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Chapter 1

Workshop Goal

Novel techniques in speech recognition are often hampered by the long road that must be followed to turn them
into fully functional systems capable of competing with the state-of-the-art. In the 2010 JHU summer workshop,
we explored the use of Segmental Conditional Random Fields as an integrating technology to augment the best
conventional systems with information from novel scientific approaches.

The Segmental CRF approach [1] is a modeling technique in which the probability of a word sequence w is
estimated from some observed features o as P (w|o) using a log-linear model. Described in Sec. 2.2, the model
determines the probability of a word sequence by weighting features which each measure some form of consistency
between a hypothesis and the underlying audio. These features are at the word-segment level, and for example a
feature might be the similarity between observed and expected formant tracks. To ensure that the performance of
a baseline system can be achieved, a built-in binary feature tests whether a hypothesized word is the same as that
present at the same time in some baseline output.

The key characteristic of the SCRF approach is that it provides a principled yet flexible way to integrate mul-
tiple information sources: all feature weights are learned jointly, using the conditional maximum likelihood (CML)
objective function. In particular, SCRFs can combine information

• of different types, for example both real valued and binary features;

• at different granularities, for example at the frame, phoneme or word level

• of varying quality, for example from a state-of-the-art baseline and from less accurate phoneme or word detectors

• of varying degrees of completeness, for example a feature that detects just one word

• that may be redundant, for example from phoneme and syllable detectors

This flexibility is hard to achieve in standard systems, and opens new possibilities for the integration of novel
information sources. The recently released SCARF toolkit [2] is designed to support research in this area, and was
used at the workshop.

Over the course of the workshop we exploited several information sources to improve performance on Broadcast
News and Wall Street Journal tasks, including:

• Template features [3]

• Neural-net phoneme detectors, both MLP based [4, 5] and with Restricted Boltzman Machine pretraining [6]

• Word detectors based on Point Process Models [7]

• Modulation feature [8, 9] based multiphone detectors

• Duration models

In the remainder of the report, we first summarize the SCRF model, then describe these information sources and
their results in isolation, and finally present experimental results combining multiple information sources.
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Chapter 2

The SCARF Framework

2.1 Overview

SCARF is a toolkit for using Segmental Conditional Random Fields (SCRFs) to do speech recognition. The in-
spiration for SCARF comes from Maximum Entropy (ME) models, in which one may use thousands of possibly
redundant features in a model to do classification. However, whereas ME models are best suited to “flat” n-way
classification tasks, SCRFs are naturally suited to sequence labeling problems in which a sequence of labels (words)
is assigned to an arbitrarily long input sequence. In this respect, SCRFs draw from earlier Conditional Random
Field (CRF) models, which were designed for sequence labeling. SCRFs extend these models by operating at the
segment level, in which multiple adjacent observations can be lumped together into a segment with a single label, and
segment-level features can be extracted and used. In essence, SCRFs can be thought of as combining the sequence
labeling properties of CRFs with the segment labeling properties of ME models. These properties are illustrated in
Table 2.1.

The use of SCRFs in speech recognition has several potential advantages:

• As with Maximum Entropy models, they offer a convenient way to combine numerous, possibly redundant
features. Unlike feature vectors as used in HMMs, we do not need to worry about keeping the features
uncorrelated.

• Since the analysis is done at the segment level, long-span features such as pitch contours can be extracted and
related directly to the word hypothesis for a segment.

• The models are inherently discriminative in nature. Unlike HMM models, in which discriminative training
methods such as MMI, MPE and MCE are applied in a separate “add-on” process, discriminative training is
built into SCRFs.

In addition to the general advantages of SCRFs mentioned above, the SCARF implementation in particular has
several important points which are worth mentioning:

• N-gram language modeling has been fully incorporated, and one can easily choose whether to use a pre-trained
maximum likelihood model, or to learn its parameters discriminatively, in an integrated fashion with the
acoustic model parameters.

• SCARF takes as its basic input acoustic detector events (see, e.g., [10, 11]. These may be, for example, phoneme
detections or syllable detections. A wide variety of features can be automatically generated from these basic
inputs.

• SCARF has been designed to facilitate some of the operations that are commonly done with speech recognizers
based on generative models. For example, the language model and lexicon can be changed without retraining.

• The segmental computations are made efficient through the use of lattice constraints. When derived from an
existing HMM system, this can be a convenient way to build on the state-of-the-art.

6



Generative Model Discriminative Model
Framewise Analysis HMM CRF
Segmental Analysis Segmental HMM SCRF

Table 2.1: Classification of model types along two dimensions.

• SCARF supports user-defined features in the form of lattice annotations. This makes is simple to test the effect
of new features without modifying any code.

2.2 Model

Figure 2.1: Graphical representation of a CRF.

Segmental Conditional Random Fields - also known as Semi-Markov Random Fields [12] or SCRFs - form the
theoretical underpinning for SCARF. They relax the Markov assumption from the frame level to the word level,
where states now correspond with a variable and automatically derived time span. To explain these, we begin with
the standard Conditional Random Field model [13], as illustrated in Figure 2.1. Associated with each vertical edge
v are one or more feature functions fk(sv, ov) relating the state variable to the associated observation. Associated
with each horizontal edge e are one or more feature functions gd(s

e
l , s

e
r) defined on adjacent left and right states. (We

use se
l and se

r to denote the left and right states associated with an edge e.) The set of functions (indexed by k and
d) is fixed across segments. A set of trainable parameters λk and ρd are also present in the model. The conditional
probability of the state sequence s given the observations o is given by

P (s|o) =
exp(

∑

v,k λkfk(sv, ov) +
∑

e,d ρdgd(s
e
l , s

e
r))

∑

s′ exp(
∑

v,k λkfk(s′v, ov) +
∑

e,d ρdgd(s′el , s′er ))

In speech recognition applications, the labels of interest, words, span multiple observation vectors, and the exact
labeling of each observation is unknown. Hidden CRFs [14] address this issue by summing over all labelings consistent
with a known or hypothesized word sequence. However, in the recursions presented in [14], the Markov property is
applied at the frame level, with the result that segmental properties are not modeled. The C-Aug model [15, 16] is
also related, in applying a conditonal model at the segmental level, with a particular set of features derived from the
Fisher kernel.

Here, in order to use long-span features, and to directly relate segment-level acoustic properties to the word
label, we adopt the formalism of segmental CRFs. In contrast to a CRF, the structure of the model is not fixed a
priori. Instead, with N observations, all possible state chains of length l ≤ N are considered, with the observations
segmented into l chunks in all possible ways. Figure 2.2 illustrates this. The top part of this figure shows seven
observations broken into three segments, while the bottom part shows the same observations partitioned into two
segments. For a given segmentation, feature functions are defined as with standard CRFs. Because of the segmental
nature of the model, transitions only occur at logical points, and it is clear what span of observations to use to model
a given symbol.

Since the g functions already involve pairs of states, it is no more computationally expensive to expand the f
functions to include pairs of states as well, as illustrated in Figure 2.3. This structure has the further benefit of
allowing us to drop the distinction between g and f functions. To denote a block of original observations, we will
use oj

i to refer to observations i through j inclusive.
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Figure 2.2: A Segmental CRF and two different segmentations.

In the semi-CRF work of [12], the segmentation of the training data is known. However, in speech recognition

applications, this is not the case. Therefore, in computing sequence likelihood, we must consider all segmentations

consistent with the state (word) sequence s, i.e. for which the number of segments equals the length of the state

sequence. Denote by q a segmentation of the observation sequences, for example that of Fig. 2.3 where |q| = 3. The

segmentation induces a set of (horizontal) edges between the states, referred to below as e ∈ q. One such edge is

labeled e in Fig. 2.3. Further, for any given edge e, let o(e) be the segment associated with the right-hand state se
r,

as illustrated in Fig. 2.3. The segment o(e) will span a block of observations from some start time to some end time,

oet
st; in Fig, 2.3, o(e) is identical to the block o4

3. (The first block of observations is handled by an implicit transition

from a special start state to the first word.) With this notation, we represent all functions as fk(se
l , s

e
r, o(e)) where

o(e) are the observations associated with the segment of the right-hand state of the edge. The conditional probability

of a state (word) sequence s given an observation sequence o for a SCRF is then given by

P (s|o) =

∑

q s.t. |q|=|s| exp(
∑

e∈q,k λkfk(s
e
l , s

e
r, o(e)))

∑

s′

∑

q s.t. |q|=|s′| exp(
∑

e∈q,k λkfk(s′el , s′er , o(e)))
.

Training is done by gradient descent using Rprop [17]. Taking the derivative of L = log P (s|o) with respect to

λk we obtain the necessary gradient:

∂L

∂λk
=

∑

q s.t. |q|=|s| Tk(q) exp(
∑

e∈q,k λkfk(se
l ,s

e
r,o(e)))

∑

q s.t. |q|=|s| exp(
∑

e∈q,k λkfk(se
l ,s

e
r,o(e)))

−
∑

s′
∑

q s.t. |q|=|sl′| T
′
k(q) exp(

∑

e∈q,k λkfk(s′el ,s′er ,o(e)))
∑

s′
∑

q s.t. |q|=|s′| exp(
∑

e∈q,k λkfk(s′el ,s′er ,o(e))) ,

with

Tk(q) =
∑

e∈q

fk(s
e
l , s

e
r, o(e))

T ′
k(q) =

∑

e∈q

fk(s
′e
l , s′er , o(e)).

This derivative can be computed efficiently with dynamic programming and a 1st pass state space reduction, using
the recursions described in 2.4. In practice, we add L1 and L2 regularization terms to L to obtain an regularized
objective function.
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Figure 2.3: Incorporating last-state information in a SCRF.

2.3 Adapting SCRFs for Speech Recognition

In order to model continuous speech, the model structure of Figure 2.3 is given a specific meaning. While the features
we use relate a word to an observation span, the state does not directly encode a word identity. Instead, the values
of the state variable in this model correspond to states in a finite state representation of a n-gram language model.
This is illustrated in Figure 2.4. In this figure, a fragment of a finite state language model representation is shown
on the left. The states are numbered, and the words next to the states specify the linguistic state. At the right of
this figure is a fragment of a CRF illustrating the word sequence “the dog nipped.” The states are labeled with the
index of the underlying language model state. In our search strategy 2.4, we extend existing hypotheses with specific
words, so the word identity is always available for feature computation.

We use the language model in two ways. First, conventional smoothed ngram probabilities can be returned
as transition features. A single λ is trained to weight these features, resulting in a single discriminatively trained
language model weight. Secondly, indicator features can be introduced, one for each arc in the language model,
which indicate when an arc is traversed in the transition from one state to another. A state transition in the CRF
then results in a non-zero feature value (i.e. 1) for each arc traversed in the underlying language model structure.
For example, in Figure 2.4, the arcs (1, 2) and (2, 6) are traversed in moving from state 1 to state 6. Each of these
arcs has its own binary feature. Learning the weights on these results in a discriminatively trained language model,
trained jointly with the acoustic model.

Figure 2.4: Correspondence between language model state and SCRF state. The dotted lines indicate the path taken
in hypothesizing “nipped” after “the dog.” A line from state 7 to state 1 has been omitted for clarity.

SCARF has also been designed to support two other common operations in speech recognition. First, it can
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be trained with one language model, and then at decode time a different model can be substituted. (This only
applies when a single LM weight is learned.) The learned weight will be used in association with the new language
model, and further, the user can manually “clamp” the weight to any desitred value. Secondly, as we will see in the
next chapter, two classes of features (Expectation and Levenshtein) have been designed so that at test time a new
dictionary can be used. The subword-unit weights generalize to any new words.

2.4 Computation with SCRFs

In this section, we turn to the recursions that are used for inference and training in SCARF. These are similar in
form to those used with HMMs, including the computation of a forward “alpha” recursion and a backward “beta”
recursion. The combination of quatities computed in these passes enables the computation of the a-posteriori feature
counts necessary in the for the gradient. Note, however, that the precise meaning of the αs and βs is somewhat
different since we are no longer dealing with a generative model.

2.4.1 Forward Backward Recursions

The recursions make use of the following data structures and functions.

1. An ARPA n-gram backoff language model. This has a null history state (from which unigrams emanate) as
well as states signifying up to n− 1 word histories. Note that after consuming a word, the new language model
state implies the word. We consider the language model to have a start state - that associated with the ngram
< s > - and a set of final states F - consisting of the ngram states ending in < /s >. Note that “being in” a
state s implies the last word that was decoded, which can be recovered through the application of a function
w(s).

2. start(t), which is a function that returns a set of words likely to start at observation t, along with their endtimes.

3. succ(s, w) delivers the language model state that results from seeing word w in state s.

4. features(s, s′, st, et) returns a set of feature indices K and the corresponding feature values fk(s, s′, oet
st). Only

features with non-zero values are returned, resulting in a sparse representation. The return values are auto-
matically cached so that calls in the backward computation do not incur the cost of recomputation.

The start function is implemented by default through reference to an input lattice file. Without such constraints, the
full segmental search considering all possible words at all possible starting and ending positions would be intractible
for large vocabulary systems.

Let Qj
i represent the set of possible segmentations of the observations from time i to j. Let Sb

a represent the set
of state sequences starting with a successor to state a and ending in state b. We define α(i, s) as

α(i, s) =
∑

s∈Ss
startstate

∑

q∈Qi
1s.t.|q|=|s|

exp(
∑

e∈q,k

λkfk(se
l , s

e
r, o(e)))

We define β(i, s) as

β(i, s) =
∑

s∈Sstopstate
s

∑

q∈QN
i+1s.t.|q|=|s|

exp(
∑

e∈q,k

λkfk(se
l , s

e
r, o(e)))

The following pseudocode outlines the efficient computation of the α and β quantities. For efficiency and conve-
nience, the implementation of the recursions can be organized around the existence of the start(t) function. All α
and β quantities are set to 0 when first referenced.
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Alpha Recursion:
pred(s, x) = ∅ ∀s, x
α(0, startstate) = 1
α(0, s) = 0, s 6= startstate
for i = 0 . . .N − 1

foreach s s.t. α(i, s) 6= 0
foreach (w, et) ∈ start(i + 1)

ns = succ(s, w)
K = features(s, ns, i + 1, et)
α(et, ns)+ = α(i, s) exp(

∑

k∈K λkfk(s, ns, oet
i+1))

pred(ns, et) = pred(ns, et) ∪ (s, i)

Beta Recursion:
β(N, s) = 1, s ∈ F
β(N, s) = 0, s /∈ F
for i = N . . . 1

foreach s s.t. β(i, s) 6= 0
foreach (ps, st) ∈ pred(s, i)
K = features(ps, s, st + 1, i)
beta(st, ps)+ = beta(i, s) exp(

∑

k∈K λkfk(ps, s, oi
st+1))

2.4.2 Gradient Computation

Let L be the constraints encoded in the start() function with which the recursions are executed. For each utterance
u we compute:

ZL(u) =
∑

s∈F α(N, s) = β(0, startstate)
for i = N . . . 1

foreach s s.t. β(i, s) 6= 0
foreach (ps, st) ∈ pred(s, i)
K = features(ps, s, st + 1, i)

FL
k∈K(u)+ =

fk(ps,s,oi
st+1)α(st,ps)β(i,s) exp(

P

k∈K
λkfk(ps,s,oi

st+1))

ZL(u)

We compute this once with constraints corresponding to the correct words to obtain F cw
k (u). This can be very

simply implemented by constraining the words returned by start(t) to those starting at time t in a forced alignment
of the transcription. We then compute this without constraints, i.e. with start(t) allowed to return any word, to
obtain F aw

k (u). The gradient is given by:

∂L

∂λk
=
∑

u

(F cw
k (u) − F aw

k (u))

For generality, SCARF also allows the use of numerator constraints that have multiple paths. The astute reader
may notice that with multiple paths, it is not strictly guaranteed that the time-based constraint in the numerator
computation will admit only word sequences which are in accordance with the transcript. Therefore, SCARF allows
the use of lattices with topological constraints as well as temporal constraints. The notion of “state” is generalized
in the recursions to the combination of language model and constraint lattice state, and generalizations of start and
succ are used. This has the additional benefit that the lattice topology can by used to capture cross-word acoustic
and linguistic context, thus making lattice annotations that use this information possible.
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2.4.3 Decoding

Decoding proceeds exactly as with the alpha recursion, with sums replaced by maxs:

pred(s, x) = ∅ ∀s, x
α(0, startstate) = 1
α(0, s) = 0, s 6= startstate
for i = 0 . . .N − 1

foreach s s.t. α(i, s) 6= 0
foreach (w, et) ∈ start(i + 1)

ns = succ(s, w)
K = features(s, ns, i + 1, et)
if α(i, s) exp(

∑

k∈K λkfk(s, ns, oet
i+1)) > α(et, ns) then

α(et, ns) = α(i, s) exp(
∑

k∈K λkfk(s, ns, oet
i+1))

pred(ns, et) = (s, i)

Once the forward recursion is complete, the predecessor array contains the “backpointers” necessary to recover
the optimal segmentation and its labeling.

2.5 Features

With SCARF as with other models, the features which are used are of the utmost importance. SCARF gets its
features from two basic sources. The first source is features that are automatically defined when detector input is
available, for example when phoneme or syllable detections are on hand. The second is arbitrary user defined features
which may be used to annotate the lattices. We now turn to the description of the features in more detail.

2.5.1 Nomenclature

SCARF’s built-in acoustic features are defined in terms of the detection units that a word spans. Suppose we have
a word with hypothesized start time st and end time et. For a specific detector unit u, the notation u ∈ span(st, et)
is used to indicate that the detection exists within the time boundaries from st to et, inclusive. pron(w) is used
to represent the pronunciation of word w. Handling of multiple pronunciations is specific to the feature type, and
described below.

2.5.2 Detector Inputs

The inputs to the feature creation process consist of streams of detector events, and optionally dictionaries that
specify the detection sequences that are expected for the words. Each atomic detector stream provides a sequence
of detector events, which consist of a unit which is detected and a time at which the detection occurs. Each stream
defines its own unique unit set, and these are not shared across streams.

A dictionary providing canonical word pronunciations can be provided for each feature stream. For example,
phonetic and syllabic dictionaries could be provided. As discussed below, the existence of a dictionary enables the
automatic construction of certain features that indicate (in)consistency between a sequence of detected units and
those expected given a word hypothesis. These allow for generalization to words not seen in the training data.

2.5.3 Existence Features

Recall that a language model state s implies the identity of the last word that was decoded: w(s). Existence features
simply indicate whether a detector unit exists in a word’s span. They are of the form:

fu(s, s′, oet
st) = δ(w(s′) = u)δ(u ∈ span(st, et)).

Dictionary pronunciations are not used in these features; however, no generalization is possible across words. Higher
order existence features, defined on the existence of ngrams of detector units, can also be automatically constructed.
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Since the total number of existence features is the number of words times the number of unit ngrams, we must
constrain the creation of such features in some way. Therefore, we create an existence feature in two circumstances
only:

• when a word and ngram of units exists together in a dictionary

• when a word exists in a training sentence, and an ngram exists within the word’s span; this correspondence is
determined examining the lattices provided for training

2.5.4 Expectation Features

Expectation features represent one of three events: the correct-accept, false-reject, or false accept of an ngram of
units within a word’s span. In order, these are of the form:

f ca
u (s, s′, oet

st) = δ(u ∈ pron(w(s′))δ(u ∈ span(st, et))

ffr
u (s, s′, oet

st) = δ(u ∈ pron(w(s′))δ(u /∈ span(st, et))

ffa
u (s, s′, oet

st) = δ(u /∈ pron(w(s′))δ(u ∈ span(st, et))

Expectation features are indicators of consistency between the units expected given a word (pron(w)), and those that
are actually in the seen observation span. There is one feature of each type for each unit, and they are independent
of word identity. Therefore these features provide important generalization ability. Even if a particular word is not
seen in the training data, or if a new word is added to the dictionary, they are still well defined, and the λs previously
learned can still be used. To measure higher-order levels of consistency, bigrams and trigrams of the atomic detector
units can also be automatically generated.

The case where a word has multiple pronunciations requires special attention. In this case,

• A correct accept is triggered if any pronunciation contains an observed unit sequence.

• A false accept is triggered if no pronunciation contains an observed unit sequence.

• A false reject is triggered if all pronunciations contain a unit sequence, and it is not present in the detector
stream.

Unit ngram features are again restricted to ngrams occurring in the training data.

2.5.5 Levenshtein Features

Levenshtein features are the strongest way of measuring the consistency between expected and observed detections.
To construct these, we compute the edit distance between the units present in a segment and the units in the
pronunciation(s) of a word. We then create the following features:

fmatch
u = number of times u is matched

fsub
u = number of times u (in pronunciation) is substituted

fdel
u = number of times u is deleted

f ins
u = number of times u is inserted

In the context of Levenshtein features, the use of expanded ngram units does not make sense and is not used. Like
the expectation features, Levenshtein features provide a powerful generalization ability as they are well-defined for
words that have not been seen in training.

When multiple pronunciations of a given word are present, the one with the smallest edit distance is selected for
the Levenshtein features.

2.5.6 Language Model Features

SCARF supports two kinds of language model features: global and local; these are now described in turn.
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Global LM Features

There are two global language model features:

1. The language model score of a word, as determined by an n-gram language model. Recall that the states in
the SCRF correspond to language model history states, so the necessary information is readily available.

2. A feature that indicates whether the current word is out-of-vocabulary with respect to the language model.
The language model score will be that of <unk> in the current context, and this additional feature provides a
simple way of further training the LM.

The global language model features are especially useful because they allow for language model and vocabulary
swapping after training. These weights can be learned in the context of one language model, and then used with
another.

Local LM Features

SCARF provides local language model features in order to discriminatively train the language model itself. As
mentioned in Section 2.3, when SCARF computes a language model probability, it keeps track of which arcs are
traversed in an underlying finite-state representation of the language model. There is a binary feature for each arc,
indicating whether it is traversed or not. Learning weights on these features results in a discriminatively trained
language model. Further, the resulting SCARF model has jointly trained acoustic and language models.

It is important to note that when local language model features are used, the same language model should be
used for training and decoding.

2.5.7 Baseline Features

In order to leverage the existence of high-quality baseline HMM systems, we have also added a baseline feature. This
is essentially a detector stream that specifies the 1-best word output of a baseline system. Any detections of silence,
denoted by ∼SIL, are removed from this stream. (Silence may be present in the lattice itself.) The time associated
with each word in this stream is its midpoint. Denote the number of baseline detections in a timespan from st to et
by C(st, et). In the case that there is just one, let its value be denoted by B(st, et). The baseline feature is defined
as:

fb(s, s
′, oet

st) =







+1 if C(st, et) = 1 and B(st, et) = w(s′)
0 if C(st, et) = 0 and w(s′) =∼SIL
−1 otherwise.

That is, the baseline feature is 1 when a segment spans just one baseline word, and the label of the segment matches
the baseline word. Silence in the lattice is ignored as long as it does not conflict with a baseline word detection.
It can be seen that the contribution of the baseline features to a path score will be maximized when the number
of segments is equal to the number of baseline words, and the labeling of the segments is identical to the baseline
labeling. Thus, as we can assign a weight approaching infinity to the baseline feature, baseline performance can be
guaranteed. In practice, of course, the baseline weighting is learned and its value will depend on the relative power
of the additional features.

2.5.8 External Features

Recall from Section 2.4 that the SCARF computations are guided by a set of lattice constraints. In the case that a
user wishes to experiment with a new type of feature, this can easily be done by annotating the lattice links with
the feature values. One example would be line
24 100 ball duration=0.123,zc=1.2

indicating that the word “ball” in the lattice between times 24 and 100 has duration feature score 0.123 and zero-
crossing score 1.2. Externally defined features are useful for testing new features without modifying any SCARF
code.

For further flexibility, external features can be lexicalized. In lexicalization, instead of creating just the single
named feature, SCARF creates a separate version of that feature for each word. For example, to learn a word
insertion penalty, one might add an external feature wip and always set its value to 1.0. By lexicalizing this feature,
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SCARF will learn a distinct penalty/reward for each word. This would be the same as a discriminatively trained
unigram model, except that the weights would be learned in the context of any other language model being used,
and any other features.

2.6 Related Work

In addition to the work already discussed, useful background information can be found in a number of other papers.
In [18], the authors propose a speech recognition method based on the sequential estimation of state probabilities
via the application of a Maximum Entropy model. This model operates at the frame level and uses gaussian ranks
as features. In [19, 20], CRFs are successfully applied to the speech task, using features based on the probabilities of
phonological events. These real-valued features are again computed at the frame level. Early work by Ratnaparkhi
[21] in NLP provides further background on MaxEnt based approaches.
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Chapter 3

SCARF Extensions

The SCARF framework as presented previously offers the basic equations for training SCRFs. In this section, we
propose two extensions. First, we propose to extend the framework with Empirical Bayes Risk training or Empirical
Training Error optimization, which are better correlated with the error metric one seeks to optimize, than the
conditional log-likelihood normally used. Second, we propose mixture model training. This is motivated by the
fact that SCRFs are (marginalized) exponential models over segmented sequences. In that model, it is supposed a
hyperplane in the feature space is adequate to separate correct words from incorrect ones. We relax this assumption
by introducing mixture models, wherein a weighted sum of exponentials replaces the basic model. Mixture models
are useful in various contexts, such as model interpolation for adaptation, and boosting.

These variations are based on a modification of the model functional, and the objective criterion. Modifications to
the gradient equations will achieve our goals. Therefore, we first visit the gradient calculation for the log conditional
likelihood. First, we will review the gradient computation for the standard SCARF case, to introduce notations.
Then, we will extend the case to Empirical Bayes Risk and mixture models.

3.1 Computing with SCRFs

Here, we assume that a word sequence s corresponds to an audio sequence o, with q the segmentation of audio
into words. In speech recognition, the segmentation q is unobserved. Therefore, the probability of the output is
marginalized over q in order to yield a probability over the ouput token states s. That is,

p(s|o) :=
∑

q

p(s, q|o) =

∑

q π(s, q|o)
∑

s′,q′ π(s′, q′|o)
, (3.1)

where the segmented sequence score is π(s, q|o) may be decomposed into its time-marked word edges:

π(s, q|o) =
∏

e∈q

G(e|o), (3.2)

and each edge score G(e|o) is has a log-linear form:

G(e|o) = exp[λT f(e|o)]. (3.3)

The model parameters are λ, and features f(e|o) are extracted for each word edge. The partition function Z is
defined as:

Z :=
∑

s′,q′

π(s′, q′|o). (3.4)

For convenience, we denote the marginalized potential function:

π(s|o) :=
∑

q

π(s, q|o). (3.5)
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The log-likelihood is the sum of utterances likelihoods, so we may consider a single utterance o and its transcription
s. The gradient of the log-likelihood J is:

∂λJ = ∂λ log p(s|o) (3.6)

=
1

p(s|o)

[

∂λ
π(s|o)

Z

]

(3.7)

=
1

p(s|o)

[

∂λπ(s|o)

Z
−

π(s|o)

Z2
∂λZ

]

(3.8)

=
Z

π(s|o)

1

Z
∂λπ(s|o) −

1

p(s|o)

π(s|o)

Z2
∂λZ (3.9)

=
1

π(s|o)
∂λπ(s|o) −

1

Z
∂λZ (3.10)

=
1

π(s|o)

∑

q,e

∏

e′∈q\{e}

G(e′|o)∂λG(e|o) −
1

Z
∂λZ (3.11)

=
1

π(s|o)

∑

q,e

π(s, q|o)f(e|o) −
1

Z
∂λZ (3.12)

=
1

π(s|o)

∑

q,e

π(s, q|o)f(e|o) −
∑

s′,q′

π(s′, q′|o)

Z

∑

e′

f(e′|o) (3.13)

=
1

π(s|o)

∑

q,e

π(s, q|o)f(e|o) −
∑

s′,q′

p(s′, q′|o)
∑

e′

f(e′|o). (3.14)

=
∑

s′,q′

[

π(s′, q′|o)

π(s′|o)
δ(s, s′) − p(s′, q′|o)

]

∑

e

f(e|o) (3.15)

Remarking that:

π(s, q|o)

π(s|o)
=

π(s, q|o)

Z

Z

π(s|o)
=

p(s, q|o)

p(s|o)
= p(q|o, s),

we get:

∂λJ =
∑

s′,q′

[

p(q′|o, s′)δ(s, s′) − p(q′|o, s′)p(s′|o)

]

∑

e

f(e|o) (3.16)

=
∑

s′,q′

p(q′|o, s′)

[

δ(s, s′) − p(s′|o)

]

∑

e

f(e|o). (3.17)

We see that the gradient is proportional to the difference between label and probability of our model. In this case,
this is true at the sentence level. In other words, there is no gradation in seriousness of error, whether one word or
all words are wrong in the candidate hypothesis s′. This has been the motivation for much research in the speech
recognition community for the case of discriminative training of HMMs. We show here that the same techniques and
insight may be applied to our models.

3.2 Empirical Bayes Risk

In the context of speech recognition, it is understood that sentence level error minimization is suboptimal. In most
applications, one wishes to minimize the word-level error rate instead, or a weighted variant thereof. In other words,
we will get penalized for each word error individually.

To achieve this, it is generally believed that Empirical Bayes Error will help us design a system which attempts
to commit fewer word errors, rather than getting sentences exactly correct. The Empirical Bayes Risk is expressed
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through a function Rs(sx, qx) for a sentence sx and given a segmentation qx. For readability, we omit the supervision
label s. The Empirical Bayes Risk function is not convex, and defined as:

J := E·|oR(Sx, Qx) =
∑

sx,qx∈sx

p(sx, qx|o)R(sx, qx). (3.18)

Furthermore, the risk function as linearly decomposable over the segments (edges of the graph):

R(sx, qx) :=
∑

ex∈qx

R(ex). (3.19)

We are interested in following the gradient with respect to the parameter vector:

∂λJ = ∂λ

∑

sx,qx

p(sx, qx|o)R(sx, qx) (3.20)

=
∑

sx,qx

p(sx, qx|o)R(sx, qx)∂λ log p(sx, qx) (3.21)

=
∑

sx,qx

p(sx, qx|o)R(sx, qx)
∑

s′,q′

[

δ(sx, s′)δ(qx, q′) − p(s′, q′|o)

]

∑

e′∈q′

f(e′|o) (3.22)

=
∑

s′,q′

[

R(s′, q′)p(s′, q′|o) − p(s′, q′|o)J

]

∑

e′

f(e′|o) (3.23)

=
∑

s′,q′

p(s′, q′|o)

[

R(s′, q′) − J

]

∑

e′

f(e′|o) (3.24)

=
∑

s′,q′

p(s′, q′|o)

[

∑

e′
1∈q′

R(e′1) − J

]

∑

e′

f(e′|o). (3.25)

Although it appears that there is a double summation over all edges {e ∈ q′}, we can efficiently collect statistics with
a forward-backward algorithm similar to the standard case of SCARF.

3.2.1 Forward-backward algorithm

We define:

Qj
i : set of possible segmentations from time i to time j,

Sb
a : set of possible state sequences starting with successor to lattice state a,

and ending in lattice state b.

During the forward-backward algorithm, we accumulate the following quantities:

αi(s) :=
∑

s∈Ss
<s>

∑

q∈Qi
1,|q|=|s|

G(e|o), (3.26)

βi(s) :=
∑

s∈S
</s>
s

∑

q∈QN
i+1,|q|=|s|

G(e|o). (3.27)

To be clear, we have:

N : total time in the sentence,

i : a variable referring to current (end) time,

st : a variable referring to start time,

ps : a variable referring to a predecessor state, and

s : a variable referring to the current (end) state.
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i
Observation:

Lattice:

time
st

β
ps

α

α
G(ps, st|oi

st+1)

s

Figure 3.1: Forward-backward algorithm for an end state s at time i under consideration.

For reference, we represent the algorithm pictorially in Figure 3.1.
The main purpose of the algorithm is to accumulate efficiently:

γs(st, i) := p(e = [st, i, s]|o)
∑

ps

αps(st)βs(i)

Z
G(ps, s|oi

st+1). (3.28)

From Eq (3.17), we can see that we may run a single forward-backward algorithm, and accumulate the additional
risk sums:

As(i) :=
∑

s∈Ss
<s>

∑

q∈Qi
1,|q|=|s|

G(e|o)R(e|o), (3.29)

Bs(i) :=
∑

s∈S
</s>
s

∑

q∈QN
i+1,|q|=|s|

G(e|o)R(e|o). (3.30)

Note that J = A</s>(N)/Z, which is available to us at the end of the forward pass. During the backward pass, we
accumulate:

F (e) :=
∑

st,ps

[

Aps(st)Bi(s)

Z
− γs(st, i)J

]

f(e|o). (3.31)

3.2.2 Edge-based risk

Sometimes, a quicker expedient to risk is sought. As an approximation, one might find it more expedient to define
a risk function based on edges (st, i], s, and sum over the expected posterior. That is,

J :=
∑

e

p(e|o)R(e). (3.32)

The exact approach presented previously, differs with the current in the following ways:

1. The correction to the gradient is given by the difference from the average cost, rather than proportional to the
cost.

2. Costs further down in the lattice matter, as shown in the Figure 3.2. Both are identical iff the lattice is pinched,
i.e. states and times are identical.

3.3 Mixture Models

In this section, we define a particular flavor of mixture models and proceed to derive the gradients required for the
optimization. The objective function is not convex, and this adds more potential for local optima.
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<s> </s>

<s>
</s>

</s>

dogsLabel:

Lattice:

the bark

drink

bark
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the
cats

wood

R = 1

R = 2

Figure 3.2: An example of how risk is distributed from paths q to edges.

3.3.1 Sentence mixture models

The first kind of mixture models we envision are sentence-level mixture models. This is comparable to Eigenvoices
or Cluster Adaptive Training in HMMs. These mixture models are adequate for sentence-level phenomena, such as
topic, domain and gender. We modify the functional form of the model to be:

p(s|o) :=

∑

q,m wmπm(s, q|o)

Z
, (3.33)

and we define:

π(s|o) :=
∑

m

πm(s|o), (3.34)

πm(s|o) :=
∑

q

πm(s, q|o), (3.35)

πm(s, q|o) :=
∏

e∈q

Gm(e|o), (3.36)

Gm(e|o) := exp[λT
mf(e|o)], (3.37)

Z :=
∑

s′,m′

wm′πm′(s′|o). (3.38)

Each mixture component has a parameter vector λm and a scalar mixture weight wm. We will restrict mixture weights
to be positive, that is wm ≥ 0 and

∑

m wm > 0. Without loss of generality, it may be thought that
∑

m wm = 1, in
which case it may be thought of as a prior probability.

It is possible to define a mixture of sets of features, but for simplicity and without loss of generality, we assume
a global mixture which applies to all features. We also ignore e, that is, mixtures are independent of the segment.
We also ignore the language model state and retain features at the word level only.

Define the gradient operators to be:

∂m
λ :=

∂

∂λm
, (3.39)

∂m
w :=

∂

∂wm
. (3.40)

The derivation for computing the gradient wrt the mixture component parameter vector λm is similar to those
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explained in the introduction, that is:

∂m
λ J = ∂m

λ log p(s|o) (3.41)

=
1

p(s|o)
∂m

λ

∑

q∈s,m′

wmπm′(s, q|o)

Z
(3.42)

=
1

p(s|o)

[

∂m
λ πm(s|o)

Z
−

1

Z2
π(s|o)∂m

λ Z

]

(3.43)

=
Z

π(s|o)

1

Z
∂m

λ π(s|o) −
1

Z
∂m

λ Z (3.44)

=
1

π(s|o)

∑

q,e∈q

wmπm(s, q|o)f(e|o) −
1

Z
∂m

λ Z (3.45)

=
1

π(s|o)

∑

q,e

wmπm(s, q|o)f(e|o) −
1

Z

∑

s′,q′,e′

wmπm(s′, q′|o)f(e′|o) (3.46)

=
∑

s′,q′

[

δ(s, s′)
wmπm(s, q|o)

π(s|o)
− wmp(s′, q′|o, m)

]

∑

e

f(e|o) (3.47)

=
∑

s′,q′

p(q|o, s′, m)wm

[

δ(s, s′) − p(s′|o, m)

]

∑

e

f(e|o). (3.48)

As mentioned above, we can normalize weights and correctly interpret:

p(q|o, s, m)wm = p(q, m|o, s). (3.49)

Thus, we have:

∂m
λ log p(s|o) =

∑

s′,q′

p(q, m|o, s′)

[

δ(s, s′) − p(s′|o, m)

]

∑

e

f(e|o). (3.50)

The derivative wrt the mixture weight is:

∂m
w log p(s|o) = ∂m

w

[

log
∑

m′

wm′πm′(s|o) − log Z

]

(3.51)

=
1

∑

m′ wm′πm(s|o)
∂m

w

∑

m′

wm′ −
1

Z
∂m

w Z (3.52)

=
πm(s|o)

∑

m′ wm′πm′(s|o)
−

1

Z

∑

s′

πm(s′|o). (3.53)

Remarking that:

p(s′, m|o) =
wmπm(s′|o)

∑

s′,m′ wm′πm′(s′|o)
,

we obtain:

∂m
w log p(s|o) =

1

wm
p(s, m|o) −

1

wm

∑

s′

p(s′, m|o) (3.54)

=
1

wm

[

p(s, m|o) − p(m|o)

]

. (3.55)

The restriction for having positive weights is commonly achieved by optimizing a variable µm instead, with

wm := expµm. (3.56)

This enforces wm > 0 and thus the weaker requirement that
∑

m wm > 0, since µm is required to be finite. In
practice, this is implemented with a prior feature specific to each mixture component weight.

21



3.3.2 Word-level mixtures

Rather than mixtures at the sentence level, it is possible to envision having mixtures at the level of an LM state.
Each LM state corresponds to a word. This is comparable, in the HMM framework, to Gaussian mixture models,
rather mixture of HMMs. This model has more flexibility in choosing the best model for each word separately. This
is useful for word-level phenomena. In practice, we believe it to be more important for overcoming the weakness of
the linear model, rather than explicitly modeling physical phenomena, such as gender in the previous case. In a case
where each feature is an expert, this model finds the optimal combination between product and sum of experts.

The new functional is:

p(s|o) :=

∑

q

∏

e

∑

m wmGm(e|o)

Z
, (3.57)

where

Gm(e|o) := exp
[

λT
mf(e|o)

]

. (3.58)

Define
G(e|o) :=

∑

m

wmGm(e|o). (3.59)

We have:

∂m
λ log p(s|o) = ∂m

λ

∑

q

∏

e

∑

m′

wm′Gm′(e|o) −
1

Z
∂m

λ Z (3.60)

=
1

π(s|o)

∑

q,e

[

∏

e′ 6=e

∑

m′

wm′G(e′|o)

]

wm∂m
λ Gm(e|o) −

1

Z
∂m

λ Z (3.61)

=
1

π(s|o)

∑

q,e

[

∏

e′

∑

m′

wm′G(e′|o)

]

wmGm(e|o)
∑

m′ wm′Gm′(e|o)
f(e|o) −

1

Z
∂m

λ Z (3.62)

=
∑

q

π(s, q|o)

π(s|o)

∑

e

Gm(e|o)

G(e|o)
f(e|o) −

1

Z
∂m

λ Z (3.63)

=
∑

s′,q′,e′

Gm′(e′|o)

G(e′|o)
p(q′|o, s′)

[

δ(s, s′) − p(s′|o)

]

f(e|o). (3.64)

22



Chapter 4

Data Sets and Baselines

4.1 Broadcast News

4.1.1 BN Database

The acoustic model is based on that of [22] and trained on the data in Table 4.1; altogether about 430 hours of data
was used. The language modeling data is summarized in Table 4.2. The development data consisted of the NIST
dev04f set ( 22k words), and the test set was the NIST RT04f data ( 50k words).

LDC Number Description Hours
LDC97S44/LDC97T22 1996 HUB4 104
LDC98S71/LDC98T28 1997 HUB4 97
LDC2005S11/LDC2005T16 TDT4 300

Table 4.1: Acoustic data sources.

LDC Number Description Words
LDC98T31 1996 HUB4 LM Data 169M
BN03 Lightly Supervised EARS BN Data 48M
LDC2007E02 Gale Phase 2 Distillation Newswire 193M
LDC2005T16 TDT4 Closed Captions and Text 11.8M

Table 4.2: Language modeling sources.

4.1.2 Baseline System

A baseline system was built using the IBM Attila training and decoding software [22]. The acoustic modeling included
LDA+MLLT, VTLN, fMLLR based SAT training, fMMI and mMMI discriminative training, and MLLR. See [22]
for details. After training, decoding produced lattices and the baseline feature of Section 2.5.7. To make lattices to
constrain the segmental search, cross-word context was discarded: two links with the same start-time, end-time, and
word-label were considered identical and a unique operation was performed. This results in a substantial reduction
in size. Since the SCARF acoustic features we tested do not use cross-word context, this is purely an optimization.
A separate system was trained at Microsoft Research using just the HUB4 transcribed data. Decoding with this
system produced a word detector stream, and the lattices were annotated with feature values derived in the same
way as the baseline features. Performance at the different levels is summarized in Table 4.3.

In this table, SCARF1 refers to SCARF run with just two features: the baseline feature, and the language model
score. A performance improvement of 0.3% is observed. We hypothesize that this is because a) the dynamic range of
the baseline score is limited and b) the LM weight is discriminatively tuned. Note that this tuning is on the training
data - not dev or test data.
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Level dev04f RT04
LDA+MLLT 30.6% 28.4%
+VTLN 23.3 21.9
+fMLLR 21.2 20.3
+MLLR 20.5 19.8
+fMMI 17.0 16.3
+mMMI 16.5 15.9
+wide beams 16.3 15.7
SCARF1 16.0 15.4
+MSR Word Detectors 15.3 14.5

Table 4.3: System performance at different stages.
Word Unit Decomposition
ACCOSTED AX K AO S T IH D
ACCOUNT AX K AW N T
ACCOUNTABILITY AX K AW N T AX B IH L IH T IY
ACCOUNTABLE AX K AW N T AX B AX L
ACCOUNTANT AX K AW N T AX N T

Table 4.4: Several words and their constituent multi-phone units.

4.1.3 Multi Phone Units

In previous work [23, 1] it has proven useful to use multi-phone detection units, where the units are those which have
proven empirically to have significant mutual information with respect to the word labels. These units are typically
more than one phoneme long, and often consist of an entire word.

We turn now to the definition of the multi-phone units. Consider a multi-phone unit u. We use U = {0, 1} to
denote the presence or absence of the multi-phone unit u. We define a second random variable, W , which can take
on the identity of a word. The mutual information between the presence of a unit u and the words is then given by:

MI(U ; W )=
∑

a={0,1}

∑

w

P (u = a, w) log
P (u = a, w)

P (u = a)P (w)

=
∑

w

P (w)p(u = 1|w) log
P (u = 1|w)

P (u = 1)

+
∑

w

P (w)P (u = 0|w) log
P (u = 0|w)

P (u = 0)
.

To use this definition, an initial set of multi-phones was defined using a length-based error model as in [23] to

estimate P (u=1|w)
P (u=1) and P (u=0|w)

P (u=0) . Given this error model, a set of highly informative units was identified and then

pruned down using the method of [23, 24]. Additionally, in the pruning step we introduced a penalty for units
without any vowels.

Once an initial set of units was on hand, a decoding was done in terms of those units, and a trigram language
model on multiphones. The output of this was correlated with the boundaries of the words as determined by a forced
alignment. The multiphone segmentation was then discarded to produce a sequence of phonemes for each occurrence

of a word. This data was finally used in a second round of computations to more accurately estimate P (u=1|w)
P (u=1) and

P (u=0|w)
P (u=0) for every possible unit. Table 4.4 illustrates several words and their decomposition into multiphone units.

Depending on cutoff counts, sets of between one and five thousand multiphone units were extracted.

Qualitative Analysis of Units

As discussed in [24], “an ideal unit from the mutual information standpoint would occur in exactly half the words.
In fact, no unit occurs nearly this often, and the units that come closest to this ideal are single-phone units. In the
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before augmentation after augmentation
numerator ∅ w
denominator x w, x
baseline x x

probability NA exp(−λ)
exp(λ)+exp(−λ)

Table 4.5: Effect of adding the forced alignment.

absence of errors, single-phone units would be best, followed by two-phone units and so forth, in order of decreasing
frequency. However, imperfect detection counteracts this: single phone units are more likely to incur false-accepts
and therefore they are penalized by the mutual information criterion. In the final set of units, we see both some very
short units such as “ax n,” which are present due to their frequency, and also some very long ones such as “k ae l ax
f ao r n y ax,” which are present due to their assumed detection reliability (and relative frequency). The net result
of this process is a set of multi-scale units with which words can be represented. The scale varies from single phone
units to syllable-like and whole-word units, and the determination of the set of units to work with is made with a
sliding scale that uses mutual information to trade off frequency with detection reliability.”

4.1.4 Processing the Data for SCARF

Once a baseline system was built, numerator and denominator lattices and a baseline word stream were extracted.
The processing steps were as follows:

1. Discard cross-word context from the Attila lattices: treat two occurrences of a word as identical if they share
the same start and end times. This results in a massive compression.

2. Create the denominator lattices:

• Augment the decoding lattices with a forced alignment of the transcript. This ensures that the denomi-
nator contains the correct path.

3. Create the numerator lattices:

• Intersect the denominator lattices with the transcript. This results in the forced alignment added above,
along with various other consistent segmentations. Note that the numerator is a strict subset of the
denominator, and so probabilities less than 1 are guaranteed.

4. Create a baseline detector stream by recoding a word detection at the midpoint of each word in the one-best
Attila output.

5. Perform “bias reversal” on the baseline: if a word occurrence is present in the forced alignment, but not in
the decoded output, correct the baseline detector stream within the span of the word - remove any detetions
within it, and output a correct detection.

The “bias reversal” step is important. To understand why it is necessary, consider the case where a word
occurrence in the forced alignment is not present in the originally deocded lattice. It will be added (in step 2 above),
and the baseline will then be guaranteed to be wrong. Thus the artificial seeding of the forced alignment into the
numerator and denominator lattices creates a bias towards a lower baseline weight.

A simple example illustrates this. Table 4.5 illustrates the following scenario: there is a one word utterance
whose transcription is w. However, it is incorrectly decoded as x. The middle column shows the numerator and
denominator paths, and the baseline detector sequence before the forced alignment is added. There is no numerator
because the correct path is not present. Thus the probability of the correct path is ill defined. The rightmost column
shows the situation after both the numerator and denominator have been augmented with the correct path, w. If
we assume we are just using one feature - the baseline feature - and its weight is λ, then the bottom right cell shows
the probability of the correct path. This is maximized with λ = ∞.

Several possibilities are available to remove the bias that is introduced by adding the forced alignment:
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• Discard the utterance. Unfortunately, with Broadcast News data, about half the utterances would be discarded.
Further, an alternative bias would be introduced.

• Use the minimum word error rate path present in the denominator as the numerator. This has the disadvantage
of introducing incorrect paths to the numerator. Further, many such paths might be present; should they all
be used?

• Cut the utterances into smaller utterances and discard only the problem regions. This has the disadvantage
that language model context is lost at the boundaries. Further the cut boundaries can be ill defined.

• Redefine the baseline feature so that the gradient of the likelihood wrt the baseline weight is zero in these
regions. This will occur when all paths get the same contribution from the baseline in that region.

• Use “bias reversal”.

Due to its relatively simple nature, we have chosen to use bias reversal in the Broadcast News setup. We find that
without it, a negative baseline weight is learned. With it the baseline weight is approximately 0.65, and about the
same as when we entirely discard the affected utterances.

4.1.5 MSR Word Detectors

As an additional source of information, a conventional system was built at Microsoft Research using a different lexicon
and acoustic processing. The MSR system was an MMI-trained HMM cross-word position-dependent triphone system
with 10k tied mixture states and a total of 600k Gaussians. It uses MFCC features, with HLDA and VTLN. The
language model was built on all of the acoustic Hub4 data, Gigaword, and TDT (TDT2 and TDT3), linearly
interpolated with weight of 0.7, 0.05, and 0.25 respectively. The acousic data was restricted to the Hub4 component
of the data used in the baseline. Decoding proceeded in three stages: 1) initial lattice generation using a trigram
language model and unadapted models, with 1000-best 5-gram rescoring, 2) VTLN, constrained MLLR and MLLR,
and 3) 1000-best regeneration using adapted acoustics and the trigram language model, rescored with the 5-gram
language model. The system resulted in an error rate of 20.4% and 20.3% on dev04f and rt04f respectively.

The MSR system was used essentially as a word detector for combination with the baseline system. To do this,
the lattices were annotated with acoustic scores corresponding to those of the baseline feature. That is, when there
was a correspondence between a lattice link and the 1-best MSR output, the link was annotated with “+1.” Silence
links got “0” and all others “-1.”

4.1.6 Some Standard Comparisons

LM Rescoring

Language model rescoring is a commonly used technique for improving speech recognition performance. It usually
consists of two phases: (i) generation of lattices (or confusion networks or N -best lists) from the first-pass recognition,
and (ii) re-ranking of the hypothses in each lattice (or confusion network or N -best list) according to the scores
assigned by a (usually big or complex) language model, after interpolation with the already existing scores.

To understand what could be gained from conventional language model rescoring, we performed language model
rescoring of confusion networks which were generated by the first-pass decoded lattices. The Attila recognizer
provides tools for confusion network generation based on the algorithm of [25].

Seven language model sources were used to create 4-gram language models with modified Kneser-Ney smoothing.
The sources comprised the 6 Gigaword sources (AFP, APW, CNA, LTW, NYT, XIN), as well as the language
modeling text used in the baseline recognizer. These seven language models were then interpolated, with the criterion
of minimizing perplexity on part of the training transcripts (2-fold cross-validation). The resulting language model
was then used to do the rescoring (the language model weight was also tuned with 2-fold cross-validation on the
training data).

Table 4.6 shows the WERs obtained using the language model rescoring mentioned above. We observe that there
is a small gain on both Dev04f and RT04 over the baseline. Since this gain is comparable to that observed with
SCARF1 using just a trigram model trained on much less data, we conclude that there is little to be gained from
conventional LM rescoring.
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Setup dev04f RT04
Baseline (Attila) 16.3% 15.7%

LM rescoring 15.8% 15.4%
SCARF1 16.0% 15.4%

Table 4.6: Results from LM rescoring and comparison with SCARF1.

Comparison with Rover

To compare SCARF with a popular system combination approach, Rover [26], we generated two variations of Attila
models: (i) one with a reduced question set for the phonetic tree construction (ver1), and (ii) one with a triphone
decision tree (ver2). To increase diversity, no discriminative training was done. The WERs on Dev04f and RT04 were
respectively: (i) for ver1: 25.4%, 25.6% and (ii) for ver2: 23.1%, 22.8%. These error rates are comparable to those
of the MSR system. Rover was done using sequential string alignments between the four available system outputs
in order of increasing WER (that is, Attila baseline, MSR, Attila ver2 and Attila ver1). The number of systems
used was tuned on the training data (fold2), and the best performance was obtained with just the first 3 systems.
Confusion networks were created from the aligned outputs, with each arc in the confusion network receiving a score
equal to the negative log-posterior of the corresponding word. These scores were then linearly interpolated with
language model scores (and tuning of the appropriate weights was also done). No gains were obtained from system
combination on Dev04f and RT04 (with WERs of 16.4% and 17.1%, respectively), indicating that the improvements
observed by using the MSR word detectors in SCARF cannot simply be obtained with ROVER.

4.2 Wall Street Journal

4.2.1 WSJ Database

For the Wall Street Journal experiments we used the SI-284 training data from WSJ0+1 comprising 81 hours of
speech from 284 speakers. The phonetic transcriptions for the train data and the 20k test lexicon were drawn from
CMUdict 0.6d. Results are given for the Nov92 20k open vocabulary non verbalized punctuation test set using the
default trigram language model.

4.2.2 HMM Baseline

SPRAAK [27] was used to create a conventional HMM system. First, mel spectra are computed from FFT power
spectra from frames obtained with a 32msec Hamming window and a 10msec window shift. The mel scaled filterbank
contains 24 triangular shaped filters, spanning the full 0-8kHz bandwidth and the bands are equally spaced along
the Davis-Mermelstein mel scale. The filters have a triangular shape and a 1-mel equivalent rectangular bandwith.
First and last channel are dropped for improved robustness thus yielding a 22-channel output with center frequencies
[200Hz, 300Hz, ... 6.601Hz].

The 22 channel mel spectra are further processed for vocal tract length normalization and spectral mean subtrac-
tion, after which first and second order derivatives are added. This 66-D vector is converted by linear transformation
to the final 36-D feature vector. The linear transformation is based on mutual information discriminant analysis
(MIDA). The classes used to train the MIDA are the states of the context independent phones.

The baseline HMM system uses a shared pool of 32k Gaussians and 5875 cross-word context-dependent tied
triphone states. On the WSJ Nov92 test set this baseline system achieves a word error rate of 7.3%.

4.2.3 DTW Baseline

A baseline template based system was created according to the principles described in [3, 28, 29]. The template based
system starts from word graphs enriched with phone segmentations. The role of these graphs is to reduce the search
space for the template based system. In our case graphs had a minimum word error rate of 2.9% (which is mainly
explained by an out-of-vocabulary rate of 1.9%) and a maximum word error rate of 19.9% (which was obtained by
using only the language model information). Given this wide range of potential performance implies that the impact

27



Figure 4.1: Word Graph with Phone Segment Annotations expanded to a Template Graph.

of the graph generation system (the baseline HMM in this case) will be minimal on the final system performance
which is our intention.

In a second step k-NN template lists are added to each context-dependent phone after which a template word
score is calculated with a Viterbi search through the templates after applying template transition costs. This process
is illustrated in figure 4.1.

The template phone score is obtained by computing the DTW distance between test and reference templates.
The features used for the template DTW system are the same as in the HMM system, except for additional data
sharpening to reduce the influence of outliers [28]. The data sharpening procedure replaces each datapoint in the
training set by the mean of its within class k-NN’s. Classes for the data sharpening were the CD phone states and
256 near-neighbours found by a greedy search algorithm were used for the mean computation.

The only transition cost applied in the baseline system is the ’natural successor cost’: i.e. no transition cost is
applied whenever two templates are consecutive in the database, while for all other transitions between templates a
fixed cost is applied.

For the template system, all data from the 284 training speakers are used, without any cleaning for pronunciation
or transcriptions errors. The baseline HMM system was used to segment the train database into 2,826,699 phone
templates. Using the decision tree approach from [29], the phone templates were sub-divided into 4219 cross-word
context-dependent triphone classes, with a minimum of 256 templates per class. Context-dependent variants of the
word arcs (see figure 4.1) are added so that the triphone class for each word boundary phone is uniquely defined by
the word internal adjacent phone on the one side and all possible cross-word adjacent phones on the other side.

For development and parameter tuning we relied on the Dev92 development set. Optimization was done on either
word error rate (WER) or on the product of the posterior probabilities on the correct path when WER was deemed
too noisy.

The error rate obtained for this template system is 9.6% word error rate.

4.2.4 Processing the data for SCARF

Once a baseline system was built, numerator and denominator lattices and baseline word streams were extracted for
both the train and the development data. A leaving-one-speaker-out approach was adopted to ensure that the train
data behaves as development (unseen) data during SCARF training. Re-using the train database for the SCARF
optimization has the advantage of providing plenty of train example to SCARF, which is recommended when using
the local LM features or the existence and expectation ngram features. A disadvantage of this approach is that one
now also needs to adopt a leaving-one-speaker-out approach for any of the additional features added to SCARF. As
alternative, we also built numerator and denominator lattices and baseline word streams for the development data,
after removing the sentences with verbalized punctuation.

Given the low graph error rates, we opted to discard all utterances for which the intersection between the graph
and the reference transcript was empty (for a discussion on alternative approaches, see 4.1.4). Table 4.7 lists the
number of sentences in the train and development data before and after discarding sentences. Note that the relatively
small amount of development sentences implies that optimizing SCARF on the development data is limited to a small
set of free parameters.

Other important design decisions in the WSJ SCARF setup were:

• In order to allow the use of the raw HMM scores as features, e.g. as an alternative to the discrete baseline
features, we retained the cross-word context in the WSJ setup, this is in contrast to the BN setup (see also
section 4.1.4).
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database all sentences retained sentences
train 37516 24163
development 803 558

Table 4.7: Number of sentences retained for SCARF optimization.

• The lattices were designed to contain a fair amount of alternative paths. Hence, depending on the quality of
the features given to SCARF, the obtained WER can vary over a wide range, from 19.9% for non-informative
features to 2.9% for perfect features on the Nov92 test data. This relative large WER range makes it easier to
gauge the merits of new features.

• The baseline features were created by recoding a word detection at the midpoint of each word in the one-best
output.

• The start and end times in arcs are expressed in milliseconds and refer to the original sample files. Most pre-
processing schemes and recognizers (e.g. HTK) will introduce some time offset depending on their ’framing’
conventions, so one may need to compensate for this.
Start times of arcs are offset by +1 (millisecond), in-line with the conventions used in the SCARF toolbox.
The initial ’<s>’ symbol (a non emitting symbol in the WSJ setup) was manually inserted before all other arcs,
and starts at 1 and ends at 2 using SCARF ’s timing conventions. This results in a +3 time offset for all first
real (non ’<s>’) arcs versus +1 for all other arcs.

• Sentence initial and inter word silence is labelled as ’∼SIL’. The sentence final silence is merged with the
sentence end symbol ’</s>’.
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Chapter 5

Template Features

At the workshop, we both improved the baseline template system, and incorporated features derived from it into
SCARF. In this chapter, we describe these activities in turn.

5.1 Improving the Template-DTW Baseline System

5.1.1 Motivation

The quality of the inference engine –typically k Nearest Neighbours (k-NN) based– is crucial to the performance of
an example based system: it must be fast and yet at the same time make optimal use of the available data. One
weakness of the baseline system is –given the single best Viterbi decoding strategy– the system’s inherent sensitivity
to errors in the training database such as incorrect annotations, bad segmentations, highly unusual pronunciations,
and inaccurate or missing phonetic transcriptions in the lexicon. Previous work such as data sharpening [28] and
data pruning [30] aimed directly at mitigating these problems. Some of the techniques described here continue along
this research line while other techniques aim to make better use of the available data.

In this section we describe a number of major enhancements to the inference engine: (i) usage of weighted k-
NN template scores instead of the single best Viterbi decoding, (ii) assigning a local sensitivity matrix (diagonal
covariance) to each input frame, (iii) modifications to the dynamic time warping constraints and score computation,
and (iv) usage of word based templates.

5.1.2 Weighted k-NN Scores

Despite data sharpening, the single best Viterbi decoding approach used in [3, 28, 29] remains sensitive to outlier
and mislabeling effects. One solution is to use the forward(-backward) algorithm in combination with a proper
transformation of the scores instead of the Viterbi algorithm for decoding, similar to what was done in [31]. The
built-in averaging of the scores in the forward algorithm automatically mitigates the impact of outliers. In this work,
we opted for an even simpler solution: averaging the scores –again after a proper transformation– before the decoding,
hence avoiding Viterbi/forward decoding at the template level altogether. Note that k nearest neighbour templates
per phone arc (see figure 4.1) give rise to k × k transitions, resulting in a non-negligible cost for the template based
Viterbi/forward decoding for typical values of k = 50 . . . 100.

The natural successor cost [3], a cost that is added on the transition between any two templates that are not
immediate successors in the train database, has given –in previous work– consistent relative error reductions between
5 and 10%. Using weighted average scores requires another mechanism to preserve this valuable information. In the
new implementation –before averaging– a natural successor cost is added to a template score if none of the adjacent
template arcs is the natural successor. This is repeated for left and right context.

We also noticed that scores could best be adjusted based on the length of the phone arc under consideration.
This is due to the fact that for shorter phone arcs there are (i) more candidate templates, (ii) less frames to match
and hence less chance for badly matching frames, and (iii) the Itakura constraints [32] in the dynamic time warping
(DTW) are less restrictive on the boundary frames.
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Figure 5.1: DTW Path Constraints.

Equation 5.1 shows the score length compensation and score averaging that was used in the final system, with l
the length of the phone arc in frames, si the ith best template score, cl

i and cr
i the left and right natural successor

cost, α = 0.15 and N = 5.
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i
+cr

i
)2

(5.1)

This equation was chosen as it does a reasonable job in approximating the process of first transforming the template
scores (norm2 distances) into some probability measure, followed by the weighted average of the probabilities, followed
by a back transformation from the average probability to an average template score.

5.1.3 Local Sensitivity Matrix

The investigation in distance measures for DTW in [33] lead to contradictory results: either the Euclidean or the
Mahalanobis distance measure performed best depending on the task (phone classification versus continuous speech
recognition). This behaviour could be related to whether one was looking in the near neighbourhood (single frame
classification) of the input frame or whether one needed to also consider not so near reference frames, e.g. when
matching longer templates.

By making the covariance (sensitivity) matrix needed for the Mahalanobis distance dependent on the input frame
instead of the reference frame (more correctly, the triphone class the reference frame belongs to), most of the problems
that adversely affect the Mahalanobis distance measure from [33] can be avoided. Since the Jacobian now depends
on the input frame, it can be readily dropped. Furthermore, the properties of the distance measure now no longer
change dramatically based on the (reference) frame one compares the input frame with. Yet, at the same time, the
distance measure is adaptive to the local distribution (manifold) of speech data.

One available resource that already models the local distribution of the speech data is the shared pool of Gaussians
from the HMM baseline system. We used the set of (diagonal covariance) Gaussians N (x; µi, Σi), i ∈ [1 . . .M ] with
corresponding a priori probabilities αi as follows to assign a covariance Σx to an input frame x:

Σx =

∑M
i=1 αiN (x; µi, Σi)

βΣi
∑M

i=1 αiN (x; µi, Σi)β
(5.2)

By setting the parameter β to a value smaller than 1.0 (β equaled 0.4 in our experiments), Σx changes more slowly
in function of x. From a theoretical point of view, β reflects the difference between the physical dimensionality of the
observation vector x (39 in our experiments) and the intrinsic dimensionality of speech (which is somewhere between
4 and 11, depending on the phone [34]).

5.1.4 DTW Scoring

In this section we investigate the integration of the frame distances into a template distance by means of (dynamic)
time warping.

Dynamic time warping aligns each input frame xi to one reference frame yj given some transition constraints so
that the resulting sum of inter frame distances and transition costs is minimal. A common DTW implementation,
which is also our reference implementation, allows the three types of transitions depicted in figure 5.1. Each of these
transitions corresponds to a different rate of speech for the test data versus the reference template:
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Figure 5.2: Dynamic Time Warping with Boundary Extensions.

T0 : (xi−1, yj ) → (xi, yj) extreme slow rate of speech

T1 : (xi−1, yj−1) → (xi, yj) same rate of speech

T2 : (xi−1, yj−2) → (xi, yj) double rate of speech

The Itakura constraints [32] make the type T0 and T2 transitions more symmetric by allowing a T0 transitions
after a T1 or T2 transition only. This way, the minimal rate of speech of the test data is now at least half of that in
the reference template (an alternation of T0 and T1 transitions). We also tried out a quite different warping strategy:
linear warping. Given that the average length of a phone is only 8 frames, and given that the train database contains
examples uttered at different speaking rates, dynamic warping may be inessential or even undesirable. Experiments
with the different warping constraints were quite conclusive: the limitations imposed by the Itakura constraints
improved the accuracy with respect to the baseline, while linear warping was clearly inferior to dynamic warping.

Another open issue with DTW is how to penalize non-diagonal (fast and slow speaking rate) transitions. This
penalty can either be a fixed additive cost or a cost proportional to the inter frame distance (implemented by
multiplying the local distance with some factor higher than 1.0). Whereas previous experiments [3] were inconclusive,
the current WSJ setup showed a clear preference for additive costs. Additive costs also make more sense from a
theoretical point of view since (i) additive costs can be interpreted as transition probabilities, similar to the transition
probabilities in an HMM system, and (ii) the multiplicative costs will upscale the inter frame distances for those
frames which need a non-diagonal warping; in other words more weight is assigned to the acoustic (dis-)similarity of
those frames which show a non-standard behaviour.

Finally, we investigated the impact of promoting acoustic continuity when selecting the k-NN templates. This
was done by taking the similarity between the audio to the left and right of a reference template and the audio
surrounding a hypothesized phone or word arc into account during k-NN template selection. Figure 5.2 shows the
most flexible configuration we investigated. DTW with back-tracking over the extended region allows us to subdivide
the DTW score into similarity measures for the central part and left and right surroundings. Characteristic for this
approach is that it allows time warping in the surrounding regions which in turn allows for some automatic adjustment
of the template boundaries. Relaxing the template boundaries has the potential benefit of making the system less
dependent on the quality of the template boundaries and on the exact begin and end time of the phone and word
arcs in the word graph.

We also experimented with a second setup which took the template and phone/word arc boundaries as given. Since
the left and right surrounding regions only comprise a few frames, time warping in these regions might be unnecessary,
i.e. when calculating the acoustic similarity for the left and right lx surrounding frames, a straightforward 1-to-1
alignment is assumed (the thick dashed alignment path in figure 5.2).

In both setups, the extended score (sum of the scores of the central, left and right surrounding regions) was only
used for ranking the templates for k-NN selection. Decoding relied on the score of the central part only. Multiple
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experiments consistently showed a preference for quite large contextual windows (up to 9 frames wide) which may be
surprising given that the context-dependent templates already have context sensitivity built in. Given these wider
context windows it was in the end not surprising that the normal dynamic time warping should also be applied in
these regions.

5.1.5 Word Based Templates

The natural successor cost (see [3] and section 5.1.2) improves the recognition accuracy by promoting the use of
longer template sequences. A next logical step is to actually use longer templates. In this work, we experimented
with whole word templates. Whole word templates are expected to be most effective for function words since these
are typically not modeled well by generic phonetic transcriptions and there are sufficient examples available to be
used as reference templates by themselves.

The segmentation of the train database into word templates was done with the baseline HMM system, assuring
consistency between the phone and word segmentations. The word templates are handled identically to the phone
templates, using the same parameters for length compensation and averaging (section 5.1.2), local sensitivity distance
measure (section 5.1.3) and DTW scoring (section 5.1.4). Similar to the phone templates, context dependent variants
were generated when sufficient examples were available. The questions for the decision tree for a specific word were
limited to those applied to the left context of the word’s initial phone and to the right context of the word’s final
phone. This assures that the word context dependency is a subset of the phone context dependency, which simplifies
the decoding process.

We provided for a smooth transition between word and phone modeling for those words with no or only a small
number of templates (e.g. non-function words). In those cases the word score was replaced by an average of the
word score ws and the phone score wp, weighted with the number of context dependent word examples Nw that were
returned by the k-NN search:

s′w = sw ×
Nw

k
+ sp ×

(

1 −
Nw

k

)

, (5.3)

with k the maximum number of near neighbour templates the inference engine looked for, which equaled 75 in our
experiments.

5.2 Extracting Template Features for use with SCARF

5.2.1 Motivation

Exemplar based approaches are characterized by the fact that, instead of abstracting large amounts of data into
compact models, they store the observed data enriched with some annotations and infer on-the-fly from the data by
finding those exemplars that resemble the input speech best. One of the benefits of example based approaches is that
they avoid the information loss resulting from abstracting data into compact models, i.e. they preserve all details in
the training data such as trajectories, temporal structure and (fine) acoustic details.

Another advantage of exemplar based systems, one that is typically not exploited, is that next to deriving
a goodness of fit score for the hypothesized phone or word, one can easily derive a wealth of meta-information
concerning the chunk of audio under investigation. Examples are: who is the speaker, what is his/her gender and
age, what dialect does he/she speaks, what is the speaking rate, where are the word boundaries and/or sentence
boundaries, and what is the underlying prosodic structure. Note that the metadata features can pertain not just to
one template, but to the ensemble of matching templates. An example thereof is speaker entropy. Statistics on the
metadata can be obtained from the same k nearest neighbour (k-NN) search as used for deriving the primary (DTW
based) recognition score.

In this section we describe the collection of such meta-information and the integration into the overall SCARF
based recognition framework.

5.2.2 Approach

The starting point for deriving these secondary statistics is the k-NN list of phone templates. Each template in the
list is characterized by its DTW score and the meta-information (annotations) associated with that template. For
this work, the following meta-information was considered: (i) the template index (natural order of the templates
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in the train database), (ii) the phone label, (iii) the phone duration, (iv) the speaker ID, (v) the word the phone
originated from, and (vi) the position of the phone in the word (word initial, final, . . . )

Instead of just counting occurrences in the k-NN list, we opted to weigh each occurrence with the template’s
probability measured by converting the DTW score by means of equation 5.4

wi = exp

(

−0.5
d
(c)
i + d

(l)
i + d

(r)
i

la + 2lx

)

, pi =
wi

∑k
j=1 wj

, (5.4)

with la the number of frames spanned by the phone arc, lx =9 the number of extra surrounding frames used in the

DTW-alignment, d
(c)
i and d

(l/r)
i the DTW score corresponding to template i for the la central and lx surrounding

left/right frames respectively.
In view of the log-linear feature combination scheme employed in the SCARF toolkit, the secondary statistics

were, when possible, converted to values behaving like a log probability normalized with their expected values under
the condition that the measured property is true. The normalization compensates for the a priori distribution of the
meta-information. Furthermore, given that the values of the primary features such as HMM and DTW scores are
proportional to the number of frames, the secondary statistics were, when found to be beneficial, multiplied with the
number of frames in the word. The combination of the statistics calculated on the phone arcs to word level measures
was done with a weighted sum, the weights being proportional to the duration of the phones.

5.2.3 Template Based Meta-features

The list of meta-information based features that was ultimately retained is given below:

Word Position: A first set of features measures the consistency between the hypothesized word boundaries and
word boundary statistics derived from the audio signal by means of harvesting the meta-information associated
with the k-NN template lists. Given a chunk of audio corresponding to a hypothesized context-dependent
phone arc and the corresponding k-NN template list, the feature fwi measuring the property of being word
initial is calculated as follows:

c1 =

k
∑

i=1

piIwi(templatei) (5.5)

C1 = cnt(wi, cd-phone) (5.6)

C0 = cnt(¬wi, cd-phone) (5.7)

C′
1 =

C1K

C1 + K
(5.8)

C′
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C0K
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, K − C′

1

)

(5.9)

fwi = log


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C′

1

C′
1+C′

0
+ ǫ



 (5.10)

c1 is the weighted average of the indicator function Iwi(·) measuring whether the template templatei is a word
initial template in the train database. C1/0 are the counts over all train templates (a priori distribution) of
word-initial and non-word-initial occurrences for a given context-dependent phone. The ratio C′

1/(C′
1 + C′

0) is
an ad-hoc estimate for the expected average value of c1 when the property “word initial” is true. Note that
the expected value converges to 1.0 if there are enough positive examples (C1 ≫ K). The mapping from C1/0

to C′
1/0 mimics the effect of looking only at the k nearest templates and weighting their importance (K ≤ k).

K, k and ǫ were set to 50, 75 and 0.1 respectively.

For each word, three word position features were derived, namely fwi which measures the property of being
word initial for the word initial phone arc, fwf which measures the property of being word final for the word
final phone arc, and fwm which averages the property of being word internal over the remaining phone arcs.

Word Identity: The “word identity” feature measures the consistency between the hypothesized word ID and the
word the phone templates were drawn from. This feature is calculated in the same way as the “word position”
features, using proper indicator functions and counts.
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Speaker Entropy: For each phone arc, the speaker entropy over the k-NN template list was calculated. Equa-
tion 5.4 was used to assign a probability to each template and hence each speaker. The rationale behind this
feature is that phone realizations which are supported by a wide variety of speakers are more reliable than
those for which only templates of a single speaker were selected.

Warping Factor: This feature compares the average duration of the templates in the k-NN list with the duration
of the phone arc by means of equation 5.11, with li the duration of template i and la the duration of the phone
arc.

fwarp = −

∣

∣

∣

∣

∣

log

(

∑k
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)∣

∣

∣

∣

∣

(5.11)

The value of fwarp will be close to zero when a phone realization is supported by a set of templates with
durations that are nicely spread around the duration of the phone arc and will be negative otherwise. The
feature is thought to be useful for penalizing hypothesized phone realization with aberrant durations or to
adjust the DTW score if the non-diagonal penalty cost is set too high or too low.

Natural Successors: Given a phone arc and the k-NN template list, the “natural successor” concept sets forth
that a template with index m is more credible if template m − 1 was selected for the phone arc to the left
and/or if template m + 1 was selected for the phone arc to the right. In other words, extra backing is given
to a hypothesized sequence of phone arcs if the sequence of phone arcs matches well to templates that form a
continuous sequence in the train database.

For each k-NN template list, we measure the (probabilistic) fraction va of templates for which (i) the natural
predecessor could be found to the left, (ii) the natural successor could be found to the right, and (iii) both the
natural predecessor and successor could be found. The three final word level features are formed by summing
la× log(va+ ǫ) over all phones arcs a in the word.

5.2.4 Optimization and Integration in SCARF

The SCARF training which operates on word graphs and with word level features, repeats the following steps:

1. compose the word graph with the language model (LM) finite state transducer;

2. calculate the word log likelihoods as a linear combination of feature values for that word (arc in the composed
graph), the logarithm of the LM probability being one of the features;

3. calculate the word posterior probabilities by means of the forward-backward algorithm;

4. adjust the weights for the linear combination of feature values so that the product of word posteriors for the
correct word sequence increases.

SCARF was used to perform the joint optimization of all weights in the linear feature combination. This includes
the weights for the primary phone-based DTW-score, the word-based DTW-score, the log LM probabilities and
all features relying on meta-information. A grid search based on the product of the posterior probabilities on the
correct path as returned by SCARF, was used to optimize the system internal parameters such as the value of β in
equation 5.2 or the non-diagonal cost in the DTW algorithm.

Results for both the improved baseline system and after SCARF integration are presented in Section 12.2.
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Chapter 6

MLP Neural Net Phoneme Detectors

6.1 Background

Posterior probabilities of sound classes estimated using Multi-Layer Perceptrons (MLPs) are increasingly being used
to improve the performance of Automatic Speech Recognition (ASR) systems [35, 36]. These posterior probabilities
have been used mainly as either local acoustic scores or as acoustic features for ASR systems. In the Hybrid Hidden
Markov Model/Artificial Neural Network (HMM-ANN) approach [4], posterior probabilities estimated using MLPs
have been used as emission probabilities required for HMMs. Other examples of the use of posterior probabilities
as scores for ASR include for example, detection of Out-Of-Vocabulary (OOV) segments [37] at the output of ASR
systems. Posterior probabilities have also been used as features for ASR using the Tandem approach [38]. In Tandem,
posteriors estimated from a trained MLP are used as features for ASR after first being compressed using a logarithm
operation and then decorrelated using the KLT transform. All these approaches of using posteriors take advantage
of the discriminative training used to derive the posteriors.

We present a new application of phoneme posteriors for ASR. We use MLP based phoneme posteriors to derive
phonetic events in the acoustic space. These phoneme detectors are then used along with Segmental Conditional
Random Fields (SCRFs) for ASR systems (Figure 6.1). In this chapter we describe how we derive reliable phoneme
detectors from the acoustic signal and integrate them using the SCARF toolkit.

In the reminder of the chapter, we first describe how we build phoneme detectors using posterior probabilities
estimated using MLPs. Information in the acoustic signal along with phonetic and lexical knowledge is integrated
into these posteriors at different levels of training the MLPs to estimate the final posteriors. Section 6.3 talks about
the SCARF framework used to integrate the phoneme detectors from multiple feature representations. In section 6.4
experimental results which show the usefulness of these detectors in isolation and also with other event detectors on
a large vocabulary speech recognition task are presented.

6.2 Building Phoneme Detectors

A multilayer perceptron estimates the posterior probability of phonemes given the acoustic evidence. In the HMM-
ANN paradigm, if each output unit of an MLP is associated with a particular HMM state, these probabilities can be
used as emission probabilities of the HMM system [4]. The Viterbi algorithm is then applied to decode the phoneme
sequence. Since the decoded phoneme sequence associates each time frame in the acoustic signal to a phoneme,
output phonemes along with their corresponding time stamps are a collection of phoneme detections. A phoneme
detection is registered at the mid-point of the time span in which a phoneme is present. These phoneme detections
are subsequently used in the SCARF framework for speech recognition. To derive reliable detections corresponding
to the underlying acoustic signal, posterior probabilities of phonetic sound classes are estimated using a hierarchical
configuration of MLPs.

Conventional acoustic features for ASR systems are typically based on the short-term spectrum of speech. These
features are extracted by applying Bark or Mel scale integrators on power spectral estimates in short analysis windows
(10-30ms) of the speech signal. The signal dynamics are represented by a sequence of short-term feature vectors with
each vector forming a sample of the underlying process. These features are appended with derivatives of the spectral
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Figure 6.1: Using Phoneme Detectors with SCARF

trajectory at each instant to enhance the local speech variations. A typical example of such features is Perceptual
Linear Prediction (PLP). An alternative functionally equivalent representation of speech is a collection of temporal
envelopes of spectral energies at the individual carrier frequencies. The Fourier transform of these time-varying
temporal envelopes yields a set of modulation spectra of speech, where each modulation spectral value represents
the dynamics of the signal at the given carrier frequency.

In this work, we derive both these kinds of features from sub-band temporal envelopes of speech estimated using
Frequency Perceptual Domain Linear Prediction (FDPLP). While spectral envelope features are obtained by the
short-term integration of the sub-band envelopes, the modulation frequency components are derived from the long-
term evolution of the sub-band envelopes [39]. These feature representations are used along with a hierarchical
configuration of MLPs to estimate posterior probabilities of phoneme classes.

6.2.1 Hierarchical estimation of posteriors

In our approach of estimating posterior probabilities we use two Multi-Layer Perceptrons (MLPs) in a hierarchical
fashion to estimate posterior probabilities of phonetic sound classes as shown in Figure 6.2. The first MLP transforms
acoustic features with a context of about 210ms (9 frames) to regular posterior probabilities. The second MLP in the
hierarchy is trained in turn, on posterior outputs from the first MLP. By using a context of about 230ms (11 frames),
we allow the second MLP to learn temporal patterns in the posterior features. These patterns include phonetic
confusions at the output of the first MLP as well as the phonotactics of the language as observed in the training
data [40]. The posteriors at the output of the first MLP are hence enhanced with phonetic knowledge specific to the
training data language. These enhanced posteriors are used to derive phonetic detectors.
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Figure 6.2: Hierarchical estimation of posteriors
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6.3 Integrating Detectors with SCARF

An important characteristic of the SCRF approach is that it allows a set of features from multiple information
sources to be integrated together to model the probability of a word sequence using a log-linear model. For speech
recognition, SCARF uses the SCRF approach by building segment-level features that relate hypothesized words
to the detections. The segment-level features are in turn, related to states of the SCRF. For automatic speech
recognition these correspond to the states in an underlying finite state language model, for example a trigram LM.
The set of segmentations of the observation stream are constrained to the set of possible alternatives found in the
lattices generated by a conventional ASR system. As described in the earlier chapters, SCARF uses four basic kinds
of features to describe the events present in the observation stream to the words being hypothesized. These include -
expectation features, levenshtein features, existence features, language model features and baseline features [2]. The
expectation and levenshtein features measure the similarity between expected and observed phoneme strings.

The phoneme detections that we now include capture phonetic events that occur in the underlying acoustic signal.
As shown in Figure 6.3, the phoneme detectors indicate which phonemes occur in the underlying acoustic waveform
along with time stamps of when they occur. During the training process SCARF learns weights for each of the
feature streams. In the testing phase, SCARF uses the inputs from the detectors to search the constrained space of
possible hypothesis.

6.4 Experiments

For our experiments we train the MLP networks using a 2-fold cross validation also on 430 hours of broadcast
news. Short-term spectral envelope (FDLP-S) and modulation frequency features (FDLP-M) derived from sub-band
temporal envelopes of speech along with conventional PLP features are used to hierarchically estimate phoneme
posterior probabilities. While the first MLP in the hierarchy is trained using 8000 hidden nodes, the second MLP
uses a much simpler network with 800 hidden nodes. The MLP networks are trained using the standard back
propagation algorithm with cross entropy error criteria. Both the networks use an output phoneset of 42 phones.

6.4.1 Oracle experiments to verify use of detectors

Before we use these phonetic detectors with SCARF, we perform a set of oracle experiments using syllable-like multi-
phones [23] to verify the usefulness of acoustic event detectors with SCARF. In the first of these experiment, an oracle
multi-phone detector is used with the SCARF framework. Table 6.1 shows the results of the oracle experiment. The
experiment clearly shows that if correct acoustic detections are provided, SCARF can bring the WER down to the
oracle WER.
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Table 6.1: Performance with an oracle multi-phone detector
Setup WER% on

dev04f
SCARF1 16.0

SCARF1 + Oracle
Multi-phone Detector 11.8

Oracle Error Rate 11.2

In a second oracle experiment we verify if SCARF can exploit complementary sources of information from different
detection streams. We use the phoneme sequence derived from a decoding of the multi-phone units with the baseline
system for this experiment. The baseline phoneme detector is used to generate new detectors based on two phonene
sets. These sets are created by dividing the original phoneset of 42 phonemes into two. In the first detector,
detections of phonemes in the first set are preserved. If a phoneme occurs in the second subset it is replaced by a
random phoneme from among all phonemes. This procedure is reversed to create a second detector.

These corrupted streams are then used with the SCARF framework. SCARF is also trained on the original
phoneme detector. The experiment uses a unigram LM and no baseline feature. Table 6.2 shows the results of this
oracle experiment. As expected the WER increases when SCARF is trained individually on each of the streams.
However when the framework is trained with both the streams together, the number drops back to the WER with the
single uncorrupted stream. The experiment show that SCARF can effectively combine information from detectors
that have complimentary information or in other words, SCARF recovers the baseline performance when errors in
the detector streams are uncorrelated. We use a unigram LM along with SCARF in these experiments.

6.4.2 Usefulness of individual phoneme detectors

In this set of experiments we show the usefulness of MLP based phoneme detectors when used without the baseline
features. Removing the baseline features allow the phoneme detectors to be the sole of acoustic information. These
detectors are used in the SCARF framework along with the Levenshtein, Expectation and Existence features on the
dev04f development data. Table 6.3 shows how the phoneme detectors perform as sources of acoustic information. We
observe that feature streams with lower Phoneme Error Rates (PER) provide better improvements. A trigram LM is
used along with SCARF for these experiments. The experiment shows that SCARF can effectively use information
about phonetic events available in the phoneme detectors. It is interesting to observe that even though that the
MLP based phoneme detectors have quite high PER when compared to the baseline system, they are able to provide
additional information to improve recognition accuracies. Section 6.4.4 has a more detailed analysis of these streams.
We use a unigram LM along with SCARF in these experiments.

Table 6.2: Performance with artificially corrupted phoneme detectors
Setup WER% on

dev04f
SCARF1 + Uncorrupted

Detector 16.9
SCARF1 + Detector with

Phonemes in Set 1 corrupted 17.4
SCARF1 + Detector with

Phonemes in Set 2 corrupted 17.5
SCARF1 + Both

corrupted detectors 16.9

6.4.3 Combining phoneme detectors with a word detector

Table 6.5 shows the results of using the MSR word detector stream (Sec. 4.1.5) along with all the phoneme detector
streams in combination.
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Table 6.3: Performance of phoneme detectors without baseline features
PER% WER% on

Setup dev04f
SCARF without 12.8 (PER of
baseline features baseline system) 17.9

Phoneme detector built
with PLP features 32.5 17.2

Phoneme detector built
with FDLP-S features 31.1 17.0
Phoneme detector built
with FDLP-M features 28.9 16.9

In this experiment we observe further improvements with the phoneme detectors even after the word detectors
have been used. Both the experiments clearly show that additional information in the underlying acoustic signal
is being captured by the detectors and hence the further reduction in error rates. It should be noted that these
improvements are on top of results using state-of-the-art recognition systems.

6.4.4 When do phoneme detectors help the most?

In our final experiment we analyze when the proposed phoneme detectors will contribute the most to reducing WER,
especially when multiple detectors are used together. From the earlier oracle experiment with two corrupted phoneme
streams it is clear that evidences from multiple streams are useful if the streams are complimentary to each other.
In this analysis, we first align the baseline phoneme stream with the reference sequence as shown for an example
utterance in Figure 6.4. The phonemes sequence from the detector stream is then aligned with baseline phoneme
stream. As shown in Figure 6.4, the following outcomes are possible when the detector streams interact with the
baseline stream -

• False accept cases where both the baseline stream and the detector stream agree and are wrong. In these kinds
of correlated errors SCARF cannot recover.

• True reject cases where both the baseline and the detector stream disagree and the detector stream is correct.
These kinds of errors weaken the baseline and could result in SCARF recovering from the error.

• False alarm cases where the baseline is correct but the detector stream is wrong. Even though these kinds of
errors weaken the baseline, SCARF could recover from the error using other available features like the language
model feature.

• True accept cases where both the baseline and the detector are correct. These cases strengthen the baseline
and are useful.

In Table 6.4 we measure these quantities for the three phoneme detectors we use. The PLP based detector stream,
for example, has higher False Accepts/Alarms and lower True Accepts/Rejects. The differences between the two
FDLP streams is very small; however, the PLP based detectors are worse by every measure, correlating well with its
much smaller accuracy improvement in SCARF (see Table 6.3).

Table 6.4: Analysis of different phoneme detectors
Detector False True False True
Stream Accept% Reject% Alarm% Accept%
PLP 26.55 73.45 26.55 72.25

FDLP-S 25.86 74.14 25.86 74.41
FDLP-M 25.98 74.02 25.98 77.15
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Helpful: False alarm:
False RejectTrue Reject

Worst case:
False Accept True Accept

Most frequent:

   Reference:    HH   AE   Z   s   t   r   EY   **   n     d     dh   ow   z     t     ay   z

Detector Stream:             AX   *   s   t   r   EY    IY  *     T     dh   ow   z     t     ay   z

 Baseline Stream:     **    AX   *   s   t   r   AE    IY  *     d     dh   ow   z     t     ay   z

Figure 6.4: Analyzing how detectors work in the SCARF framework

Table 6.5: Performance of phoneme detectors with a word detector
WER% on WER% on

Setup dev04f RT04
Baseline Attila system 16.3 15.7

SCARF1 16.0 15.4
+ Word Detector 15.3 14.5

+ Phoneme Detectors 15.1 14.3

6.5 Summary

In this chapter we have explored a new application of posteriors derived using MLPs. We observe that these
discriminatively trained posteriors are able to provide additional information about events in the underlying acoustic
signal. Additional gains on the Broadcast News task are observed when these posterior detectors are used with
other kinds of detectors within the SCARF framework. It is evident that SCRFs can integrate multiple types
of information, at different levels of granularity, and with varying degrees of quality, to improve on results from
state-of-the-art speech recognition systems.
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Chapter 7

Deep Net Phoneme Detectors

7.1 Background

Recent work in machine learning has highlighted the circumstances that deep architectures, such as multilayer neural
networks, perform significantly better than shallow architectures, such as support vector machines [41]. Deep archi-
tectures learn complex mappings by transforming their inputs through multiple layers of nonlinear processing [42].
Researchers have advanced a number of different motivations for deep architectures: the wide range of functions that
can be parameterized by composing weakly nonlinear transformations, the appeal of hierarchical and distributed rep-
resentations, and the potential for combining unsupervised and supervised methods. Experiments have also shown
the benefits of deep learning for nonlinear dimensionality reduction [43], visual object recognition [44], and natural
language processing [45].

By comparison, very little work has explored the potential of deep architectures for problems in speech and audio
processing. For example, most acoustic models for automatic speech recognition (ASR) are built from mixtures of
multivariate Gaussian distributions; these mixture models suffer from all the known deficiencies of shallow architec-
tures in high dimensional feature spaces. Though multilayer neural networks have been used successfully for acoustic
modeling [46] and phoneme recognition [47], they have not been widely adopted for ASR due to the difficulties of
training large multilayer architectures.

Many of these difficulties have been addressed by recent work in learning deep architectures, which has combined
unsupervised and supervised methods in novel ways. New training procedures for deep architectures have yielded
impressive results in many domains. Mainly, however, the new generation of deep architectures has been applied to
problems in computer vision. The potential of deep architectures has not yet been fully tapped for speech and audio
processing, except the recent work by Mohamed and Hinton on TIMIT phoneme recognition [6]. While their task is
small scale in the standard of of large-scale continuous speech recognition (LVCSR), deep learning approaches have
yielded very encouraging state-of-the-art results.

Our research plan for the 2010 JHU Summer Workshop is to investigate the utility of deep learning architectures
for LVCSR. It is possible to treat deep learning architectures as density models of acoustic features, in very much
the same way as how traditional multi-layer perceptrons have been applied to LVCSR. However, given the short
duration of the workshop, we explore other ways of incorporating deep learning architectures in LVCSR systems. In
particular, we develop phoneme recognizers with deep learning architectures and leverage the infrastructure provided
by segmental conditional random fields (SCARF) by incorporating recognition results into existing LVCSR systems.

7.2 Deep Architectures

In this section, we briefly review current approaches to learning deep architectures, as well as various earlier
approaches—both successes and failures—that preceded them. Interest in deep learning arose naturally from work
on multilayer connectionist architectures. Inspired by biological neural networks, these architectures were proposed
by researchers in artificial intelligence (AI) and cognitive science to emulate the sensory processing in the human
brain. Deep architectures transform their inputs through multiple levels of nonlinear processing. Theoretical results
suggest that multiple levels of processing—in essence, hierarchies of nested computation—are needed to learn the
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complicated functions that can solve difficult problems in AI [48]. Indeed, these functions must be able to represent
high-level abstractions of high-dimensional sensory input with many degrees of variability; such input is common to
problems in visual object recognition, speech perception, and motor control. Only deep architectures appear to have
the capacity for this type of learning from high dimensional sensory input.

While deep architectures can encode complicated functions of sensory input, the learning of such functions presents
a difficult and highly nonlinear optimization. The simplest approach to learning in multilayer architectures is error
backpropagation using gradient descent [49, 50]. However, this approach often gets trapped in local minima of the
overall cost function, or it learns functions that generalize poorly on test data (indicating that the architecture has
failed to discover meaningful high-level abstractions of low-level sensory input).

Recent breakthroughs in deep learning have shown how to circumvent these problems with simple backpropaga-
tion. An important insight has been to combine methods from unsupervised and supervised learning. These methods
can be combined by endowing multilayer architectures with probabilistic semantics and viewing them as belief nets
or Boltzmann machines [42]. With these semantics, the architectures can be trained in an unsupervised manner
to learn compact representations of high dimensional sensory input. To circumvent the difficulty of optimizing the
whole architecture at once, the training is done in a greedy, layer-by-layer fashion [51]. In particular, each higher
layer is trained on the representations discovered by the immediately lower one. Finally, after “pre-training” all the
layers in an unsupervised manner, the weights of the networks are tuned in a supervised manner by backpropagation.
Empirically, this combined approach has yielded state-of-the-art results on many tasks. Though the reasons are not
yet completely understood, it appears that the initialization by unsupervised learning leads to better final solutions
with lower generalization error [52].

7.3 Deep Architecture for Phoneme Recognition

Deep learning architectures have been constructed predominantly with two basic building blocks: one-hidden-layer
restricted Boltzman machines (RBM)[42], or alternatively, denoising autoencoders[53]. In our preliminary experi-
ments, we have found that denoising auto-encoders perform similarly as RBM. Therefore, in the workshop, we have
focused on the former.

Fig. 7.1 illustrates an one-hidden-layer RBM. The model is a special case of undirected graphical models except
that there are no lateral connections between random variables on the top layer (the hidden layer) and the bottom
layer (the visible layer). The model gives rise to the joint distribution between these two sets of random variables

p(v,h; θ) ∝ exp{−v⊤Wh− b⊤v − a⊤h}

where v and h stand for visible and hidden units respectively. The parameter θ denotes the connection weights W
between the two sets of units, as well as biases b and a.

7.3.1 Unsupervised learning of RBM

For data with only visible units (such as image pixel values, or acoustic feature values), the parameter θ is optimized to
maximize the marginal likelihood p(v). This is intractable because of the need to marginalize over all configurations
of the hidden units. Instead, contrast divergence, an approximate learning algorithm, is used to update the value of
W at iteration t to a new value at iteration t + 1,

wt+1
ij − wt

ij ≈ 〈vihj〉data − 〈vihj〉one step

while 〈·〉 stands for expectation over a Monte Carlo Markov Chain, sampled from the model using the current model
parameter θt. Details of constructing this chain and computing the expectation is given in [42]. Bias parameters b
and a are learnt in similar ways. Furthermore, to speed up learning process, the standard optimization “trick” such
as adding a momentum to the update is also employed.

7.3.2 Stacking RBMs

Multiple one-hidden-layer RBMs are stacked up to compose of deep learning architecture, illustrated in Fig. 7.1.
The hidden units in a lower layer’s RBM become the inputs to the next layer’s RBM. During unsupervised training,
lower layers are learnt first and greedily, one layer by one layer, the higher layers are also learnt sequentially.
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Figure 7.1: (Left). One-hidden-layer restricted Boltzman machine (RBM). (Right). Stacked RBMs as deep learning
architecture

Specifically, the deep RBMs have visible units only at the RBM of the first layer. The parameters for that RBM
are learnt first using the algorithm described in section 7.3.1. Once learnt, the parameters for this RBM are fixed.

To learn the RBM at the second layer, the inputs are forwarded through the first RBM. The outputs (of the
hidden layer of that RBM) are used as if they were “visible” data for the second RBM. Based on this artificially
visible data, the second RBM’s parameters are learnt. The process then repeats for RBMs at other layers.

7.3.3 Supervised learning of RBMs

After all hidden layers have been learnt, another layer of nonlinear units will be added to the stacked RBMs. This
layer is used to model discrete output variables and is normally setup with softmax units for multiclass classification.

The labels of input instances are then used to fine-tune all the parameters in the stacked RBMs as well as connec-
tion weights to the final output layer. This is the same procedure as training a multilayer perceptron; conventional
techniques such as error-backpropagation are used [49]. In our experiment, similar to many other works in deep
learning architecture, we have used sequential stochastic gradient descent at this stage of supervised learning.

7.3.4 Phoneme Recognition

During this workshop, we use learning architectures in Fig. 7.1 for phoneme recognition. Our approach consists of
three steps.

In the first step, we train those architectures for frame-level phoneme classification. That is, the inputs to the
architecture are superfeature vectors, resulting from concatenating feature vectors from adjacent analysis frames.
The outputs of the architectures are phoneme labels. For Broadcast news data, there are no frame-level phonetic
annotations. Thus, we used force-aligned state-level outputs of our baseline speech recognizer as ground-truth of
phoneme labels.

In the second step, we interpret the outputs of our phoneme classifiers as posterior probabilities of phoneme classes
and integrate them with a (phone-level) bigram language model for decoding. The outputs of this decoding process
are phone sequences. From these sequences, phone error rates can be computed (against phonetic annotations from
forced alignments).

In the last step, the phone sequences are integrated with the baseline system with SCARF. This is done through
introducing features for phone detection in SCARF, as described in previous chapters. Specifically, our features take
the form

# phone stream

!sent_start 1

phone_class_label_1 starting_frame_number

phone_class_label_2 starting_frame_number

...

!sent_end last_frame_number

The outputs of the SCARF are word sequences, from which word error rates are computed and reported.

7.4 Experiment Setup

For acoustic feature vectors, we have used fMMI features computed by the baseline system. Furthermore, the training
data of Broadcast news was split into two subsets. We use one subset to train a phoneme recognizer and apply the
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Amt. of training data PER WER
(baseline) - 17.9%
20 hours 28.8% 17.1%
40 hours 28.2% 17.0%

Table 7.1: Deep RBMs as acoustic models in SCARF on devf04

recognizer to the other subset to compute phone detection features. The phone detection features from the two
subsets are then used in training SCARF to improve accuracies over the baseline. During the test time, both phone
recognizers are applied to test utterances. The posterior probabilities are averaged and sent to the phone-level bigram
language model for decoding and computing phone detection features.

In this workshop, we split the training data twice. In one split, we used 10-hour worth of data in each subset to
train phoneme recognizers. In the other split, we used 20-hour worth of data in each subset. Therefore, each of the
two splits use total 20-hour and 40-hour training data, respectively.

All phoneme recognizers have the same architecture:

• Input 11 frames of 40-dimensional fMMI features, thus 440 input units.

• Hidden layers 3 hidden layers, each with 2048 hidden units.

• Output layer The output layer has 132 units, representing the left, middle and right states of 44 phone classes
used by the baseline system.

RBMs training requires setting a few learning parameters. We have found that the parameters used in [6] worked
satisfactorily. Therefore, we made only small adjustments to them.

7.5 Results

In table 7.1, we report results of phone error rates (PERs) and word error rates (WERs) of using phone detection
as sole acoustic models in SCARF. System performance of combining phone detection as well as other detectors and
features are reported in elsewhere in this report.

These results are comparable to the MLP results, though we note that the deep RBMs detectors had the benefit
of using fMMI features as input. In combination with SCARF1 and MSR word detectors, deep RBMs detections
produce 0.1 to 0.2% improvement in WERs on dev04f.

7.6 Other work

Computational intensiveness is a major obstacle of applying deep learning architecture to large-scale learning prob-
lems. In this workshop, similar to many other work in the field, we had exploited GPU-based workstations to speed
up computation. However, the learning algorithm for deep RBMs is inherently sequential, processing one training
instance at a time. This significantly limits the throughout of the learning process.

We have also experimented an alternative learning architecture. We partitioned data into many subsets and train
a different deep RBMs on each subset. We then combined all deep RBMs as one large multil-layer perceptron and
fine-tuned its parameters with error-backpropagation. Note that, during the unsupervised learning stage, the training
of these deep RBMs are completely in parallel and each is only responsible for a subset of data. These deep RBMs
are coupled during the final supervised learning stage. Due to time constraints, we only constructed a prototype of
this architecture on a small computing cluster. Preliminary results were encouraging and we are pursuing this in
extending the prototype to realistic tasks.
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Chapter 8

Point Process Model

8.1 Background

In previous chapters, there has been much discussion of neural network-derived acoustic models of individual speech
frames in terms of the phonetic inventory of English. However, due to co-articulation and other context dependent
effects, it is reasonable to expect that detailed acoustic modeling of larger syllable- or word-sized units (including
the multiphone units (MPU) described in Section 4.1.3) may permit a more accurate and robust decoding of the
speech signal. In general, this alternative strategy may be referred to as window-based acoustic modeling, as we
consider models of longer windows of the speech signal (∼100-1000 ms) as opposed to feature vectors corresponding
to individual frames that typically represent only ∼30 ms.

In this chapter, we consider point process models (PPM), a class of window-based models built on the compu-
tational principles of temporal coding and sparse acoustic event detection [54, 7, 55]. This strategy is a significant
departure from traditional frame-based speech recognition technologies, which build sequence models of temporally
dense vector time series representations. In the PPM framework, the speech signal is first transformed into a sparse
set of temporal point patterns of the most salient acoustic events, and then decoded using explicit models of the
temporal statistics of these patterns. While this is similar in spirit to the SCARF-style phonetic event detector
streams described in Section 2, the PPM framework takes it one step further to devote explicit modeling parameters
to the event timings.

8.2 Model Architecture

The point process modeling architecture evaluated in this workshop consisted of three main components (see
Figure 8.1): an acoustic front end, a set of phonetic detectors for the set P of English phones, and a set of
word/multiphone unit classifiers or detectors. Most generally, the acoustic front end may consist of one signal
processor Sp for each phoneme p, each producing a vector time series representation, Xp = {x1x2 . . . xT } where
each xi ∈ R

kp . While the acoustic front end processing could be tailored to each individual phonetic detector (e.g.
see [54]), in this study we used a single processing scheme such that Sp = S and Xp = X for all p ∈ P . In this study,
we used the frequency domain linear prediction features described in Section 6 in conjunction with the multilayer
perceptron based acoustic model, as described below.

Next, we require a phone detector Dp for each p ∈ P that transforms X into a point pattern Np = {t1, t2, . . . , tnp
},

comprised of those points in time that p is most strongly expressed or most perceptually salient. The composite set
of point patterns R = {Np}p∈P defines our sparse point process representation on which all subsequent modeling is
based. A word model for each word or multiphone unit w in our lexicon W is used to map subsets of R restricted to a
candidate window at some time t into a score dw(t) that should ideally take high values at times that the word/MPU
w is uttered and low values otherwise. These scores may be used directly for classification and lattice annotation,
while appropriately thresholding dw(t) for each w ∈ W provides the means to use the models as event detectors.
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Figure 8.1: High-level model architecture.

8.2.1 Phone Event-Based Representation

Each phone detector Dp is defined as a composition of two separate operations. First, we apply a phone-dependent
function gp : R

kp → R to the feature vector time series X to produce a phone detector time series {gp(x1), . . . , gp(xT )}
that should take high values when phone p is present and low values otherwise. In this study, we employed the mul-
tilayer perceptron (MLP)-based English phonetic acoustic model described in Section 6, which produces a phonetic
posteriorgram of dimension |P| = 42. The posteriorgram is the vector time series Y = y1 . . . yT , where each yi is
define as the discrete posterior distribution over the phone set,

yi = 〈P (p1|xi), . . . , P (p|P||xi)〉 ∈ R
|P|, (8.1)

as computed by the MLP. Given Y for an utterance, the detector time series for is taken to be the posterior trajectory
for phone p such that gp(xi) = yi[p] = P (p|xi). As required, this definition of gp takes a maximal value when phone
p is most likely to be present and a minimal value of 0 when it is least likely.

Second, we apply a thresholded peak finding function that computes the point pattern Np as

Np = {i∆|gp(xi) > δ and gp(xi) > gp(xi±1)}, (8.2)

where δ is the detector threshold and ∆ is the sampling interval of X . The individual point patterns collected into
a set R = {Np}p∈P defines our point process representation. Figure 8.2 shows an example posteriorgram (in this
case, computed from a simple mixture of Gaussians acoustic model) and corresponding point process representation,
where we use a threshold of δ = 0.5.

8.2.2 Point Process Models

Given the point process representation defined above, we need to construct suitable models for each word or multi-
phone unit in terms of the temporal statistics of the phone events. As in most machine learning settings, there are two
classes of models that can be defined: generative and discriminative. The generative model provides a prescription,
from the ground up, for randomly generating the observed point process representation in terms of an underlying
set of parameters. The discriminative model uses positive and negative presentations of each word or MPU we are
modeling to estimate model parameters in a top down fashion.

The Generative PPM

The first word/MPU model we consider is the generative inhomogeneous Poisson process model, first presented in
quantized form in [7], and reproduced in the more general continuous form below for completeness. This model
assumes there are two underlying stochastic processes that generate the observed point process representation R.
The first is a homogeneous Poisson process that generates the observations in regions outside instances of the target
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Figure 8.2: An example posteriorgram (GMM-based) and the corresponding phonetic point process representation.

word or MPU. The second is an inhomogeneous Poisson process that generates the point pattern corresponding to
instances of the target word or MPU.

Our word/MPU w detector function, dw(t), may be defined in terms of the (log) likelihood ratio

dw(t) = log

[

P (R|θw(t) = 1)

P (R|θw(t) = 0)

]

, (8.3)

where R is the point process representation and θw : R → {0, 1} is an indicator function of time that takes the value
1 when the word/MPU utterance begins and 0 otherwise.

Given a time t and a candidate word/MPU duration T , we can partition the point process representation R
observed for an utterance of total duration L into three subsets: Rl = R|(0,t], Rt,T = R|(t,t+T ], and Rr = R|(t+T,L].
We assume conditional independence between subsets and assume that Rl and Rr are generated by the same homo-
geneous background process. Thus, the likelihoods of Rl and Rr cancel out in the ratio. Introducing the duration
latent variable T and noting P (R|θw(t) = 0) does not depend on T , Equation 8.3 reduces to

dw(t) = log

[

∫ L−t

0

P (Rt,T |T, θw(t) = 1)

P (Rt,T |T, θw(t) = 0)
P (T |θw(t) = 1)dT

]

. (8.4)

Now, P (Rt,T |T, θw(t) = 0) is determined by the background homogeneous background model and P (Rt,T |T, θw(t) =
1) is determined by the inhomogeneous word/MPU model, as follows:

1. For the P (Rt,T |T, θw(t) = 1) distribution, we begin by normalizing Rt,T to the interval (0, 1]; that is, we map
Rt,T to R′

t,T such that for each ti ∈ Rt,T there is a corresponding t′i ∈ R′
t,T where t′i = [ti − (t − T )]/T . Given

this mapping, we make the simplifying assumption that

P (Rt,T |T, θw(t) = 1) =
1

T |Rt,T |
P (R′

t,T |θw(t) = 1). (8.5)

This equivalence assumes that the observations for each instance of the word/MPU are generated by a common,
T -independent inhomogeneous Poisson process operating on the interval (0, 1] that is subsequently scaled by
T to a point pattern on the interval (t, t + T ]. In this way, the number of firings of the different detectors in
a word is invariant to the actual duration of the word. The likelihood of R′

t,T assuming an inhomogeneous
Poisson process generated it takes the form

P (R′
t,T |θw(t) = 1) =

∏

p∈P



exp

(

−

∫ 1

0

λp(s)ds

)

∏

s∈N ′
p

λp(s)



 , (8.6)
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Figure 8.3: Inhomogeneous point process model parameters for the word “twenty” (multiphone unit /t w eh n t iy/)
with an example point pattern (R′

t,T ) overlaid in red.

where λp(s) is the rate parameter at normalized time s ∈ (0, 1] for phone p, and N ′
p are the elements of R′

t,T for
phone p. Learning a new word/MPU amounts to learning the rate parameter functions {λp}p∈P that account
for the examples of the given unit.

In this study, we assumed a piecewise constant parameterization of the rate functions {λp}, where we use D
equally-spaced divisions of the normalized time interval (0, 1]. Figure 8.3 shows the estimated model parameters
for the word “twenty,” with an example point pattern (R′

t,T ) overlaid.

2. For the P (R2|T, θw(t) = 0) distribution, we need only consider a homogeneous Poisson process model that
depends solely on the total number np of landmarks observed for each phone p and the total duration of the
segment (in this case T ). The likelihood given this homogeneous Poisson process model takes the form

P (Rt,T |T, θw(t) = 0) =
∏

p∈P

[µp]
npe−µpT , (8.7)

where µp is the background rate parameter for phone p and np are the number of elements in Rt,T for phone p.
Training this model for a given word amounts to computing the rate parameters as the average detector firing
rates over a large collection of arbitrary speech.

Given a novel utterance, we may evaluate the detector function by sliding a set of windows with durations T ∈ T and
approximating the integral expression of Equation 8.4 with a sum over durations in T . Note that the distribution
P (T |θw(t) = 1) encapsulates one’s prior knowledge about the duration of the unit w. In practice, we estimated it
from a set of measured word durations using kernel density estimation.

The Discriminative PPM

For the discriminative point process models, we consider the machine learning framework of kernel machines. In the
standard binary classification setting, we are provided a collection of labeled points {xi, yi}N

i=1 in a d-dimensional
vector space, where each xi ∈ R

d and yi ∈ {−1, 1}. The goal is to learn a function f : R
d → R such that

sgn(f(xi)) = yi as frequently as possible without overfitting. The kernel machine framework attempts to achieve this
by solving the optimization problem
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f∗ = arg min
f∈HK

1

N

N
∑

i=1

V (yi, f(xi)) + γ‖f‖2
K , (8.8)

where V is some loss function, HK is a representing kernel Hilbert space (RKHS) for the kernel function K : R
d → R,

and ‖·‖K denotes the RKHS norm. Common loss functions include (i) the hinge loss, V (y, f(x)) = max(0, 1−yf(x)),
which gives rise to support vector machines, and (ii) square loss, V (y, f(x)) = [y − f(x)]2, which gives rise to
regularized least squares (RLS).

If K is a positive semi-definite kernel, then it follows by the representer theorem that the solution to Equation 8.8
can be written as the expansion

f =

N
∑

i=1

αiK(xi, ·), (8.9)

where the coefficients αi ∈ R are the new parameters to be learned from the data. In the case of RLS, a simple
closed form solution exists and is given by

α = (K + γI)−1y, (8.10)

where α = [α1 . . . αN ]T , y = [y1 . . . yN ]T , and K is the N × N Gram matrix with elements Kij = K(xi, xj).
Now, our goal is to extend these kernel machine methods to building word and MPU classifiers using the above-

defined point process representation. In this case, training examples take the form {Ri, yi}N
i=1, where Ri is the

time normalized point pattern for the ith word or MPU example (mathematically equivalent R′
t,T of Equation 8.6).

While one can define kernels that operate directly on pairs of point patterns, for the purposes of this workshop we
applied uniform time binning to vectorize each Ri. In particular, we map each Ri to a D · |P|-dimensional vector xi,
where D is the number of time bins and |P| is the number of phone detectors. The elements are defined such that
each xi is the supervector formed by concatenating the D-dimensional vector of binned event counts for each phone.
Formally, the kth component of xi is given by xi[k] = nj,d, the number of events for the jth phone in time bin d,
where j = ⌊k/D⌋ and d = mod(k, D). Since the events are relatively sparse in time, each supervector will consist of
a majority of zero counts, making sparse matrix storage a plus for computation.

Once we have our positive and negative examples converted to this vector space form, we can apply any standard
p.s.d. kernel function. In this workshop, we limited our study to the nonlinear radial basis function (RBF) kernel,
which takes the form

K(xi, xj) = exp

(

−
‖xi − xj‖2

2σ2

)

, (8.11)

where σ is a kernel width parameter that may be tuned in the validation step.

8.3 PPM-Based Multiphone Unit Detection

The first set of experiments we conducted centered around the construction of a set of 3982 multiphone unit point
process models using the generative framework defined above. Using a phonetic forced alignment of the training
data, we extracted the start and end times of the examples of each unit. Given the point process representation
R for each utterance, these time marks were used to extract the point patterns of phone events for each example.
These examples were used to estimate the rate functions {λp(t)}p∈P for each unit model, where we implemented
the piecewise-constant parameterization with D = 20 divisions. The background model parameters were estimated
using 10 hours of randomly selected HUB4 fold1 data.

We evaluate each MPU detector as a classifier by using the detector score for multiphone unit w (dw of Equa-
tion 8.4) applied both to actual instances of the unit and a set of negative examples selected from the pool of remaining
multiphone units. Note that in this application scenario, where we are presented presegmented examples, we assume
the duration distribution collapses to the scaled Dirac delta function, P (T |θw = 1) → P (Tobs|θw = 1)δ(T − Tobs),
which is centered at the observed unit duration Tobs. It follows that that Equation 8.4 reduces to

dw(t) = log

[

P (Rt,Tobs
|Tobs, θw(t) = 1)

P (Rt,Tobs
|Tobs, θw(t) = 0)

P (Tobs|θw(t) = 1)

]

. (8.12)
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Figure 8.4: The classification equal error rates (EER) of the 3982 PPM-based multiphone detectors vs. median
duration.

By applying a suitable threshold to the detector score, we recover a one-vs-all classification for each unit. We trained
each model on half of HUB4 fold 1, validated parameters on the other half of fold 1, and tested on fold 2 (see
Section 4.1 for description of these datasets). Figure 8.4 plots the classifier equal error rate (EER) versus the median
duration for each multiphone unit. Color (blue vs. red) distinguishes between light supervision (N < 400) and higher
supervision (N ≥ 400). A few trends emerge. First, as might be expected, longer words are easier to identify, but
longer words also tend to have fewer training examples. Second, the performance is markedly better for the highly
supervised units, and the loss taken from short duration can be mitigated with significantly more data. The average
EER (weighted according to occurrence rates in the data) was 8.2%.

Using these models in detection mode would produce significantly more false alarms, as words can be hallucinated
across nontarget word boundaries. While we did not evaluate detection performance explicitly, we did use sliding
PPM detectors for the detectors to compute a SCARF MPU detector stream. Unfortunately, using this mode of
integration, we were unable to achieve an improvement over the SCARF1 baseline.

8.4 PPM-Based Word Lattice Annotations

The second set of experiments involved training discriminative point process models to provide lattice annotation
features for the SCARF framework. Key to this method’s success was the use of the baseline Attila training lattices
to provide both positive and negative examples of each word. The positive examples consisted of lattice arcs labeled
with the target word that we deemed correct by the forced alignment of reference transcripts. The negative examples
are extracted from lattice arcs that are labeled with the target word and thus are plausible hypotheses, but are not
consistent with the forced alignment. In this way, we train discriminative PPMs that focus on correcting the fine
grain errors the baseline system is making.

We started with the set of 100 most common error producing words (typically function words, like “the” and
“and”), and trained a regularized least squares classifier with an radial basis function kernel. The training examples
were extracted from the lattices of the first half of HUB4 fold1, and the classifier parameters were tuned using the
second half of fold1.

Figure 8.5 displays the data used to train the classifier for the word “the,” where each row represents the feature
vector for a single example. We use D = 10 divisions and a set P of 42 phones, resulting in 420-dimensional
feature vectors, organized according to the binning description above in Section 8.2.2. The examples above the red
line are computed from correct lattice arcs, while those below are taken from intervals that the baseline recognizer
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Figure 8.5: Positive and negative vectorized training examples of the word “the.”

Table 8.1: Word error rates for the SCARF baseline with and without the PPM annotations, using both unigram
and trigram language models.

System Unigram LM Trigram LM
SCARF1 16.9% 16.0%

SCARF1+PPM Annotations 16.2% 15.8%

hypothesized the word “the” when it actually wasn’t there. There are a few properties to note. First, we see a clear
preponderance of /dh/, /iy/, and /ah/ events, arising from the correct pronunciations of the word. However, in the
positive examples, the correct phonetic events are more reliably detected and are more tightly distributed in time.
The negative examples display an increased presence of incorrect phonetic events, which results in the increased noise
present in the bottom half of the image. Since we can notice with our eyes the different patterns for positive and
negative examples in Figure 8.5, then it is reasonable to expect our kernel machine framework will be able to follow
suit. Figure 8.6 displays the distribution of “the” classifier scores when applied to the “the”-hypothesized lattice
arcs in HUB4 fold2 training data (f(x) for all x in the test set). We observe a nice separation between the positive
and negative modes that, when thresholded, results in an EER of 26.0%.

We pared our 100 word set down to the 72 words that produced a fold2 EER or less than 33% and, using
the RLS+RBF classifier scores for this 72 word set, we defined a lattice annotation feature stream for the SCARF
framework. For lattice arcs not in this 72 word set, this annotation feature was set to zero. Table 8.1 shows the dev04f
word error rates for the SCARF1 baseline with and without our PPM annotation features using both a unigram
and trigram language model. First, we observe that on the SCARF baseline alone, the context-aware trigram model
provides about 0.9% absolute improvement over the unigram. However, we find that the PPM annotation features
achieve 0.7% of that improvement using within-arc acoustics alone. In the case of the trigram model, the PPM
annotations provide a statistically significant 0.2% absolute improvement over the SCARF1 baseline.

Table 8.2 lists the dev04f and rt04 word error rates for the Attila baseline and various SCARF implementations.
We find that in combination with the MSR-HMM features, our PPM annotations display an even larger gain, reaching
15.0% WER on dev04f, which matches the best performance of other approaches outlined in this document. Keep in
mind that this is achieved by providing alternative lattice scores for only 72 words; with a more ambitious annotation
effort, further gains may be possible. Ultimately, with the combination of all feature streams (SCARF1 + MSR-HMM
+ PPM), we achieve 25% of the gain possible for this set of lattices on both the dev04f and rt04 sets.
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Figure 8.6: Distribution of classifier scores for the positive and negative examples of the word “the.”

Table 8.2: Word error rates for the BN development and evaluation sets.

System dev04f rt04
Attila Baseline 16.3% 15.7%

+ SCARF retraining (SCARF1) 16.0% 15.4%
+ MSR HMM word annotations 15.3% 14.5%

+ PPM 72 word annotations 15.0% 14.3%
Lattice Oracle (Performance floor) 11.2% 10.1%

8.5 Summary

We investigated the role of window-based point process models in the SCARF framework. We found that using
the timings of sparse phone events derived from MLP-based posteriorgrams, combined with linear duration normal-
ization across instances, provides a suitable representation for multiphone unit and word modeling. Discriminative
PPM training directly on the lattice competitors provided a successful strategy for constructing lattice annotations.
Significant improvements over the baseline systems were achieve using discriminative PPM-based lattice annotations
as additional feature streams in the SCARF framework.
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Chapter 9

Modulation Features

9.1 Background

As stated in Chapter 1, segmental conditional random fields (SCRF) are notable for their ability to integrate multiple
classifiers at the word level [1]. Within this framework we combined our experimental acoustic features with the IBM
Attila baseline system [22]. Thus we had the opportunity to complement, rather than compete with, an existing
ASR system while testing theoretical predictions related to foundational concepts of modulation representations for
speech.

Modulation-based features, in the form of the spectrogram and mel-frequency cepstral coefficients (MFCC), have
underpinned speech recognition since as early as the mid twentieth century. Short-time Fourier coefficients are
equivalent to subband-amplitude signals, the magnitudes of which correspond to a method of demodulation called
the Hilbert envelope. Modern ASR features have since added linear, nonlinear, discriminative and speaker-adaptive
transforms for improved classification, but fundamentally begin with Hilbert envelopes.

Generalizing demodulation in terms of a signal-product model, however, reveals that the Hilbert envelope is
an arbitrary solution to an under-determined problem. Different constraints on the model can therefore lead to
better-behaved results, as developed in the form of coherent [56] and convex [57] demodulation. Alternative methods
of demodulation raise the possibility of building a firmer foundation, other than the Hilbert envelope, for future
development of informative ASR features. With that in mind, the point of this chapter is to demonstrate the
viability of bandwidth-constrained demodulation features in a large-scale speech recognition system.

Other methods of modulation-based speech recognition have focused on modifying the Hilbert envelope. Notable
examples are modulation filtering [58, 59, 60] and frequency-domain linear prediction [61] (see also Chapter 7 for the
latest). We instead estimate modulator signals as solutions to a constrained product-model synthesis equation. In
convex demodulation this takes the form of an optimization problem, while coherent demodulation is based on signal-
adaptive carrier estimation. This report is the first case of directly applying bandwidth-constrained demodulation to
speech recognition. As such, we present new extensions of Convex and Coherent demodulation, developed specifically
during this workshop.

We begin by defining the speech modulation signal model in Section 9.2. We describe two novel demodulation
methods, compared to the Hilbert envelope, in Section 9.3 as the first step toward the template-based multiphone
classification system outlined in Section 9.4. Finally, we discuss experimental results in Section 12.2.1 and conclude
in Section 9.6.

9.2 Speech Features Based on a Bandwidth-Constrained Modulation

Signal Model

Acoustic features can generally be defined as slowly-varying local statistics of the speech audio. Let x[n] be a
time-domain speech signal sampled at rate fs. For K features we compute the vector expansion M [k, i] in the
neighborhood around n = Ri,

M [k, i] = F{h[Ri − n]x[n]}, 0 ≤ k < K (9.1)
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Figure 9.1: Schematic for acoustic feature extraction, emphasizing subband filtering and demodulation. Baseline
feature sets such as MFCCs and the Attila system start with the Hilbert envelope followed by discriminative and
adaptive transforms. These same transforms are also applicable to bandwidth-constrained features, but we leave
that topic for future work.

where h[n] is a finite window and R is an integer downsampling factor. Given a K×I matrix of concatenated feature
vectors M , a direct classifier chooses a label w according to the maximum a posteriori criterion

ŵ = argmax
w∈W

p(w|M ) (9.2)

where W is a lexicon of possible utterances and the probability model p(w|M ) is parametrically fitted to training
data. Conceptually the goal with F{·} is to map x[n] to a K-dimensional feature space wherein M [k, i] forms tight
clusters around centroids corresponding to the lexical classes of interest.

The first main contribution of this chapter is to propose a framework for estimating features M [k, i] based on the
vector expansion mk[n] satisfying the sum-of-products model [56, 57] defined as

x[n] =

K−1
∑

k=0

mk[n] · ck[n] (9.3)

where the dot indicates sample-wise multiplication and K is a finite integer. In this model, the modulators mk[n] each
vary slowly with n while the quickly-oscillating carriers ck[n] serve primarily to frequency-shift baseband modulations
into the acoustic range of hearing. We assume that the modulators contain necessary cues for understanding speech
at frequencies around the syllabic and phonetic rates, which are also far below the frequency content of the carriers.

Further assuming that the signal products sk[n] = mk[n] · ck[n] are bandpass and spectrally non-overlapping, we
define sk[n] as the output of a bandpass, possibly time-varying, filter operation [62]

sk[n] =
∑

τ

x[τ ]hk[n, n − τ ]. (9.4)

The problem of estimating mk[n] from sk[n] is called demodulation and is treated in more detail in the next section.
For now we emphasize that there is no unique solution for mk[n] without further constraints, for the same reason
that any number a has no unique factorization (b, c) such that a = b · c.

The rest of this chapter specifically compares two new decompositions, Convex and Coherent demodulation,
against the conventional Hilbert envelope. This is an important comparison because the Hilbert envelope is the base
representation for speech recognition features based on short-term spectral representations, such as MFCCs. For
example, consider again the expression in (9.1). If F{·} is the discrete Fourier transform followed by the magnitude
operation, then (9.1) yields K subband Hilbert envelopes in the form of a K-bin spectrogram.

Convex and Coherent demodulation, on the other hand, each make explicit assumptions on (9.3) which emphasize
low-frequency modulations without harmonic pitch interference. We refer to both as bandwidth-constrained demod-
ulation algorithms, since they enforce smoothness along the i-axis in the feature array M [k, i]. One type of constraint
is the definition of ck[n], whose inclusion in (9.3) may appear superfluous except for the fact that the characteristics
of ck[n] exactly complement those of mk[n]. In bandwidth-constrained demodulation, carrier constraints absorb
non-syllabic fine structure, such as pitch oscillations, so as to leave linguistic cues undisturbed in the modulators.
To see why this is important, we refer the reader to the more detailed descriptions in the next section.
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Figure 9.2: Example modulator waveforms from male speech “The thing about bird populations”). From top to
bottom: convex, coherent, and Hilbert envelopes. From left to right: 0-500 Hz subband and 1000-1500 Hz subband.

9.3 Demodulation Methods

To reduce computational load during training and classification, we require feature vectors that are low-dimensional
and decimated in time. This becomes somewhat of a problem with respect to subband demodulation, because
bandwidth is inversely proportional to K and broader bands can contain multiple interfering harmonics. In the
following we describe how each method of bandwidth-constrained demodulation mitigates such interference while
maintaining a low-dimensional (small K) representation. See also Figures 9.2 and 9.3 for visual comparisons between
Convex, Coherent and Hilbert modulators estimated from the same speech signal.

9.3.1 Convex Demodulation

Here we pose the demodulation task as an optimization problem [57]. Defining hk[n, τ ] = hk[τ ] to be a time-invariant
filter, the optimal modulator for a given subband signal sk[n] is one which minimizes high modulation frequencies
subject to signal-dependent amplitude constraints.

The linear method was originally introduced in [57] as an optimization problem that solves directly for the
modulator:

minimize mT
k (DT

W
T
WD + I)mk (9.5)

subject to |sk[n]| − mk[n] ≤ 0, ∀n

where D is a discrete Fourier transform matrix, W is a highpass diagonal matrix, and I is the identity matrix.
There is also a carrier constraint ck[n] ≤ 1 that is implied by the inequality constraint |sk[n]| − mk[n] ≤ 0.

In this paper we present a new frequency-domain version computationally equivalent to, but faster to solve than,
the linear method in (9.5). Specifically, we find the real-valued modulator coefficients θl which solve the following
convex problem:

minimize θ
T
(

WB
T
BW + B

T
B

)

θ (9.6)

subject to mk[n] =
∑

l θlbl[n]

|sk[n]| − mk[n] ≤ 0, n ∈ P

where B is a general basis matrix of cosine and sine functions bl[n] and P is the set of indices for which |sk[n]| has a
local maximum. The implicit carrier constraint here is ck[n] = 1 for n ∈ P , since (9.6) smoothly interpolates the kth
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modulator between the local maxima of |sk[n]|. However, by only constraining at maxima of |s[k]| (unlike in (9.5)
where the constraint was for all n, the optimization speed can be greatly improved without sacrificing the resulting
modulator mk[n].

The runtime can be even further improved by recognizing that the extracted coefficients θl for high frequency
components will always be near 0, as a result of the highpass nature of W . So, by excluding these coefficients from
the optimization and focusing only on lower frequency components (in this case, below ≈ 40 Hz), the number of
optimization variables can be greatly reduced, yielding significant improvements in computation.

The resulting feature-vector time series is then

MCV X [k, i] = mk[Ri]. (9.7)

9.3.2 Pitch-Invariant Coherent Demodulation

Unlike its convex counterpart, coherent demodulation defines adaptive subband signals centered on finite-bandwidth
time-varying sinusoids [56]. We assume harmonic carriers:

ck[n] = exp(jkφ0[n]), 0 ≤ k < K ′ (9.8)

mk[n] =
∑

τ

(x[τ ] · c∗k[τ ]) h[n − τ ]

where superscript * denotes complex conjugation, φ0[n] is radian phase corresponding to the fundamental frequency
F0[n], and h[n] is a time-invariant lowpass filter that limits the modulator bandwidth. Assuming F0[n] varies slowly,
the second line of (9.8) approximates a basebanded version of (9.4). See [63] for details.

To eliminate pitch-dependent variation in mk[n], we introduce a new, pitch-invariant extension to [56]. Specifically,
we treat mk[n] as K ′ samples of an underlying transfer function at time n, and resample the k-axis to a constant
reference “pitch” of Fref = fs/2K. For this application we choose a large K ′ so that the carriers cover the spectrum,
and then resample by a factor of F0[n]/Fref .

Resampling is a type of interpolation, and so requires a model. For this application we assume a linear model
consisting of a small number of low-frequency sinusoidal basis functions. Treating mk[n] as a K ′-length sequence mk

for some fixed n, we define the linear expansion

mk =

K′−1
∑

τ=0

µ[τ ]vk[τ ], 0 ≤ τ < K ′, (9.9)

where vk[τ ] contains the elements of the type-II discrete cosine transform (DCT),

vk[τ ] = cos

[

π

K ′

(

k −
1

2

)

τ

]

. (9.10)

The rationale for this choice is based on the well-known compaction property of the DCT, as well as its implicit
symmetric extension of the sequence mk. Next, resampling in the k domain to obtain the pitch-normalized vector
m̂k is equivalent to

m̂k =
K−1
∑

τ=0

w[τ ]µ[τ ]vk [K ′τ/K] (9.11)

where w[τ ] is a truncating window with cutoff equal to B = K ′F0[n]/Fref . An interesting feature of this operation
is its similarity to dimensional reduction, where m̂k is the downsampled version of mk using the first B out of K ′

“singular values” µ[τ ].
Denoting the above resampling operation as m̂k = T {mk, F0, Fref}, the feature-vector time series is

MCOH [k, i] = T {|mk[Ri]|, F0[Ri], fs/2K}. (9.12)

Although mk[n] is complex-valued, we use only the magnitudes because of the absence of consistent structure in the
modulator phase.
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Figure 9.3: Modulation representations shown for the word ”about”, where the colormap corresponds to modulator
magnitudes over time in subbands centered on the frequency bins indicated by the vertical axis. From left to right:
Convex, Coherent, Hilbert.

9.3.3 Hilbert Envelope Demodulation

To complete our comparison in the upcoming speech recognition experiments, we also include the conventional Hilbert
envelope method. Hilbert modulators and carriers are typically defined with respect to fixed subband signals such
that

ck[n] = exp{j arg(sk[n])}, 0 ≤ k < K (9.13)

mk[n] = |sk[n]|

where sk[n] is an analytic subband from a complex, time-invariant filter hk[τ ]. The corresponding feature vectors
are then

MHIL[k, i] = mk[Ri]. (9.14)

Unlike convex demodulation the modulators are not smoothed, and unlike coherent demodulation the subbands
are not signal adaptive. For broadband sk[n] this means that the resulting mk[n] will contain harmonic cross-terms
in the form of high-frequency modulations, which alias after downsampling by R in a signal-dependent way.

9.4 Multiphone Discrimination with Modulation Templates

To take advantage of the temporal bandwidth constraints on our demodulation features, we defined a classification
lexicon of multi-phonetic sequences using the maximum mutual information (MMI) technique in [23]. We avoided
segmentation issues by restricting our lexicon W to the 607 MMI multiphones which are also full words. For each
multiphone wi we trained a discriminative template ~Λi to evaluate the likelihood ratio ℓi(M) = p(wi|M)/p(wc

i |M ),

where wc
i denotes the set of all multiphones except wi. Let ~M = M [iK +k] be the vector version of a feature matrix

M . Using maximum-entropy models [64] we represented likelihoods of the form

ℓi(M ) = exp
(

~Λ
T

i

[

~M
2
; ~M ; 1

])

(9.15)

where ~Λi is a vector template of length 2KI +1, ~M
2

is element-wise squared, and [; ] denotes vertical concatenation.
Figure 9.4 plots multiphone classification error rates obtained from the Broadcast News corpus with this method,

comparing the two novel approaches to the Hilbert features. Lines of regression demonstrate that, on average, convex
features perform better than Hilbert features (with a slope of 0.88). The error-rate spread for coherent templates,
on the other hand, generally shows poorer classification performance compared to Hilbert templates.

Figure 9.5 shows similar plots as Figure 9.4 but compares the error rates to those of the Attila features instead of
Hilbert features. In these plots, it is clear that the Attila features comfortably outperform the modulation features,
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Figure 9.4: Multiphone classification error rates comparing convex and coherent features to Hilbert features, overlaid
with lines of regression (solid) and lines of equal error (dashed). Note that chance is 50% since each multiphone
classifier makes a yes/no decision.

but this is not surprising - they have seen multiple layers of optimization while the modulation features are still quite
raw.

Because these classifiers will be integrated together in the SCARF framework, the evaluation of these systems
should not necessarily be based purely on comparative performance. Instead, the correlation of the classifiers, and
therefore the amount of complementary information, is a better analytic tool. And, somewhat counter-intuitively,
we actually desire low correlation, so that multiple classifiers will include minimally overlapping information.

In both cases in Figure 9.4, the error rates form a cloud that projects roughly near the diagonal, indicating a
high level of correlation. While this is not ideal, it is also important to observe that there is significant spread
orthogonal to the diagonal, and that the nature of the spread is unique to each plot. This variation indicates
complementary information, and suggests that the classifiers will not be entirely redundant and could in fact provide
additive improvement when integrated in the SCARF framework.

Looking at the scatter shapes in Figure 9.5 also gives a more optimistic picture than simply comparing the error
rates. While the initial view was that the Attila features significantly outperform the modulation features, there is
once again a great deal of spread in the scatter plot. So, there is hope here as well that the modulation features will
offer complementary information.

It is also worth noting that this type of analysis performed on error rates does not give the full picture of the
correlation between the classifiers. The correlations discussed above compare how the classifiers perform for each
multiphone on average. This analysis does not at all consider the correlations of performance within each multiphone.
For example, two classifiers could each yield 50% error on a certain multiphone without agreeing a single time. In
this case, their error rates would appear to be highly correlated while the performances themselves are maximally
complementary. Of course, the same 50% error could be achieved with full agreement between the two classifiers, in
which case the high correlation of the error rates is representative of the overlap of the estimates.

The scatter plots shown in Figures 9.4 and 9.5, and the corresponding analyses, do not account for this potential
variation. So, in this way, this experiment can be seen as finding a lower bound for the amount of complementary
information between classifiers, but offer no insight into what additional orthogonalities exist within the comparative
multiphone results themselves.

As a result, although informative, these comparisons do not necessarily relate to how the features will perform
on a multi-word segment level as modeled by an SCRF, which is what we explore in the next section.
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Figure 9.5: Multiphone classification error rates comparing convex and coherent features to Hilbert features, overlaid
with lines of equal error (dashed). Note that chance is 50% since each multiphone classifier makes a yes/no decision.
Lines of regression are not shown due to the highly uncorrelated nature of the data spreads.

9.5 Modulation Lattice Annotation for SCRF-Based ASR

Treating ℓi(M) as the score for the word hypothesis wi, we annotated the baseline lattice generated by the IBM
Attila decoder [22] and fed the results into SCARF. This process consisted of several steps. First, we partitioned

the BN training corpus into two folds. In each fold we trained discriminative templates ~Λi,1 and ~Λi,2 using in-class
and out-of-class multiphone examples from just that fold. Then we obtained fold-1 scores ℓi,1(Mp,2) which is the
likelihood ratio (9.15) for a fold-1 template applied to the pth multiphone instance in fold 2. Together, ℓi,1(Mp,2)
and ℓi,2(Mp,1) represent modulation-feature scores for the entire BN training lattice. We used these annotations
to train SCARF models, and then decoded the development set dev04f using templates trained on folds 1 and 2
combined.

Conceptually, the annotation scheme begins with the baseline lattice containing entries of the form

<start frame> <end frame> <word label>

which hypothesizes a word label wi for the audio spanning the given time interval in frames (centisecond increments).
For each hypothesis, the annotation system fetches the original audio, demodulates it to obtain Mp,x, and computes
ℓi,y(Mp,x) depending on whether the audio is from fold 1 or 2. Mp,x can be computed via Convex, Coherent,
or Hilbert demodulation and ℓi,y(Mp,x) represents the confidence of the label wi from the perspective of the ith
multiphone classifier template. We used other tags in the annotations as well, summarized in the following examples:

37 92 FOLLOWS SB=0, SIL=0, UCU=1, CVX BT=0, CVX SSCORE=0, BIAS=1

38 61 WALL SB=0, SIL=0, UCU=0, CVX BT=0, CVX SSCORE=-1.68937, BIAS=1

for convex modulation features and

37 92 FOLLOWS SB=0, SIL=0, UCU=1, COH16 BT=0, COH16 SSCORE=0, BIAS=1

38 61 WALL SB=0, SIL=0, UCU=0, COH16 BT=0, COH16 SSCORE=-0.081, BIAS=1

for coherent modulation features. The tags are defined as

SB Sentence-boundary (1 or 0), 0 meaning the word label is not <s> or </s>
UCU Uncommon unit (1 or 0), 0 meaning the hypothesized label is a full-word multiphone
SIL Silence (1 or 0), 0 meaning the word label is not ~SIL

COH16 BT Below threshold (1 or 0), 0 meaning the modulation score is significant
COH16 SSCORE The numeric likelihood score, using 16-dimensional coherent modulation in this example

BIAS Always equal to 1, similar to the maximum-entropy vector concatenation in (9.15).
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For both convex and Hilbert envelope demodulation, we chose a uniform subband width of 500 Hz, which [65]
determined to be the maximum bandwidth without sacrificing speech information in the modulators. Likewise, we
resampled 30 harmonics in the coherent method to a reference pitch of 500 Hz, so that all demodulation methods
resulted in 16-dimensional feature vectors. The modulation frequency cutoffs were 30 Hz for convex demodulation
and 50 Hz for coherent. The time-decimation factor R was 160 which resulted in a modulation sampling rate of 100
Hz. Hence the pth multiphone instance in the corpus of duration of T seconds is represented as the 16×100T matrix
Mp.

We trained SCARF models using four annotation methods: 1) non-annotated, 2) convex-modulation scores,
3) coherent-modulation scores and 4) Hilbert envelope scores. In each case, we incorporated the one-best HMM
sequence from Attila as a baseline feature and used a trigram language model. The resulting word-error rates
(WER) changed by about -0.2% for both convex and coherent annotations relative to the non-annotated WER of
16.0%. Hilbert annotations, on the other hand, resulted in a smaller change of -0.1%. These results are on the
threshold for statistical significance, where each 0.1% corresponds to 22 words in the dev04f set. However, the
consistent 0.1% greater improvement for Coherent and Convex over Hilbert indicates some potential for further
developing bandwidth-constrained modulation features for ASR.

9.6 Conclusion

In a large scale speech recognition task, these early results demonstrate the viability of recently-developed modulation-
based features for multiphone recognition. The modulation features complemented a state-of-the-art baseline system
within an SCARF framework in order to reduce word-error rate by an absolute 0.2%. Furthermore, the results
indicate that bandwidth-constrained demodulation can perform better than the conventional Hilbert envelope which
underlies most modern ASR features. Our bandwidth-constrained modulators offer a starting point for further
development in dimensional reduction, discriminative transforms and speaker adaptation. These results thus open
the possibility for new representations of low frequency envelope information in speech recognition systems.
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Chapter 10

Duration Models

10.1 Background

Current state-of-the-art speech recognition systems e.g. [22, 66] are predominantly based on Hidden Markov Models
(HMMs), and various extensions to HMMs have made them highly successful on a variety of tasks. With HMMs
in such a state of refinement, duration may be one of the few aspects that are still problematic to model. The
central difficulty is that HMMs in their basic form assume a fixed transition probability at each frame, resulting in
an exponentially decaying distribution over individual state durations.

To address this, extensions such as hidden semi-Markov models (HSMMs) and expanded state HMMs (ESHMMs)
have been proposed [67]. HSMMs model state duration explicitly using a state duration probability density function
for each state of the HMM. In ESHMMs, each state is replaced by another HMM, resulting in an HMM in which
the duration pdf of a given state is the overall duration pdf of the associated sub-HMM. These extensions have been
shown to improve recognition performance, but mostly on isolated word recognition tests [68] or languages other
than English where duration is a more prominent factor [69, 70].

Here we propose a new approach to duration modeling using Segmental Conditional Random Fields (SCRFs), as
implemented by the SCARF toolkit for speech recognition [1, 2]. We show that duration distributions have enough
discriminative power to help distinguish between correct and incorrect word hypotheses. The remainder of this
chapter is organized as follows. In 10.2, we present an analysis of duration distributions on three levels: correct and
incorrect hypotheses, effects of prepausal lengthening, and sets of words confused with longer or shorter words. We
then show the design and validation of duration features on these three levels. 10.3 presents integration results in
the context of a complete system, and 10.4 closes with a discussion of results and implications.

10.2 Discriminative Duration Modeling

10.2.1 Duration distributions

To better understand the information available in durations, first we modeled the word duration distributions of both
correct and incorrect hypotheses in the lattice. Ideally we would be able to model duration distributions for each
word identity; however, most words appear too infrequently in Broadcast News to generate meaningful distributions.
Thus we focused on the top 100 most frequent words that occur in the transcriptions. These 100 word identities
are significant because they account for 47.5% of all word occurrences in the Broadcast News training set transcript.
More importantly, they account for 48.6% of the errors in the test set. Thus, if we are able to successfully design
duration features that target high-frequency words, we should be able to correct a significant portion of errors.

Normalizing for speech rate has been shown to help improve duration modeling performance [71], and so the
duration of each word hypothesis in the lattice was multiplied by the phone-per-frame rate of the utterance in which
it occurred. For each of the top 100 most frequent words, we calculated the (normalized) duration distributions of
correct and incorrect hypotheses, and smoothed them using a 5-span moving average function. Figure 1 shows the
mean and variance of the duration distributions of the top 100 most frequent words. Each data point represents
a duration distribution, with the x value as the mean and the y value as the variance. Incorrect distributions (in
red) tend to have higher variance and shorter durations. Figure 2 shows the plots for the duration distributions of a
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Figure 10.1: Mean duration and variance of top 100 most frequent

Figure 10.2: Word duration distributions for correct/incorrect instances of TWO

specific example, the word TWO. Blue represents the duration histogram of words correctly hypothesized as TWO,
and red marks the histogram of words incorrectly hypothesized as TWO that are actually other words. For better
visual comparison, the distributions are normalized so that the total numbers of occurrences for the two distributions
agree. Together, these figures indicate that correct and incorrect word hypotheses do indeed differ with respect to
their duration distributions.

10.2.2 Prepausal lengthening

It has been shown that words preceding pauses tend to have longer durations, a phenomenon known as the prepausal
lengthening effect [72]. Speech recognition systems that model pause contexts have found that it helps improve
performance [71]. In order to validate and utilize the prepausal lengthening effect, we first compared the duration
distributions of words preceding pauses, following pauses, and those not adjacent to pauses. Figure 3 compares
the mode durations of the top 100 most frequent words in these three different pause contexts. Each data point
represents a word, and the y values show the mode durations of correct instances of words that are not adjacent to
pauses. The x values of the red points show mode durations of correct instances of the word when preceding pauses,
and the x values of blue points show mode durations of correct instances of the word when following pauses. A words
distance from the dotted line shows the effect of pause context on its mode duration. In general, the blue dots are
close to the line, indicating that durations of examples that follow pauses do not differ significantly from those not
adjacent to pauses. The red dots are further away from the line, showing that words preceding pauses tend to be

63



Figure 10.3: Durations in different pause contexts

Figure 10.4: Prepausal lengthening example

longer. Figure 4 illustrates the prepausal lengthening effect on the word TWO. As expected, examples of TWO that
precede pauses (in red) tend to be longer than those in the other two contexts. Thus, to model the pause contexts,
we should consider the durations of words preceding pauses differently.

10.2.3 Word span confusions

In addition to observing different duration distributions for correct and incorrect words and words in different pause
contexts, we have observed an interesting phenomenon involving overlapping time spans. Specifically, there are cases
in the constraint lattices in which a longer correct word hypothesis competes with several shorter, high frequency
hypotheses that are segmentations of the longer word. We term these competing hypotheses word span confusions.
Figure 5 illustrates one example of word span confusions. In this case, the correct hypothesis is ATTENDEES, and
the other hypotheses are all incorrect. Such incorrect segmentations of a longer word should be more likely to have
unusual durations. Figure 6 compares the mode durations of instances of top 100 most frequent words in the presence
or absence of word span confusion. The x value indicates the mode duration of instances that are not confused, and
the y value indicates the mode duration of examples confused with longer words. Instances confused with longer
words tend to be shorter, as shown in clusters below the dotted line. This suggests that a word is less likely to be
correct if there is a longer competing hypothesis whose time span completely overlaps with it. In designing duration
features, we therefore consider the durations of these word span confusions separately.
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Figure 10.5: Prepausal lengthening example

10.2.4 Designing duration features

Based on our analysis of duration distributions, we designed three kinds of duration features: word, phone, and word
span confusions.

For word duration, we introduce two features: dur1 and dur2. dur1 is defined as P (length(w)|correct) and dur2
as P (length(w)|incorrect), that is these duration features represent the probability of the observed length given that
we have a correct/incorrect instance of the word. The dur1 and dur2 values were calculated for all word hypotheses
in the constraint lattices among the top 100 most frequent words, and set to 0 for all others.

To model pausal contexts, we introduced four more features: prepause1, prepause2, postpause1, postpause2 in
addition to dur1, dur2. If a word hypothesis precedes a pause, then its prepause1, prepause2 values are set to the
original values of dur1, dur2, respectively, indicating that it precedes a pause, while dur1, dur2, postpause1, and
postpause2 are in turn all set to 0. If a word hypothesis follows a pause, then its postpause1 and postpause2 values
are set to the original values of dur1, dur2, while dur1, dur2, prepause1, and prepause2 are set to 0. Otherwise,
dur1, dur2 remain the same, and the pre- and post- pausal features are set to 0. The three sets of scores indicate
the three different pause contexts we wish to model. Assigning the probabilities based on these three cases allows
SCARF to learn a more fine-grained representation of the duration distributions in different contexts.

Finally, for on the word span confusions, we also introduced four more features - long1, long2, short1, short2 -
alongside dur1, dur2. The algorithm for assigning scores for pause contexts applies here as well. For example, if a
word hypothesis is present with a shorter hypothesis within its time span, then its long1, long2 values are set to the
original values of dur1, dur2, while dur1, dur2, short1, and short2 are all set to 0.

10.3 Integrated Experiments

We annotated constraint lattices for the training and test sets with the duration features we designed, and trained
and tested SCARF with the annotation inputs on Broadcast News. Results on dev04 are shown in Figure 6.

Duration feature(s) WER Absolute improvement
Baseline Attila 16.3% -
Attila + SCARF with MSR Word Detectors (System Combination) 15.3% 0.7%
Word duration 15.2% 0.1%
Word duration + Pause context scores 15.1% 0.2%
Word duration + Word span confusions 15.0% 0.3%

Using only the word duration features dur1 and dur2, the word error rate on the test set went from 15.3% to
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15.2%. Adding pause context features together with dur1 and dur2 brought the WER down to 15.1%. Word span
confusion features yielded our biggest gain. Adding word span confusion scores gave us a 0.3% decrease in WER
from the SCARF baseline, resulting in a 15.0% WER.

10.4 Discussion

The goal for adding discriminative duration features is to correct errors in SCARFs constraint lattices, and our three
approaches - word, pause contexts, and word span confusions - each helped accomplish this task. It is interesting
to note that word span confusion features contributed the most, suggesting that peculiarities in the lattices such
as incorrect segmentations are important to consider. SCARFs flexibility with features allowed us to focus on a
subset of the word hypothesesthe top 100 most frequent wordsand conveniently experiment with different feature
variations. Most importantly, SCARFs discriminative framework allowed us to make use of the discriminative power
of durations, and model durations in a direct and practical manner.
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Chapter 11

Cohort-Based Word Detectors

This chapter outlines the experiments we conducted with cohort-based word detectors as external features in SCARF.
The idea of using such detectors originated in [73, 74], and the workshop provided the framework for integrating
them with other (possibly lower-level) features. The crux of the method lies in (i) the use of large amounts of
audio to determine those sets of words (cohort sets) which are frequently confused with each other; and (ii) the
use of large amounts of text (not necessarily associated with any audio) to learn contextual cues that are most
salient for resolving the confusions in each cohort set. In other words, we treat speech recognition as a word-sense-
disambiguation problem, where the words which belong to the same cohort set are viewed as being the different
“senses” of the same acoustically confusable entity.

Fundamental concepts of the cohort-based approach first appeared in [75]. The reader is encouraged to study
that paper and see the connection with the work described here. For completeness, we describe some of the basic
concepts in the next section. In Section 11.2 we present our methodology for creating cohort sets, and some relevant
statistics. In Section 11.3 we describe the procedure of generating cohort-based detectors and using them to perform
lattice annotation. Finally, Section 11.4 shows results with using these annotated lattices in SCARF.

11.1 Cohort Sets

Central to our methodology is the concept of a cohort set of words. We define a cohort set associated with a word
w as all the words that are often in competition with w in the ASR output (lattice), and we denote it by C(w).
Properties of these cohort sets include: (i) Symmetry: if w ∈ C(v), then v ∈ C(w). (ii) Non-transitivity in the
inclusion relationship; if v ∈ C(w) and w ∈ C(z), it is not true in general that v ∈ C(z). Example cohorts from ASR
are shown in Table 11.1. (Note that, by convention, C(w) also contains w.)

Except in a few cases involving function words, cohort sets are typically very small; this fact is of great importance
for the subsequent training of discriminative models [75]; instead of building classifiers that discriminate a word from
all other words of the vocabulary (which is a tedious task in cases of large training corpora), the classifiers need to
discriminate a word from just a few other words. (as the statistics of Table 11.2 demonstrate).

w
accept except (152) accepted (22) accepts (18) accepting (5) exit (4) expect (3) set (2) exception (2) ...
party’s parties (139) party (31) parties’ (30) part (4) authorities (4) partisan (2) ...
tails tales (22) details (6) talese (6) tells (5) entails (3) sales (2) tail (2) hills (2) tailed (2) tale (2) motels ...
yield field (9) deal (6) feel (4) yields (3) heeled (3) sealed (3) deals (3) healed (3) appealed (3) know (2) ...

Table 11.1: Example cohort sets, computed from the confusion networks created by Attila on fold1/fold2. The
number of times a cohort word in C(w) is seen together with w in a confusion network bin is shown in parentheses.
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Figure 11.1: Part of a confusion network from the Hub4/TDT4 training data.

fold1 fold2 dev04f RT04
Num. of cohort sets 37K 35K 2K 5K
Avg. cohort set size 12.48 13.18 4.08 4.76

Table 11.2: Statistics from cohort sets.

11.2 Cohort Set Generation and Statistics

The cohort sets were extracted from confusion networks [25] generated from the Attila lattices. Part of a confusion
network is shown in Figure 11.1. Words on arcs with the same start and end states form a confusion network bin. Bins
containing function words, as well as words in bins whose posterior probability was lower than 1% of the maximum
posterior probability in the bin, were excluded from consideration. All other words (which tended to be longer,
content words) were used to form cohort sets. (We excluded function words simply because they tend to appear
in spurious confusions with lots of other words, and they tend to only match the acoustics of part of these words.
Previous research [75] has shown that their inclusion does not improve performance in a discriminative setting.)

Table 11.2 summarizes some statistics computed from cohort sets. Because of the symmetry property of cohort
sets, the average size of cohort sets also matches the average number of cohort sets that a word belongs to.

11.3 Creating and Using Cohort-Based Detectors for Lattice Annota-

tion

Once the cohort sets are created, the next step is to generate binary word detectors; these are (possibly soft-decision)
classifiers which determine whether a word w is present or not, given the context. The classifiers are trained on
“clean” text (from the Broadcast News domain), i.e., the same text used to train language models used in decoding.

For each cohort word w, we extract all n-grams from the confusion networks which have this word as a “predicted”
word. Let us call this set N (w). We then scan the language modeling text to find occurrences of these n-grams
(these are the positive examples), as well as n-grams which result from replacing the predicted word w in N (w)
with any other competitor w′ ∈ C(w). The second set of extracted n-grams forms the negative examples. The
positive and negative examples are then fed into a maximum-entropy classifier (courtesy of P. Nguyen), which uses
L2 regularization. Since the amount of negative examples is, in almost all cases, overwhelmingly larger than the
amount of positive examples (just by virtue of the fact that the negative examples result from a larger set of words),
the counts of the positive examples are scaled to match the total sum of counts of the negative examples. (Of course,
there are cases where the training data do not contain positive examples, usually corresponding to rare words; the
classifier probability for such words is set to 0.5 by default.)

Table 11.3 shows the average number of n-gram features per cohort set, collected for each of the datasets used.

fold1 fold2 dev04f RT04
Avg. num. features 129K 159K 20K 24K

Table 11.3: Average number of n-gram features per cohort set, extracted from the language modeling text.
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1185 1227 MAYORS f1=1,f2=0
1185 1228 MAYORS f1=1,f2=0
1228 1247 AND f1=1,f2=0
1229 1246 AND f1=1,f2=0
1247 1275 TOWN f1=1,f2=0
1248 1276 TOWN f1=1,f2=0
1276 1323 COUNCIL f1=1,f2=0
1277 1322 COUNCIL f1=1,f2=0
1323 1373 MEMBERS f1=1,f2=0
1323 1376 MEMBERS f1=1,f2=0
1323 1376 MEMBERS’ f1=0,f2=-1
1324 1376 MEMBERS f1=1,f2=0

240 261 HELD f1=1,f2=0
262 289 KEY f1=1,f2=0
263 290 KEY f1=1,f2=0
290 327 LOCAL f1=1,f2=0
291 327 LOCAL f1=1,f2=0
328 340 AND f1=1,f2=0
341 388 PROVINCIAL f1=1,f2=0
341 389 PROVINCIAL f1=1,f2=0
389 439 ELECTION f1=0,f2=-1
389 443 ELECTIONS f1=1,f2=0
390 443 ELECTIONS f1=1,f2=0
440 491 SUNDAY f1=1,f2=0

Figure 11.2: Two examples of annotated lattices from the training data. The features in bold correspond to the
detection (+1) or non-detection (-1) of the corresponding word in the confusion network bin.

Dev04f
1-gram LM 2-gram LM 3-gram LM

w/o word detectors 21.3% 19.2% 17.8%
w/ word detectors 19.0% 18.4% 17.7%

RT04
w/o word detectors 22.9% 20.5% 18.7%
w/ word detectors 20.4% 19.5% 18.6%

Table 11.4: WER results using SCARF.

At test time, each arc in a confusion network bin gets scored according to the corresponding binary classifier. For
instance, for word w, its arc is annotated with the probability assigned by the detector of w (which was trained on
the n-grams extracted based on C(w)), averaged over all possible (n − 1)-gram histories in the confusion network.
(We tried uniform averaging as well as history posterior based averaging.)

Finally, the scores from the detectors get inserted as external features in the SCARF lattices. Each arc in the
SCARF lattices gets a fixed number of features, each feature corresponding to a word in the corresponding confusion
network bin. The feature index represents the rank of the word in the bin. That is, the score computed by the
detector of the most likely word in the bin becomes feature 1, the score of the second most likely word becomes
feature 2, etc. All other features get a default value of 0. We also quantized the classifier scores to 1/-1 based on
whether they were above or below 0.5. (A feature value of 1 was also used in cases where a word in the SCARF
lattice, such as a function word, did not have a matching word detector, or if it was the only word in the bin.) Figure
11.2 shows two examples of annotated lattices.

11.4 Results

Recognition experiments with SCARF were done under the following conditions: (i) including/excluding the baseline
feature, (ii) using log-linear models trained on the cohort sets extracted from the fold2 training audio (inductive
learning, which is different from the transductive learning framework of [75]). Obviously, the inductive case only
considers the intersection of training/test cohorts. Unfortunately, no gains were obtained in the case where the
baseline feature was included in the training and decoding. So, we only present results with the baseline feature
excluded.

Table 11.4 summarizes the WERs obtained on Dev04f and RT04 under various conditions. As is clear from these
results, cohort-based detectors offer significant gains of at least 0.8% in the case of unigram or bigram language
models, and a mere 0.1% gain in the trigram case.

69



Chapter 12

Integrated Results

12.1 Broadcast News

Table 12.1 shows results on Broadcast News, with each experiment in its best configuration, based on dev04f results.
The regularization constants were set to the most conservative possible on dev04f, while still achieving the best
result. When multiple sources were combined, a weight was given to each, and the weights were optimized, manually
by trial and error, in order to yield the best results on dev04f. For instance, when all features were combined, all
features of a given phone stream were multiplied by a given weight specific to the stream, and each lattice annotation
was multiplied by its own weight. This has the effect of using a prior weight to each stream or annotation, so as
to optimize its relative importance when calculating the prior penalty. All other hyper parameters were chosen ad
hoc to minimize error rate on dev04f. For instance, the system s3 was the best configuration for word-level mixture
models with 2 mixture components.

Further results with mixture models did not show an improvement, or a similar, statistically insignificant improve-
ment when combined with more features. Therefore, they were not used in further experiments. Similarly, Empirical
Bayes Risk training did not show an improvement, nor a degradation, over conditional maximum likelihood training.
Moreover, training on lattices which were not “bias-reversed” (see Section 4.1.4), in effect replicates training on the
mininum error rate paths, yielded slightly worse results. For these experiments, we used a simple binary risk, 1
indicating that the time-mediated segment was present in the numerator, 0 otherwise, rather than phone-duration
overlap, or word-duration overlap measures in use for MPE or MWE.

Lattice annotations (systems s5-s7) yielded a 0.3% absolute improvement on both test sets. For PPM, best results
were obtained by lexicalizing the PPM score – training 72 features (one for each PPM-annotated word), rather than
just one. The best configuration for duration models used lexicalized duration features in addition to word-span
specific features. We saw no further improvement by combining both approaches, even when tuning for relative
weights during regularization.

Systems s9-s11 sample results for phone detectors. We found that the best configuration used bi-phone existence
features, single phone expectation features, and Levenshtein features. Moreover, when combining multiple streams,
we found it sufficient to add only Levenshtein features to the base stream. We find a small improvement by combining
all 8 streams (s11) over the single best streams (s9-s10).

The final system combined all features from all detectors, including the MSR word detector, lattice annotations,
and all phone detectors. Overall, we observed an 8% relative WER reduction on dev04f, and 9.6% relative WER
reduction on RT04F.

12.2 Wall Street Journal

12.2.1 Improved DTW System

Table 12.2 summarizes the main results. Hereunder, we provide additional information and insight and give our
main conclusions.

Score averaging & adjustment: The boost in performance thanks to the weighted average template scores was
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System Description Reference dev04f RT04F
s0 Attila (HMM system) Section 4.1.2 16.3% 15.7%
s1 SCARF1 Section 4.1.4 16.0 15.4
s2 SCARF1+MSR Section 4.1.5 15.3 14.5
s3 s2 + word mixture (2) Section 3.3 15.2 14.5
s4 s2 + Empirical Bayes Risk Section 3.2 15.3 14.5

Lattice annotations:
s5 s2 + PPM models Section 8 15.0 14.3
s6 s2 + duration Section 10 15.0 14.3
s7 s2 + PPM + duration - 15.0 14.3

Phone detectors:
s9 s2 + Deep Neural Networks Section 6 15.1 -
s10 s2 + MLP (FDLP-S) Section 7 15.1 -
s11 s2 + 8 phone detectors - 15.0 14.2

All integrated:
s12 All annotations and detectors - 15.0 14.2

Table 12.1: Integrated Broadcast News Results.

significant mainly because we managed to keep exploiting the natural successor concept. Natural successor
costs are no longer applied on individual inter template transitions but are now incorporated in the single
ensemble DTW score as an average natural successor cost for the selected k-NN neighbours.

Local sensitivity & distance metric: For understanding the impact of the local distance modeling, it is impor-
tant to realize that our raw features have undergone a MIDA transformation. MIDA is not only discriminative,
but also decorrelates the features and does a proper scaling of the axes. The outcome is a feature space where
an Euclidean distance metric performs remarkably well. Hence the modeling of the local manifold, which is not
discriminative in its approach, provides only incremental improvements over a single global MIDA transform.
When using for example Mel-Cepstra as features, much larger improvements can be observed.

Instead of an L2 based distance measures, one may also opt for radical different metrics. One promising
alternative is the sparse decompositions proposed by [76].

Boundary extension: Context-dependent templates enforce continuity at the symbolic (phone) level. Natural
successors promote acoustic continuity, although in a limited and strict sense only. The consistent positive
results obtained with both methods indicate that it is important to foster symbolic and acoustic template
continuity. The “boundary extension” does exactly that. While it tackles problems due to poor segmentations
in the database, its main contribution is that, by using overlapping segments, the k-NN lists of adjacent phones
contain more natural successors (from 5.6% for lx =0 to 12.7% for lx =9) and hence favor a greater naturalness
between adjacent template ensembles.

Multi-phone templates: Word templates are well suited for the frequent (function) words. Less frequent words
may benefit from smaller more generic units, e.g. syllables. The current framework already allows for multiple
levels of symbolic representation, so word and syllable units can even be combined.

Computational load: The use of ensemble scores (k-NN weighted average template scores) reduces the decoder
complexity significantly: the single best template decoder had a search space that was an order of magnitude
larger. By means of a careful implementation, the overhead of the template based score computation was
reduced to a 0.1xRT load on a 12-core machine. Hence the current implementation lends itself much better
than its predecessors for being used with larger databases. The template induced overhead can be kept constant
by creating more context dependent variants and by preselecting templates on the basis of their length (within
a small range of the test segment length) when handling large databases.
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System Dev92 Nov92
initial template system 9.6%

+ score averaging & adjustment 10.6% 8.9%
+ local sensitivity & boundary extension 10.3% 8.5%
+ word templates 10.0% 8.2%

Table 12.2: Baseline system and impact of the successive improvements. WER on the WSJ Dev92 and Nov92 20k
trigram task.

Extra features Dev92 Nov92
/ 10.0% 8.2%
Word Position 9.7% 8.0%
Word Identity 9.8% 7.9%
Speaker Entropy 9.8% 8.0%
Warping Factor 9.6% 7.9%
Natural Successors 9.7% 8.0%
All 9.3% 7.6%
+ baseline HMM 8.6% 6.8%
+ phone detectors / 6.6%

Table 12.3: WER on the development and on the evaluation test set when adding extra features to the baseline
template system with SCARF.

12.2.2 Template Based System with Meta Information

Table 12.3 shows the impact of adding meta-information based features to the baseline template system with SCARF.
Each (set of) features decreases the WER between 2% and 4% relative. Combining all features, brings the performance
of the template based system close to that of the HMM system. The resulting 7% relative WER decrease indicates
that the information provided by the different meta-information based features is largely complementary. The key
required advance was the migration from a single-best template decoder to a phone/word decoder which uses ensemble
scores (k-NN weighted average template scores). Furthermore, by maintaining the natural successor costs –now based
on adjacent template ensembles– and by adding “boundary extensions”, template continuity was improved.

12.2.3 System Combination with HMMs

The results of the final template system are now in line with our state-of-the-art HMM system. As both systems make
complimentary errors, we should expect system combination to work fine. For this we continue with the SCARF
framework. The SCARF toolkit makes it easy to add extra features to an existing system (such as our template based
system above). One readily available feature is the HMM based word score. Combining the HMM and the template
system in this way reduced the WER on the development and test set to 8.6% and 6.8% respectively. The large
relative improvements indicate that the template and HMM system have different strengths and weaknesses. This
may be surprising since the template system is basically built on top of the HMM system, re-using for example the pre-
processing, the Gaussian pool, and the train database segmentation. On the other hand it reinforces the differences
between the example based system and the HMM where the example based system avoids making overgeneralizing
models.

The SCARF toolkit not only allows word level scores to be combined, but also promotes discrete (sub-word)
detectors such as the single best phone sequence. Detector events are automatically converted to word level scores,
either by means of a Levenshtein distance or by means of automatically detected (word,phone-sequence) relations [1,
2]. We added four phone detector streams to the setup. The first (primary) phone detector consisted of the baseline
HMM combined with a bigram phone LM estimated on the train database. Three additional phone detectors were
derived from variations on the baseline HMM system with different pre-processings, decision trees and sizes of the
Gaussian pool. The best results were obtained with automatically detected (word,phone-pair) relations on the
primary phone detector stream combined with Levenshtein features for all four phone detector streams. The SCARF
training was run over the train database in order to provide enough training material for learning the (word,phone-
pair) relations. A leaving-one-speaker-out approach was used to allow the re-use of the training data as development
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data for SCARF. When combining the phone detectors with the HMM baseline, the WER drops from 7.3% to
6.8%. Note that it took three complementary HMM systems to get the same performance boost as observed when
combining with a single template based system. Adding the template system lowers the WER to 6.6%.

The final error rate produced in this work is to our knowledge the best result ever obtained on this task.

73



Chapter 13

Conclusion

In this report, we have demonstrated that segmental conditional random fields can be used as a means of leveraging
novel scientific ideas to improve state-of-the-art speech recognition systems. We started with strong baselines in two
speech recognition tasks - Wall Street Journal and Broadcast News, and achieved 8 to 10% relative improvement by
incorporating a broad spectrum of novel information sources. These included features based on template metadata,
duration models, phoneme detections, point-process word models, and signal demodulation. The incorporation of
such disparate sources is difficult with conventional HMM systems, and the comparative experiments we did with
ROVER did not improve performance. The Wall Street Journal experiments resulted in the lowest error rate yet
reported on the open vocabulary 20k test set, 6.6%. In summary, this workshop opens the possibiility for creating
better speech recognition systems through the large-scale combination of numerous information sources.
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[46] Hervé Bourlard and Nelson Morgan, Connectionist Speech Recognition: A Hybrid Approach, Kluwer Press,
1993.

[47] Tony Robinson, “An application of recurrent nets to phone probability estimation,” IEEE Transactions on
Neural Networks, vol. 5, no. 2, pp. 298–305, 1994.

[48] Y. Bengio, “Learning deep architectures for AI,” Foundations and Trends in Machine Learning, vol. to appear,
2009.

[49] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,” in
Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations, pp. 318–362.
MIT Press, Cambridge, MA, USA, 1986.
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