–  Nose " " " " " "%AP%:%75.21"
– Wing " " " " " "%AP%:%52.80"
– Wheel " " " " " "%AP%:%45.99"
–  Fuselage" " " " " "%AP%:%80.87"

•  Undercarriage"

25"



Undercarriage"

AP%:%45.63%

26"



isMilitaryPlane:"‘yes’"
•  Image " " " " " "%AP%:%73.92"
•  Aeroplane" " " " " "%AP%:%83.88%"
•  Parts"

–  Background " " " " "%AP%:%45.23"
–  VerEcal"Stabilizer " " " "%AP%:%71.30"
–  Nose " " " " " "%AP%:%75.21"
– Wing " " " " " "%AP%:%52.80"
– Wheel " " " " " "%AP%:%45.99"
–  Fuselage" " " " " "%AP%:%80.87"

•  Undercarriage " " " " "%AP%:%45.63"

27"



Combined"parts"

background"

nose"

verEcalStabilizer"

wing"

wheel"

fuselage"

28"

Combined"
parts"



isMilitaryPlane:"‘yes’"

•  Image " " " " " "%AP%:%73.92"
•  Aeroplane" " " " " "%AP%:%83.88%"
•  Parts"

–  Background " " " " "%AP%:%45.23"
–  VerEcal"Stabilizer " " " "%AP%:%71.30"
–  Nose " " " " " "%AP%:%75.21"
– Wing " " " " " "%AP%:%52.80"
– Wheel " " " " " "%AP%:%45.99"
–  Fuselage" " " " " "%AP%:%80.87"

•  Undercarriage " " " " "%AP%:%45.63%
•  Combined"parts " " " " ""AP%:%87.92"

29"



Possible"VariaEons"(seg."v/s"box.)"
30"



Parts"&"A*ributes"8"fuselage"
31"

! isAirliner"(1.5;nose)"
! isCargoPlane"(18.19)"
! isMilitaryPlane"(5.66)"
! isPropellorPlane"(0.68;nose)"
! isSeaPlane"(42.51)"
! isGlider"(9.43)"
! planeSize"(7.52)"
! noseHasEngineOrAntenna"
(0.53;nose)"
! wingHasEngine"(1.34;nose)"
! wheel8coverType"(6.8)"



Parts"&"A*ributes"8"wheel"
32"

! planeLocaEon"(1.72;background)"
! undercarriageArrangement"(8.98)"
! wheel8locaEon"(2.69)"



Parts"&"A*ributes"8"nose"
33"

! facingDirecEon"(3.96)"
! wheel8groupType"
(1.18;fuselage)"



Parts"&"A*ributes"8"wing"
34"

! wingType"(1.94;fuselage)"



Parts"&"A*ributes"8"verEcalStabilizer"
35"

! tailHasEngine"(3.28)"



A*ribute"RecogniEon":""
Using"Part"detecEons"

36"
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Ground"Truth"



Conclusions"

•  Some"regions"of"an"image"are"more"informaEve"
than"others"for"a"given"task"

•  UElizing"part"segmentaEons"to"add"structure"to"Bag"
of"Words"improves"performance"significantly"

•  Fuselage"and"Wheel"are"the"two"most"important"
parts"accounEng"for"13/17"a*ributes"

•  Understanding"which"parts"are"more"important"can"
help"focus"effort"in"part"detecEon"stage"
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A*ribute"predic1on"using"part7based"models"

•  Task:"
"

""
"

""
""
""
""
""

"Given"an"object"detec1on,"predict"the"a*ributes"of"the"object."
""
"Here"we"focus"on"geometry"based""features"which"encode"spa1al"
layout"of"object’s"parts"

"
"
"
"

"
"
"

•  Is"airliner?"""(yes/no)"
•  Is"military"plane?""(yes/no)"
•  Is"facing"East?"(yes/no)"
•  Does"nose"have"engine?"(yes/no)"
•  Is"LuNhansa"plane?"(yes/no)"



Layout"features""
•  We"cluster"the"geometric"layouts"of"parts"
•  Given"5"airplane"parts"we"concatenate"their"5"bounding"boxes"into"a"207

dimensional"feature"vector"and"perform"kmeans"clustering"
•  The"closest"cluster"centers"for"a"few"ground"truth"detec1ons:"
"
"

""
"
"

"
"
"
"
•  Each"detec1on"is"assigned"to"the"closest"one"of"the"k"clusters""
"""""k7dimensional"binary"feature"vector"to"a*ribute"classifiers"

"
"

"
"



Layout"features"when"the"number"of"parts"is"varying""

•  Some"detec1ons"may"have"all"the"parts"but"some"may"have"less"parts"
"
•  We"cluster"all"possible"detec1on"configura1ons"separately"(16"in"total)"
"
•  We"get"different"layout"vocabularies"for"different"configura1ons"
"
•  We"train"a*ribute"classifiers"separately"for"each"configura1on""
"(but"training"data"is"partly"shared)"

•  In"order"to"enhance"robustness"to"hallucinated"parts,"the"final"feature"
vector"is"obtained"by"concatena1ng"the"layout"features"of"all"sub7
configura1ons""



Example""

•  Precision7recall"curves"for"ground"truth"boxes"in"the"test"set:"
"
"

"
"
"

•  Can"you"say"whether"this"layout"refers"to"a"jet"airliner"or"a"propellor"plane?"



Addi1onal"examples""

•  Precision7recall"curves"for"ground"truth"boxes"in"the"test"set:"
"
"

"
"
"



Using"both"layout"and"bags7of7words"from"all"parts"

•  We"extract"the"layout"features"(as"explained"on"previous"slides)"
"
•  We"train"first7layer"a*ribute"classifiers"for"each"part+a*ribute"pair"

using"a"single"bag7of7words"histogram"as"a"feature"
"
•  We"take"the"scores"from"the"first7layer"classifiers"of"detected"parts"

and"use"them"with"the"layout"features"to"train"the"final"second"layer"
classifier"for"each"a*ribute""

"
•  At"test"1me,"we"apply"the"classifier"that"is"designed"for"this"par1cular"

detec1on"configura1on,"i.e.,"different"classifier"for""”airplane+nose”"
detec1ons"than"for"”airplane+nose+tail”"detec1ons"

"
"

"
"
"



Results"""

•  Bag7of7words"features"from"all"parts"+"layout"features"give"best"results:"

"
•  Mean"average"precision"over"all"54"binary"a*ributes:"
"

"
"
"

BoW""0.40""""""Layout""0.43""""""BoWpart""0.53" ""BoWpart+Layout"""0.56'
"

"
"
"



Some"addi1onal"results""

•  ?"
"

""
"

"
"
"



Conclusion""

•  Part"detec1ons"have"poten1al"to"improve"a*ribute"predic1ons"
"
•  Part"detec1ons"can"be"u1lized"in"many"ways"
"
•  Experiments"show"that"bag7of7words"features"and"layout"features"are"

complementary"and"best"results"are"obtained"by"using"both"

•  In"future"it"would"be"necessary"to"combine"object"detec1on"(object
+parts)"and"a*ribute"predic1on"into"a"single"pipeline"

""
•  In"addi1on,"one"could"consider"object"detec1on"and"a*ribute"

predic1on"jointly"(e.g."by"using"feedback"from"a*ribute"classifiers"to"
choose"the"best"combina1on"of"part"detec1ons)"

"
"

"
"
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The Annotation Process

AMT

verification

by CLSP

participants

accept

initial filter

by CLSP

participants

Image Collection

bad

good



Collecting Data: Parts and Attributes



Getting To Know The Data



K-Means



PCA: Eigenplanes



Gaussian: Unlikely



Gaussian: Likely



Annotation Problems

I
Instructions had bounding boxes and polygons in same picture.

I
Turkers didn’t read instructions.

I
Thought they had to trace every outline.

I
Ended before desired end of nose or wing.

I
Turkers were careless.

I
Miss parts.

I
Loose outlines.

I
Didn’t realize they were annotating a new part.

I
Didn’t bother annotating anything.

I
Got frustrated.



Verifying Annotations: Manually

I
Juho and Esa created tools for manually verifying annotations.

I
7700 planes, 10 parts, 3 annotations per part per plane per

pass-through, some required several pass-throughs.

I
Tool for correcting borderline polygons.



Verifying Annotations: Automatically

I
PCA

I
SVM

I
Identify worst annotators, invite only best back to annotate

other parts.



SVM: Metadata

I
features

I
mask pixels

I
vertex count

I
annotator ID

I
time spent annotating

I
L1 normalized histogram of angles in polygon

I
PCA likelihood: Likelihood of annotation being an annotation

of a di↵erent airplane part.

I
combinations

I
baseline: Accept every annotation.

I
mask

I
vertex count, annotator ID, time

I
angle, vertex count, annotator ID, time

I
mask, vertex count, annotator ID, time

I
angle, vertex count, annotator ID, time, PCA likelihood



SVM: Results

airplane vert stabilizer nose

baseline 76 92 94

mask 80 94 94

angle, CAT 80 92 95

CAT 79 92 95

mask, CAT 82 92 94

angle, mask, CAT, PCA 76 92 94

CAT = vertex Count, Annotator ID, Time spent annotating



Future Work

I
Polygon edge-feature edge similarity

I
Use new part classifiers to bootstrap validation

I
Incorporate these tools more into verification process
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2 Nameable textures 

Nameable textures 

Iasonas Kokkinos        Subhransu Maji             Sammy Mohamed  

Ecole Centrale Paris           TTI-Chicago                        Stony Brook 



3 Nameable textures 

–  Natural processes 

 

–  Man-made structures 

Visual texture 



4 Nameable textures 
What defines a texture? 

•  What is common in these images? 
–  No common deterministic model 
–  Statistical properties.. 

 
“What features and statistics are characteristics of a texture pattern, so that texture 
pairs that share the same features and statistics cannot be told apart by pre-attentive 
human visual perception?” ---- Julesz 1960s-1980s  



5 Nameable textures 

2D Gabor-filters 

`periodicity detectors’ 

Texture analysis and image processing 



6 Nameable textures 

Convolve 

`Texture detector’ 

Multi-scale and multi-orientation texture analysis 



7 Nameable textures 

•  K-means on SIFT descriptors ~ textons 
•  Bag-of-Words/Spatial Pyramid models 

 

Texture analysis and `visual words’ 



8 Nameable textures 

What can we do with texture? 

High-dimensional description of an image patch  

Roughly translation invariant (stationarity assumption)  

Potentially scale & orientation invariant 

Texture = features 



9 Nameable textures 

Texture segmentation 

Zhu & Yuille, Region Competition, PAMI 1996 

Delong et al, Fast Approximate Energy Minimization with Label Costs, IJCV 2012 



10 Nameable textures 

Texture classification 

Brodatz 98 textures  (Caltech 101 of the 90’s) 



11 Nameable textures 

Region Classification with Markov Field Aspect Models,  Verbeek and Triggs, CVPR 07 

Texture-based labelling 

Textonboost for image understanding, Shotton et al, IJCV 07 



12 Nameable textures 

What can we do with texture? (revisited) 

Soaring heights and unfathomable lows of vision (recognition, segmentation) 

We want something in between 

Not too high:  decoupled from object-specific aspects (color, pose, occlusion..)  

Not too low:  semantic (e.g. `striped’, `dotted’, `honeycombed’, etc.)   

-stationary & `pure’ 

-interpretable  by humans 
-categorical 

-shareable across categories 
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14 Nameable textures 

Nameable textures 

Human-centric merit: use texture in image queries  

Vision-centric merit: stratification of `texture jungle’, `debuggable’ vision models 

Is there a proper lexicon for textures? 



15 Nameable textures 

Examples: entwined facetted fibrous flecked flowing fractured freckled frilly furrowed gauzy gouged 
grooved holey  interlaced  intertwined knitted lacelike  latticed lined matted meshed messy mottled 
netlike perforated periodic pitted pleated porous potholed random regular repetitive rhythmic ridged 
rumpled scaly scrambled spattered spiralled sprinkled stained  stratified striated studded twisted veined 
webbed winding  wizened woven ……. 

Started with a list of 367 words, cut 
down to 98. 

Intended to  be a thorough list of words 
used in describing surface texture. 



16 Nameable textures 

Challenges 

Based on a Google image query for each word, we assigned to each word a 
level of difficulty. 

Uniform, Smooth, Dotted, Checkered, Grid, Spotted, Polka-Dotted, Waffled, Marbled, 
Zigzagged, Corrugated, Honeycombed, Speckled, Fibrous, Flecked, Facetted, Flowing, 
Fractured, Flecked, Frilly, Furrowed, Gauzy, Gouged, Grooved, Holey, Interlaced, Intertwined, 
Knitted, Lacelike, Latticed, Whirly, Swirly, Ribbed, Cracked, Banded, Wrinkled, Crosshatched   

List  of words with difficulty <7/10: 

Scrambled, regular, messy, jumbled, random, disordered, indefinite, complex… 

Several words are not easy to pin down: 
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18 Nameable textures 

Google query results for `Ribbed’ 

Additional challenges: duplicates, watermarks, resolution, blur, noise  

`Good’ `Partially good’ 

`Wrong’ 

Strategy: get good data for now, and leave partial data for later 



19 Nameable textures 

Amazon Turk instructions 



20 Nameable textures 

Validation results: honeycombed 

3/3 good 

3/3 bad 



21 Nameable textures 

Validation results: polka-dotted 

3/3 good 

3/3 bad 



22 Nameable textures 

Validation results: cracked 

3/3 good 

3/3 bad 



23 Nameable textures 

Validation results: marbled 

3/3 good 

3/3 bad 



24 Nameable textures 

Validation results: swirly 

3/3 good 

3/3 bad 

Brodatz: 



25 Nameable textures 

Validation results: waffled 

3/3 good 

3/3 bad 



26 Nameable textures 

Validation results: wrinkled 

3/3 good 

3/3 bad 



27 Nameable textures 

Validation results: spotted 

3/3 good 

3/3 bad 



28 Nameable textures 

Validation results: knitted 

3/3 good 

3/3 bad 



29 Nameable textures 

Validation results: holey 

3/3 good 

3/3 bad 
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Number of downloaded images Mean: 1870  Median: 1782 
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Number of "Good"  images by Consensus Mean: 126     Median: 93 



32 Nameable textures 

•  A texture lexicon !
•  A new dataset!
•  Transformation invariant 

semantic!
!

Objects in Detail!
Parts & attributes 
!

Stuff in Detail!
Texture!

Parsing!
Bottom-up inference!

•  Learning to merge!
•  Cascading!
•  Scoring regions by 

attributes!

Overview 

•  A new dataset!
•  An object lexicon!
•  Localizing parts!
•  Layouts!
•  Recognizing attributes!
!



33 Nameable textures 

Baseline results 

SVM classifier for bag-of-words with k-chi kernel  



34 Nameable textures 

Intra-category variability 

Scale and orientation: nuisance parameters 

Images for `banded’ category 



35 Nameable textures 

mom’s keychain 

Sneaking in 

dad’s keychain grandma’s keychain 

We know that dad cannot enter 

Which key should we try? 

Slide Credit: B. Babenko/T. Dietterich 



36 Nameable textures 

Multiple Instance Learning 

Typical Learning Multiple Instance Learning 

Positive bag: at least one instance should be positive 
Negative bag: no instance should be positive 



37 Nameable textures 

Multiple Instance Learning + BOW  



38 Nameable textures 

Fisherfeatures 

BOW problem: part of the signal is `lost in quantization’  

`Fisherfeatures’ : replace vector quantization through GMMs 

  

F. Perronnin, J. Sánchez, and T. Mensink. Improving the fisher kernel for image classification. ECCV, 2010. 
K. Chatfield, A. Vedaldi, L. Victor, and Z. Zisserman. The devil is in the details: an evaluation of recent 
feature encoding methods, BMVC 2011 

T. Jaakkola and D. Haussler, Exploiting Generative Models in Discriminative Classifiers.  NIPS 1998 



39 Nameable textures 

The more, the merrier 



40 Nameable textures 

Nameable textures: a roadmap for visual textures 

A new dataset for texture category classification 

Multiple Instance Learning  & Fishervectors for texture models 

sliding window/superpixel-based scoring  

Future work: 
texture-based superpixel merging 
texture-based object detection 

semi-supervised learning 



41 Nameable textures 

Texture lexicon: a stratification of visual textures 

A new dataset for nameable texture classification 

Multiple Instance Learning of texture models 

98 Categories,  30-100 words per category  

Cast texture representation in multi-class classification terms 



Bo#om-­‐Up	
  Image	
  Parsing	
  
Part	
  1	
  

Karén	
  Simonyan,	
  David	
  Weiss,	
  	
  
Andrea	
  Vedaldi,	
  Ben	
  Taskar	
  



What	
  Is	
  Bo#om-­‐Up	
  Image	
  Parsing?	
  

•  Image	
  parsing:	
  decomposing	
  an	
  image	
  into	
  a	
  set	
  of	
  
meaningful	
  structures	
  (e.g.	
  objects,	
  parts,	
  boundary-­‐
aligned	
  segments)	
  

•  Bo2om-­‐up	
  parsing:	
  start	
  with	
  a	
  set	
  of	
  primiKves	
  (e.g.	
  
super-­‐pixels)	
  and	
  gradually	
  merge	
  them	
  into	
  larger	
  
structures	
  



MoKvaKon	
  

	
  
	
  
	
  
	
  

fast	
  image	
  parsing	
  
into	
  a	
  mul9-­‐scale	
  
pool	
  of	
  segments	
  

High-­‐level	
  
reasoning	
  using	
  
rich	
  models	
  

object	
  	
  
segmenta9on	
  

object	
  	
  
detec9on	
  

...	
  



Our	
  Approach	
  
Greedy	
  merging	
  (agglomeraKve	
  clustering):	
  
•  start	
  with	
  over-­‐segmentaKon	
  into	
  super-­‐pixels	
  
•  at	
  each	
  step,	
  spaKal	
  neighbors	
  with	
  the	
  highest	
  score	
  are	
  
merged	
  

merging	
  video	
  



Related	
  Work	
  

Super-­‐pixel	
  grouping	
  
•  ClassificaKon	
  Model	
  for	
  SegmentaKon	
  [Ren,	
  2003]	
  
•  OpKmal	
  Contour	
  Closure	
  [Levinshtein,	
  2010]	
  
•  Efficient	
  Region	
  Search	
  for	
  Object	
  DetecKon	
  [Grauman,	
  2011]	
  

Greedy	
  merging	
  
•  gPb-­‐owt-­‐ucm	
  [Arbelaez,	
  2010]	
  
•  SelecKve	
  Search	
  for	
  Object	
  RecogniKon	
  [van	
  de	
  Sande,	
  2011]	
  

Top-­‐down	
  merging	
  
•  Unifying	
  SegmentaKon,	
  DetecKon,	
  and	
  RecogniKon	
  [Tu,	
  2003]	
  



Scoring	
  a	
  Merge	
  

Scoring	
  model	
  for	
  segments	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  
	
  
	
  
	
  

Complementary	
  cues:	
  

•  distance	
  is	
  effecKve	
  on	
  uniform	
  areas	
  

•  objectness	
  captures	
  appearance	
  cues	
  
§  how	
  an	
  object/part	
  should	
  look	
  like	
  
§  inter-­‐segment	
  variability	
  can	
  be	
  high	
  

	
  	
  
	
  

"objectness"	
  	
  
of	
  segments	
  union	
  

distance	
  	
  
between	
  segments	
  



Scoring	
  FuncKon	
  Learning	
  

DiscriminaKve	
  learning	
  from	
  ground-­‐truth	
  	
  
segmentaKon	
  

Goal	
  –	
  learn	
  a	
  scoring	
  model:	
  
•  pair	
  inside	
  an	
  object	
  –	
  high	
  score	
  
•  pair	
  crossing	
  the	
  object	
  –	
  low	
  score	
  

Two	
  research	
  direcKons:	
  
•  Distance	
  metric	
  learning	
  
•  Objectness	
  learning	
  (next	
  talk)	
  
	
  

low	
  score	
  

high	
  score	
  



Distance	
  Learning	
  

Segment	
  distance:	
  
	
  
	
  
	
  

Mahalanobis	
  distance	
  for	
  super-­‐pixels:	
  	
  	
  
	
  
Learn	
  	
  	
  	
  	
  	
  from	
  the	
  constraints:	
  
•  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  segments	
  belong	
  to	
  the	
  same	
  class	
  
•  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  segments	
  belong	
  to	
  different	
  classes	
  

distance	
  
between	
  

super-­‐pixels	
  



Distance	
  Learning	
  (2)	
  

Convex	
  max-­‐margin	
  objecKve:	
  
	
  
	
  
	
  
Solver:	
  stochasKc	
  projected	
  sub-­‐gradient	
  method	
  
•  projecKon	
  on	
  the	
  cone	
  of	
  P.S.D.	
  matrices	
  by	
  eigenvalue	
  
truncaKon	
  

•  step	
  size	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  due	
  to	
  strong	
  convexity	
  
	
  
	
  

𝛾𝑡 = 1/(𝜆𝑡)	
  



Super-­‐Pixels	
  and	
  Visual	
  Features	
  

•  Super-­‐pixels	
  
§  Graph-­‐based	
  	
  [Felzenszwalb,	
  2004]	
  
§  SLIC	
  [Achanta,	
  2012]	
  

•  ConvenKonal	
  features:	
  bags	
  of	
  visual	
  words	
  
§  Dense	
  mulK-­‐scale	
  SIFT	
  (500-­‐D	
  histogram)	
  
§  Lab	
  color	
  (200-­‐D	
  histogram)	
  

•  Work	
  in	
  progress:	
  boundary	
  and	
  shape	
  features	
  
§  Boundary	
  strength,	
  smoothness	
  
§  Segment	
  perimeter	
  to	
  area	
  raKo	
  



Datasets	
  

•  PASCAL	
  VOC	
  2011	
  
§  20	
  classes,	
  single	
  model	
  
§  training	
  &	
  validaKon	
  -­‐	
  1111	
  images	
  
§  tesKng	
  -­‐	
  1112	
  images	
  

•  Airplanes	
  
§  single	
  class	
  
§  training	
  &	
  validaKon	
  -­‐	
  2958	
  images	
  
§  tesKng	
  -­‐	
  2979	
  images	
  



EvaluaKon	
  Measures	
  
•  SegmentaKon	
  proposal	
  recall	
  

§  each	
  segment	
  is	
  treated	
  as	
  a	
  putaKve	
  
segmentaKon	
  mask	
  	
  

§  ground-­‐truth	
  overlap	
  raKo:	
  	
  
§  recall	
  –	
  raKo	
  of	
  objects	
  for	
  which	
  a	
  good	
  	
  
proposal	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  exists	
  

•  Overlap	
  RaKo	
  Best	
  Case	
  (ORBC)	
  
§  "best	
  case"	
  segmentaKon	
  –	
  union	
  of	
  	
  
segments	
  with	
  high	
  ground-­‐truth	
  overlap	
  

§  ORBC	
  –	
  overlap	
  raKo	
  of	
  the	
  "best	
  case"	
  	
  
segmentaKon	
  

§  upper	
  bound	
  on	
  segmentaKon	
  accuracy	
  

s=0.6	
  

s=0.95	
  



Results:	
  Learnt	
  vs	
  Euclidean	
  

ORBC	
  

Airplanes	
   PASCAL	
  VOC	
  2011	
  

Euclidean	
   0.638	
   0.601	
  

Learnt	
   0.673	
   0.601	
  

	
  
	
  

Proposal	
  recall	
  

Airplanes	
   PASCAL	
  VOC	
  2011	
  



Summary	
  

•  Fast	
  bo#om-­‐up	
  parsing	
  –	
  a	
  pre-­‐processing	
  step	
  for	
  high-­‐
level	
  vision	
  algorithms	
  (<	
  2	
  s/image)	
  

•  Two	
  complementary	
  merging	
  cues	
  
§  distance	
  between	
  segments	
  
§  appearance	
  of	
  segment	
  union	
  

•  Distance	
  learning	
  leads	
  to	
  slight	
  improvement	
  with	
  off-­‐
the-­‐shelf	
  features	
  

•  Appearance	
  learning	
  –	
  2nd	
  part	
  of	
  the	
  talk...	
  



Learning Appearance 
Models for Bottom-Up 

Parsing (LAMBUP)
David Weiss, Karen Simonyan, 

Ben Taskar,  Andrea Vedaldi



Re-cap: Greedy Merging



Re-cap: Greedy Merging

s(i,j) = 
Objective:

Objectness(Union(i,j)) - Distance(i,j)



Re-cap: Greedy Merging
Objective:

- Distance(i,j)s(i,j) = 



Objective:

- Distance(i,j)

Objectness(Union(i,j))s(i,j) = 

s(i, j) = w>f(xi, xj)

f = [color, texture ],

Objectness Features



Learning the Weights
Bad merges



Learning the Weights
Good merges



Learning the Weights

P: Good mergesN: Bad merges

w>f(x
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, x
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x: Image

“Standard SVM” Formulation



Learning the Weights

• In practice, difficult to score all positives 
above threshold

• Not all pairs need to be merged: Labels are 
ambiguous

• Can incorporate into learning for more 
robust procedure



Learning the Weights

P: Good mergesN: Bad merges

w>f(x
i

, x

j
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x: Image

“Ambiguous Labels” Formulation
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Learning the Weights
“Ambiguous Labels” Formulation



Evaluation

• Output destined for object detector

• Propose object segmentations 

• One merge = One Proposal



Evaluation Proposals
• One merge = One Proposal



Evaluation Proposals

• Compute 
Intersection 
over Union 
(IoU)

• IoU >= 0.5 = 
“hit”

• Measure 
recall

0.7399



Evaluation Proposals

Method Recall

Distance Only 67.0

Standard SVM 71.5

Ambiguous Labels 72.9



Improving Training Data



Improving Training Data



Method Recall Recall 
(Improved)

Distance Only 67.0 --

Standard SVM 71.5 75.9

Ambiguous Labels 72.9 75.7

Improving Training Data

Fixing data --> easier to learn



Work-In-Progress

• Merging = Changing Feature
Distribution

• Model should adapt

• Solution: novel cascade architure

Implemented, but not enough features



Objectness Helps!



S P FS FP Base
aeroplane 0.42 0.44 0.50 0.40 0.53
bicycle 0.07 0.07 0.06 0.06 0.08
bird 0.67 0.63 0.71 0.63 0.67
boat 0.26 0.27 0.27 0.27 0.40
bottle 0.39 0.30 0.35 0.33 0.39
bus 0.41 0.25 0.41 0.25 0.46
car 0.34 0.35 0.35 0.33 0.38
cat 0.80 0.76 0.84 0.78 0.85
chair 0.38 0.36 0.36 0.37 0.43
cow 0.66 0.63 0.62 0.66 0.62
diningtable 0.44 0.46 0.49 0.49 0.54
dog 0.65 0.66 0.65 0.65 0.57
horse 0.65 0.65 0.62 0.65 0.58
motorbike 0.49 0.47 0.46 0.47 0.61
person 0.37 0.40 0.39 0.39 0.38
pottedplant 0.39 0.38 0.39 0.40 0.40
sheep 0.52 0.53 0.52 0.52 0.46
sofa 0.69 0.66 0.75 0.69 0.75
train 0.39 0.39 0.42 0.42 0.63
tvmonitor 0.59 0.59 0.59 0.60 0.68



Method Recall Recall 
(Improved)

Distance Only 52.0 --

Standard SVM 47.8 48.7

Ambiguous Labels 46.3 46.7

Improving Training Data

















40!

Objects in Detail!
Parts & attributes 
!

Stuff in Detail!
Texture!

•  A texture lexicon !
•  A new dataset!
•  Transformation invariant 

semantic!
!

Parsing!
Bottom-up inference!

•  Learning to merge!
•  Cascading!
•  Scoring regions by 

attributes!

Overview!

•  A new dataset!
•  An object lexicon!
•  Localising parts!
•  Layouts!
•  Recognising attributes!
!



Part/Attribute Queries

A person may be interested in querying a set of images for
objects that have certain properties

I An aeroplane with a red, pointy nose

I A furry cat



Bottom Up Proposals of Parts/Attributes



Scoring Functions

First approach: train a discriminative classifier for every possible
class/part/attribute

I fcat(I ) ffurry(I ) ffurry+cat(I ) . . .

17.3 16.8 19.2 . . .

14.6 -3.2 -0.6 . . .



A Naïve Independence Assumption

k mutually-exclusive class/parts, m binary attributes →
(k + 1)2m − 1 possible scoring functions

Insufficient sample of complex part/attribute combinations
Exponential training cost

p(brown, furry , cat) ∝ e fbrown(I ) · e ffurry(I ) · e fcat(I )

=⇒
ln p(brown, furry , cat) = fbrown(I ) + ffurry(I ) + fcat(I ) + b

Linear training cost
Disregards the high statistical dependence between cat and furry



Joint Discriminative Training

Formulation as regularized risk

min
f

λΩ(f ) +
∑
q∈Q

`(f , X , Y , q)

|Q| is exponential, and we therefore need to sample a subset of
basis queries, Q

min
fQ

λΩ(fQ) +
∑
q∈Q

`(fQ , X , Y , q)

Q is a very general parametrization of discriminative models



Basis Queries

For simplicity, consider only conjunctions: brown ∧ furry ∧ cat
Encode as a binary matrix

cat dog brown furry
q1 1 0 0 0
q2 0 1 0 0
q3 0 0 1 0
q4 0 0 0 1
q5 1 0 0 1
q6 0 1 1 0
q7 0 1 0 1



Relationship to Graphical Models

Hammersley-Clifford theorem

ln p(x ) =
∑

C∈cl(G)

fC (xC ) + b

cat dog brown furry
q1 1 0 0 0
q2 0 1 0 0
q3 0 0 1 0
q4 0 0 0 1
q5 1 0 0 1
q6 0 1 1 0
q7 0 1 0 1



Vector Valued Functions / Query
Covariances

A vector valued function returns a vector ouput for any input.
One may specify a covariance structure, B , between outputs.
With a separable kernel, k(x , y , i , x ′, y ′, j ) = k(x , y , x ′, y ′)Bi ,j

and KS = Kjoint ⊗ B

Bi ,j should be large if outputs i and j are similar, and small
otherwise.
We will set each of our outputs to be the scoring function of a
prediction for a given part/attribute query, and B will measure
how similar those scoring functions should be.



Application to Part/Attribute Queries

A part/attribute query can be encoded in a binary string as

follows: nose ... wing striped red pointy ...
1 ... 0 0 1 1 ... we will

call the mapping of a query, q , to this binary string ϕ(q)

Set Bi ,j = 〈ϕ(qi), ϕ(qj )〉
We specify a set of basis queries, Q = {q1, . . . , qk}.
Train vector valued regression with the submatrix BQ

corresponding to the basis queries
Infer functions for novel queries using their relationship to basis
queries



Joint Kernel between Images and Boxes:
Restriction Kernel

Note: x |y (the image restricted to the box region) is again an
image.
Compare two images with boxes by comparing the images within
the boxes:

kjoint((x , y), (x ′, y ′) ) = kimage(x |y , x ′ |y ′ , )

Any common image kernel is applicable:
I linear on cluster histograms: k(h, h ′) =

∑
i hih ′i ,

I χ2-kernel: kχ2(h, h ′) = exp
(
− 1

γ

∑
i

(hi−h′
i )

2

hi+h′
i

)
I pyramid matching kernel, ...

The resulting joint kernel is positive definite.



Restriction Kernel: Examples

kjoint

(
,

)
= k

(
,

)
is large.

kjoint

(
,

)
= k

(
,

)
is small.

kjoint

(
,

)
= k

(
,

)
could also be large.

Note: This behaves differently from the common tensor products

kjoint( (x , y), (x ′, y ′) ) 6= k(x , x ′)k(y , y ′)) !



Evaluating Bounding Boxes

Area of Overlap (AO) Measure

Set a threshold such that AO(Bgt , Bp) > t indicates a correct
detection: 0.5

PASCAL VOC

Define a loss function ∆(Bgt , Bp) = 1− AO(Bgt , Bp).



Structured Output Ranking

Given a joint kernel map, ϕ, learn an objective that orders
outputs correctly

min
w∈H,ξ

λΩ(w) +
1
|E|

∑
(i ,j )∈E

ξĳ (1)

s.t. 〈w , ϕ(xi , yi)〉 − 〈w , ϕ(xj , yj )〉 ≥
margin rescaling︷ ︸︸ ︷

∆j −∆i − ξĳ

or 〈w , ϕ(xi , yi)〉 − 〈w , ϕ(xj , yj )〉 ≥ 1− ξĳ

∆j −∆i︸ ︷︷ ︸
slack rescaling

ξĳ ≥ 0 (2)



Transferring to Previously Unseen Queries

Given basis queries, we may jointly learn a set of functions by
combining ranking objectives subject to a joint regularization of
basis queries: Ω(f1, . . . , fk) = αT K ⊗ Bα

Using our covariance function, we may construct a ranking
objective for previously unseen queries by taking a linear
combination of basis queries:

fj =
∑

i∈basis

Bi ,j fi



Results

VOC Dataset - 20 categories
Features and attributes described in Farhadi et al., CVPR 2009
Texture + Color + HOG ≈ 9K features
64 attributes - many of which are highly correlated with a
specific class label

We will focus on the “furry” attribute and related classes



Results



Results



Results



Overview and Future Outlook

Discriminative training of a scoring system for
object/part+attributes queries
A general regularized risk framework that relates basis queries to
a graphical model structure
Natural extension to novel queries at test time
Significantly improved performance over a naïve independence
assumption

Extensions to queries beyond conjunctions
Automatic learning of basis query set (structure of graphical
model)

I Modeling accuracy + sparsity penalty

Integration with top down inference system



Contact

Matthew Blaschko
Center for Visual Computing
École Centrale Paris & INRIA Saclay - Île-de-France

matthew.blaschko@inria.fr
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Objects in Detail
Parts & attributes

• A new dataset
• An object lexicon
• Localising parts
• Layouts
• Recognising attributes
• The cost of data collection

Stuff in Detail
Texture

• A texture lexicon 
• A new dataset
• Transformation invariant 

semantic

Parsing
Bottom-up inference

• Learning to merge
• Cascading
• Scoring regions by

attributes

Summary



Contribution: A framework for annotation 34

Annotation software

Draw polygons, mark 
attributes, display 

instructions ...

JS magic

Submission software

Manage money, 
revisions, and data

Submitted
~200,000

Amazon Turk HITs

Validation software

Coordinate people, fix 
errors

Validate more than 
30,000 part 

annotations in a few 
days

A special thanks to Esa and 
Juho!



Contribution: A new part & attribute dataset 35

Data

Caltech-101 2003-06

Time frameProblem Progress

Image Classification star models,
BoW

Object Detection PASCAL VOC DPMs,
large scale learning2006-12

Parts & Attributes OID ?2012-?

First dataset in this class
New benchmark and challenges
See it grow in the future!



Contribution: a new semantic texture dataset 36

netlike

latticed

honeycombed

mottled

meshed



Contribution: models & methods 37

Parts and geometry
Part models, semantic

clustering boxes & shapes

Part layouts
improving part detection with context

Attributes
Attributes from appearance

local-global appearance and attribute interactions

Attributes from geometry
many attributes can be predicted from layouts

Learning to merge
Generic 

metric learning

Class specific
union & ambiguous labels

Proposals
covariant attribute modelling

Texture
nuisance-invariant models



Future
• The start of a new challenge

- the life after 7 years of PASCAL VOC
▪ large scale but basic understanding (e.g., ImageNet)
▪ detailed understanding

- Objects in detail
▪ a multi-year challenge

- Texture in detail

• Pushing the technical barrier
- modelling local & global information
- fast inference
- detailed features for subtle attributes

38



Thank you! 39

Sponsors
NSF, Google, DoD

CLSP team
sanjeev, jason, 
monique, ruth,

lauren, mani
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