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Outline

• main message: there is no surface

• introduction: 2 anecdotes

• 3 eg’s: speakers, contexts, locus equations

• some implications
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2 anecdotes
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Consilience

• between theories, models, experiments

• Geoff Hinton on layers

• U-shaped curve

• theory: phonemes, features, opacity
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Last week
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Theory

• Phonemes

• Allophones

• (+ features)

/p/

[p] [pʰ]
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Harris, etc.

• discover phonemes through complementary 
distribution (discovery procedure)

• identify phones, then group into phonemes
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Phones
How do experimental subjects learn phones?

J.F. Werker, R.C. Tees / Infant Behavior & Development 25 (2002) 121–133 131

Fig. 4. Proportion of infant subjects from three ages and various backgrounds reaching criterion on Hindi and
Thompson (Salish) contrasts.

In examining the data, it can be seen that the results from the longitudinal study closely
match those from the cross-sectional study (see Fig. 4). The pattern of change across infancy
is precisely mirrored for the Thompson contrast. The time course of the change was somewhat
different in the case of the Hindi contrast, with an apparent abrupt decline in discriminability
occurring when subjects reached 10–12 months of age.

(Werker and Tees 1984)
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Phones
How do experimental subjects learn phones?

Fig. 4. Proportion of infant subjects from three ages and various backgrounds reaching criterion on Hindi and

To test this, we exposed infants to novel speech stimuli, arranged according to
systematically different distributions. We created a continuum of speech sounds
based on a phonetic contrast that infants between 6 and 8 months of age have
been shown to discriminate: voiced unaspirated vs. voiceless unaspirated stop
consonants (Pegg & Werker, 1997). We then exposed infants to the full continuum
of stimuli arranged in one of two distributional patterns (see Fig. 1). One group was
presented with a bimodal frequency distribution, such that stimuli near the endpoints
of the continuum occurred more frequently than the center stimuli. The other group
was presented with a unimodal distribution for the same stimuli, such that stimuli
from the center of the continuum occurred most frequently. We predicted that
infants exposed to a bimodal distribution would form a two-category representation
of these sounds, while infants exposed to a unimodal distribution would form a one-
category representation, and that they would be able to do this without any informa-
tion about whether the sounds expressed the same or different meanings in this mini-
lexicon. If this prediction is correct, after familiarization to stimuli exhibiting these
distributions, infants exposed to a bimodal distribution should be better able to
discriminate the contrast than infants exposed to a unimodal distribution.

Infants at 8 months of age have been shown to be sensitive to statistical informa-
tion (Jusczyk et al., 1994; Saffran, Aslin, & Newport, 1996; Saffran, Johnson, Aslin,
& Newport, 1999) and capable of learning distributional relationships between
linguistic units after short-term experimental exposure (Gómez & Gerken, 1999;
Jusczyk, Houston, & Newsome, 1999; Saffran, Aslin, & Newport, 1996). At 8
months infants should therefore be capable of performing the necessary computa-
tions for using distributional information to learn phonetic categories. However, at
this age the native language is already beginning to affect speech perception (Kuhl et
al., 1992; Werker & Tees, 1984). If evidence of development is already present at 8

J. Maye et al. / Cognition 82 (2002) B101–B111B104

Fig. 1. Bimodal vs. Unimodal distributions of [da]–[ta] stimuli during familiarization. The continuum of
speech sounds is shown on the abscissa, with Token 1 corresponding to the endpoint [da] stimulus, and
Token 8 the endpoint [ta] stimulus. The ordinate axis plots the number of times each stimulus occurred
during the familiarization phase. The presentation frequency for infants in the Bimodal group is shown by
the dotted line, and for the Unimodal group by the solid line.

(Werker and Tees 1984)

(Maye, Werker, and Gerken 2002)
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Previous statistical models
Gaussian mixture models

the model explicitly learns a probability distribution for each
category. Subsequently, when an input is presented, the model
assigns it to one of the learned categories. Such explicit represen-
tations can then serve as points of contact between the auditory
input and other task-relevant information (e.g., semantic content or
motor program specification). Discovering such categories is a
challenging problem. Speech to children does not contain category
labels, lacks information about the number of categories to be
learned, and contains exemplars of different categories in inter-
mixed order. Furthermore, language learners are likely to rely on
an online learning procedure: one that adjusts category represen-
tations as each exemplar comes in, rather than storing a large
ensemble of exemplars and then calculating statistics over the entire
ensemble.

Previous work on explicit speech category learning has made
some progress on these issues: the Expectation–Maximization
(EM) algorithm for unsupervised category learning (21) suc-
ceeded in learning English /i/, /a/, and /u/ without category labels
(22); a cross-modal clustering algorithm has been successful
without labels or knowledge of the number of categories (23),
and competitive Hebbian learning has been used to model
unsupervised online learning of Japanese liquids (9). Some
models can address all aspects of the challenge under restricted
conditions: a Bayesian online variant of EM was applied to
one-dimensional (1D) VOT distributions (24), and Adaptive
Resonance (25) and competitive learning models (26) are po-
tentially applicable when all of the categories have equal and
homogenous variance. Thus far, however, none of these ap-
proaches has been developed into a robust solution for learning
vowel categories from distributions found in real speech.

These challenges are addressed by the work reported here. We
present an algorithm that can be seen both as a variant of EM
and as an extension of competitive learning models. The model
simultaneously estimates the number of categories in an input
ensemble and learns the parameters of those categories, adjust-
ing its representations online as each new exemplar is experi-
enced (24). The algorithm is applied to the problem of discov-
ering the category structure in the infant-directed speech
recorded by Werker et al. It is ‘‘parametric’’ in that it treats the
distribution of speech sounds in a category as an n-dimensional
Gaussian, and estimates the sufficient statistics of each distri-
bution. We later present a nonparametric variant to investigate
the robustness of the learning principles and how they relate to
neurologically motivated models (9, 27, 28).

Parametric Algorithm for Online Mixture Estimation (OME)
The algorithm treats the vowel stimuli as coming from a set of
Gaussian distributions corresponding to a set of vowel catego-
ries. Each vowel category is a multivariate Gaussian distribution
that has its own overall tendency (‘‘mixing probability’’) of
contributing a token to the data ensemble. The tokens are
sampled independently and at random from the ensemble of
Gaussians, so that the probability of encountering a particular
vowel token is unaffected by the previously encountered tokens.
The goal is to recover, given just the sequence of vowel tokens,
the number of Gaussians, the parameters of each Gaussian and
the respective mixing probabilities. Although this formulation
simplifies the learning problem, it provides a reasonable starting
point because the vowel spectra for a population of speakers tend
to have Gaussian distributions when projected into a 2D space
(29). Likewise, when an isolated vowel is repeated several times
by the same speaker, the formant distributions of the repetitions
follow a Gaussian distribution (30). A further advantage of this
formulation is that it connects to a large body of work in machine
learning (21) and theories of human categorization (31).

The Gaussians used to generate the tokens for training and
testing the model were derived from the productions recorded by
Werker et al. (17). There were 20 English speakers and 10

Japanese speakers, and each speaker produced the nonce words
spontaneously and also read them aloud to her infant. For the
current analyses, we used only the read words because they were
more consistent across speakers in the number of productions of
each vowel. Because the mother–infant interactions were not
scripted, each speaker had a different number of ‘‘read’’ pro-
ductions, with an average of 27 productions per English speaker
and 85 productions per Japanese speaker (Fig. 1). The vowel
portion of each production was characterized by three param-
eters: the location of the first and second formants (F1 and F2,
respectively, measured from the first quarter of the vowel) and
the duration of the steady-state. The Gaussians were derived
separately for each vowel category of each speaker (see Methods;
one English speaker was excluded because of an insufficient
number of productions). The four Gaussians for each speaker
(henceforth, the ‘‘training distribution’’) were used to generate
2,000 data points for each vowel category, for a total of 8,000
training tokens for that speaker.

The algorithm used to learn the categories is fundamentally an
online version of EM (21); the basic innovation here is the
estimation of the covariance matrix by a gradient descent rule,
which allows the algorithm to be simple, robust, and generaliz-
able to higher-dimensional data. Each run of the algorithm is
initialized with 1,000 equally probable Gaussian categories with
randomly initialized means (Fig. 2). On each trial, one token is
randomly drawn, with replacement, from the set of 8,000 for that
speaker (see Methods). The algorithm first calculates the ‘‘re-
sponsibility’’ of each category for the token (the responsibility is
proportional to the probability of the token given the category’s
current mean and covariance matrix times its mixing probabil-

Fig. 1. The Gaussian distributions for the English /,i,ε,e/ and Japanese
/i,i#,e,e#/, computed over the read vowels from all speakers (the tokens were
z-scored for each speaker before the analysis). The ellipsoids are equal-
probability surfaces, 1 SD along each principal axis, enclosing !19% of the
total probability mass. Note that these are aggregate tendencies; the vowel
categories of individual speakers varied greatly, covered a wider range, and
overlapped with each other considerably.

13274 ! www.pnas.org"cgi"doi"10.1073"pnas.0705369104 Vallabha et al.

(Vallabha et al. 2007)
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winner-take-all). As Table 2 shows, without competition,
quadratic normalization and softmax outperformed the
original implementation. However, when competition was
included, these two schemes offered no additional benefit
over the original model. Thus, this form of statistical
learning is only successful with competition, and, of the
competition methods examined, winner-take-all seems to
yield the best performance.

A number of unsupervised connectionist architectures
show the same property. Competitive Hebbian learning
(e.g. Rumelhart & Zipser, 1986) uses winner-take-all
competition; Hebbian normalized recurrence uses quad-
ratic normalization and cannot learn speech categories
without it (McMurray et al., in press); and self-organizing
feature maps (Guenther & Gjaja, 1992) employ a topo-
graphic excitation/inhibition rule. These architectures
buttress the current point: competition is required for
distributional category learning.

Modelling the developmental timecourse

Using the hybrid model (learning + competition), we now
ask whether it accounts for the developmental timecourse
of phonetic category formation. Figure 3 shows a charac-
teristic run of the model. Over the course of development,
unnecessary Gaussians are eliminated and the remaining ones
adjust to fit the input from the training distribution. Thus,
at 2,000 training generations (panel B), the model has a large
number of categories that are not aligned to the training data.
At this point, any two VOTs are likely to fall under different
categories and be easily discriminable. However, after 30,000
generations (Figure 3D), the model successfully represents
the input, and many (within-category) contrasts will fall
under the same Gaussian and be indiscriminable.

This simplistic analysis assumes that infants only
discriminate tokens that fall completely into different
categories. Early in development, however, inputs may

Table 2 Average number of categories after 100,000 generations of learning as a function of competition rules. Numbers in
parentheses are standard deviations. Numbers on the second line refer to the proportion (of 100 simulations) that correctly extracted
two categories

Implementation of φ (frequency)

φ (original)  (normalized)  (quadratic normalized)  (softmax)

No competition 11.9 (1.8)
0%

10.6 (2.3)
0%

3.8 (1.3)
16%

3.5 (1.5)
33%

Winner take all 1.97 (.17)
97%

1.99 (.1)
99%

1.93 (.26)
93%

1.89 (.31)
89%
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Figure 3 A single mixture of Gaussians (MOG) model over the course of training on a distribution with means of 0 and 50 and 
equal standard deviations of 15. Dashed vertical lines represent the means of the two training categories. (A) With no input, all K 
(8) Gaussians are equally likely. (B and C) After a few thousand exposures, the model suppresses some of the unnecessary Gaussians, 
until (D) by the end of training, only the two correct Gaussians remain.(McMurray et al. 2009)
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Phones to phonemes
/ʁ/

[ʁ] [χ]

(Peperkamp et al. 2006)

[ʁ]
[χ]

Environments
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Problems
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Problems
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Problems
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Problems
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A new model

categories and transformations: c’s and t’s
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A new model

categories and transformations: c’s and t’s
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A new model

categories and transformations: c’s and t’s
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A new model

categories and transformations: c’s and t’s
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3 examples
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speaker/gender
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Spanish Vowels

• Data from one male and one female 
speaker from North America

• Vowels extracted automatically from 
CALLHOME telephone speech corpus 
using Praat: first three formants

• Corner vowels (/i/, /u/, /a/) extracted 
as test case

• 536 data points (249 female, 237 
male)

(Boersma and Weenink 2007)
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Female

Male
Female

Male

Female
Male

Materials
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Female

/i/ /u/

/a/

Male
Female

Male

Female
Male

Materials
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• Nonparametric Bayesian Gaussian mixture 
(Dirichlet process mixture); as many/few 
categories as the data demands

• 10-fold cross validation

• Fit 10 times, each time holding out 10% of 
the data for testing on new points

• Fit using MCMC (Gibbs sampler)

“i-Phones”
Methods
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“i-Phones”
Results

“neither fish nor fowl”
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Summary

• Speaker variability can make one lexical category 
look like two phonetic categories

• Speaker variability can make categories overlap

• Hard to learn any appropriate categories if you 
don’t know about speaker variability

• We definitely want the lexical inventory to 
abstract out male/female
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• Nonparametric Bayesian mixture of Gaussian 
linear models (Dirichlet process mixture); as 
many/few categories as the data demands

• 10-fold cross validation

• Fit 10 times, each time holding out 10% of 
the data for testing on new points

• Fit using MCMC (Gibbs sampler)

C’s and T’s
Methods

21



Materials

Mark female points as “special”

C’s and T’s
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C’s and T’s
Results
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Summary

• It was hard to learn any appropriate categories if 
you don’t know about speaker variability

• New model learns categories by simultaneously 
learning categories and sex/speaker-specific 
transformations

• Easier to learn appropriate categories if you also 
learn speaker variability
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Labelling?

Female

/i/ /u/

/a/

Male
Female

Male

Female
Male

How do we know which points are “special”?
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Latent attributes
• As before:

• Nonparametric Bayesian mixture of 
Gaussian linear models (Dirichlet process 
mixture); as many/few categories as the 
data demands

• Now, the same, plus:

• For each point, learn the value of a single 
bit (either 1 or 0) indicating whether that 
point is “special”
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Latent attributes

• Data from Hillenbrand (1997)

• First four formants measured at 
steady state from wordlist data

• Corner vowels (/i/, /u/, /a/) extracted 
as test case

• 344 data points (61% female, 39% 
male)

English

Materials

Learning categories + transformations + predictor

Female

Male

Female

Male

Female

Male

27



Latent attributes

• Data from Hillenbrand (1997)

• First four formants measured at 
steady state from wordlist data

• Corner vowels (/i/, /u/, /a/) extracted 
as test case

• 344 data points (61% female, 39% 
male)

English

Materials

Learning categories + transformations + predictor

Female

/i/ /u/

/ɑ/

Male

Female

Male

Female

Male

27



Latent attributes
Materials

Learning categories + transformations + predictor

What we did before

39%
male
61%  

female
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Latent attributes
Materials

Learning categories + transformations + predictor

What we will do now

39%
male
61%  

female
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Latent attributes
Materials

Learning categories + transformations + predictor

What we hope to recover

39%
male
61%  

female

28



Latent attributes
Materials

Learning categories + transformations + predictor

What we hope to recover

39%
male
61%  

female

28



• Nonparametric Bayesian mixture of Gaussian 
linear models (Dirichlet process mixture); as 
many/few categories as the data demands

• 10-fold cross validation

• Fit using MCMC (Gibbs sampler)

Latent attributes
Methods

Learning categories + transformations + predictor
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Latent attributes
Results

Learning categories + transformations + predictor
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Latent attributes
Results

Learning categories + transformations + predictor
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Latent attributes
Results

Learning categories + transformations + predictor
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Latent attributes
Results

Learning categories + transformations + predictor
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Summary

• Can discover (roughly) which tokens are 
male/female

• Model searches for categories and shifts and 
notices phonetically “suspicious” behavior

• Statistical properties of phonetics cue 
learner to different types of tokens
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contextual variants
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Inuktitut

• Eskimo-Aleut, 30,000 speakers

• Three-vowel system

• Uvular consonants cause 
substantial retraction of all three 
vowels (i -> e, u -> o, a -> ɑ)

• Easy to find examples of 
retraction across morpheme 
boundaries 
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Inuktitut

• Data from single female speaker 
from Cape Dorset, Nunavut

• Vowels elicited in word list, 
formants measured by hand at 
the center of the vowel

• 239 data points in original 
corpus, upsampled by jittering to 
1000 points

(Denis and Pollard 2008)
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Materials

[i] [o]

[u]

[a]
[e]

[ɑ]

/i/ /u/

/a/
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• Nonparametric Bayesian Gaussian mixture 
(Dirichlet process mixture); as many/few 
categories as the data demands

• 10-fold cross validation

• Fit 10 times, each time holding out 10% of 
the data for testing on new points

• Fit using MCMC (Gibbs sampler)

Phones
Methods

36



Phones
Results

37



Phones
Results
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• Examine models and manually map Gaussian 
categories to nearest Inuktitut phones

• Use Peperkamp et al.’s (2006) statistical 
method for grouping phones into phonemes

Group Phones
Learning phonemes

Methods

38



Group phones
Methods

/i/

[i] [e]

(Peperkamp et al. 2006)

[i]
[e]

EnvironmentsFr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e • Number representing how 

different two probability 
distributions are

• In this case, probability is 
“following uvular or not”

• Compare for each pair of 
phonetic categories found in 
Experiment 3a

KL divergence
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Group phones
Methods

+ -

/i/

[i] [e]

(Peperkamp et al. 2006)

[i]
[e]

EnvironmentsFr
eq

ue
nc

y 
of

 o
cc

ur
re

nc
e • Number representing how 

different two probability 
distributions are

• In this case, probability is 
“following uvular or not”

• Compare for each pair of 
phonetic categories found in 
Experiment 3a

KL divergence
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KL divergence
Results

[i] [e] [u] [o] [a] [ɑ]
[i] 0 0.81 0.03 0.32 0.33 0.85
[e] 0.81 0 0.48 0.10 0.09 0.00
[u] 0.03 0.48 0 0.14 0.14 0.50
[o] 0.32 0.10 0.14 0 0.00 0.11
[a] 0.33 0.09 0.14 0.00 0 0.10
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Summary

• Learning lexical inventories by relating 
allophones requires that we first learn the 
allophones as a surface inventory

• Learning from real data is messy

• Problems learning surface inventories 
undermine correct learning of lexical 
inventories (downstream contamination)
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• Nonparametric Bayesian mixture of Gaussian 
linear models (Dirichlet process mixture); as 
many/few categories as the data demands

• 10-fold cross validation

• Fit 10 times, each time holding out 10% of 
the data for testing on new points

• Fit using MCMC (Gibbs sampler)

C’s and T’s
Methods

42



Materials

Mark pre-uvular points as “special”

C’s and T’s

43



C’s and T’s
Results

44



Summary

• New model learns abstract phonetic 
categories by simultaneously learning phonetic 
categories and transformations

• Succeeds at learning correct abstract 
categories where a learner which works by 
finding and grouping phones fails

• Same learning model handles speaker 
variability and allophonic variability
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C’s and T’s and contexts
Materials

What we did before

36%
pre-uvular

64% 
“elsewhere”
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C’s and T’s and contexts
Materials

What we will do now

36%
pre-uvular

64% 
“elsewhere”
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C’s and T’s and contexts
Results

Ground truth Previous result
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C’s and T’s and contexts
Results

Ground truth Previous result
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C’s and T’s and contexts
Results

Ground truth Previous result
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C’s and T’s and contexts
Results

Ground truth Previous result
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Summary

• Can find an allophonic phonetic rule without 
knowing anything about the environment 
(almost)

• Model searches for categories and shifts and 
notices phonetically “suspicious” behavior

• Phonetics cues learner to different types of 
tokens

48



higher order invariants
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Stevens, etc.

• one possible solution to the problem of 
variability is to look for derived (higher-
order) quantities that are more stable

• features
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Locus equations

• Lindblom, Sussman

• consonant place classes correlate with the 
change in F2 between vowel onset and 
vowel midpoint
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Locus Equations
(Sussman)
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Summary

• Locus equations define a space (F2vowel x 
F2onset) and a class of models in that space 
(linear regressions)

• Here we can find the six phones with GMMs 
(but no voicing variation here)

• But we can also find the three phonemes 
with MGLMs

• Need to implement sampling for this
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Conclusions

• Mixtures of regressions (or, GLM’s) can find 
categories and relationships simultaneously

• Hard to find phones, and then hard to group 
into phonemes

• No direct inference of a surface inventory 
(how many kinds of /g/?), 

• phones are epiphenomenal
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Implications

• Phonotactic learning?

• Incomplete neutralization as T’s to the same 
mean (but with different distributions)? No 
identification as “same phone”.

• No allophonic feeding? (chain shifts)

• E-language vs. I-language?
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