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Chapter 1

Summary

1.1 Motivation

This main focus of this report is the problem of semantic annotation of actions
and activities from video using unstructured textual descriptions. The prob-
lem at hand is similar in the nature to commonly studied problems of semantic
parsing of static images or general object detection and recognition. The main
di�erences are in the role of temporal aspect of visual representations, the avail-
ability of textual descriptions and the type of contextual relationships which we
plan to exploit.

Larger and larger amounts of video content are being generated everyday in
the world, and the volume of video data will only increase further with the pro-
liferation of mobile video recorders such as cell phones or �ip recorders that we
can use wherever we are. Given the staggering volume of data, e.g. according to
the o�cial statistics on the YouTube website, more than 24 hours of new videos
are being uploaded onto their web site every minute, it becomes essential to in-
dex and describe these videos, so that consumers can easily browse and search
the information they are interested in. Parallels can be seen to the development
of the world wide web, where without search engines such as Google, Bing, or
Yahoo it becomes impossible to �nd web pages that one is interested in.

In our daily life we use language not just to describe how something looks in
the world or what the static properties of an object are, but mainly to commu-
nicate what someone does and how they do it. Although images can transmit a
lot of information about an activity that we can interpret using our contextual
knowledge about the world, the full richness of an activity can only be commu-
nicated via moving images. Automatic action recognition is very important for
video-indexing and search, but also has applications for content-based browsing,
as well as robotics.

Currently, when one is browsing through videos, the usual browsing mode is
time-based which does not take the natural semantic organization of video mate-
rial into chapters, scenes, and events into account. For example when recording
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an American Football match a natural semantic organization would be the in-
dividual plays of the game, which then in turn could be organized according to
their level of interest, e.g. in general touchdowns are more interesting compared
to incomplete passes. Similarly, the interesting events in a soccer match are the
goals, so by correctly indexing such a game, the viewer could directly navigate
between the goals and other similar interesting events, creating a much more
meaningful interaction with the video for the viewer.

Automatic action recognition also has implications for robotics where one
would like to enable a robot to autonomously understand a scene and the ac-
tions therein. This would enable the robot to both better understand what is
happening in a scene, and choose more appropriate actions plans, and also pos-
sible enable the robot to learn by observing an action. The robot would break
down an action into its individual parts and then attempt to emulate the action
by repeating these steps.

The type of visual and textual data available in these domains di�ers, but the
sources of data share many commonalities. The commercial videos of arts and
craft shows typically come along with transcripts and/or textual descriptions
of tasks to be accomplished, are partitioned into shots and have clear temporal
segmentation boundaries. Objects do not have large scale variation and activ-
ities are typically observed from limited number of viewpoints; where all these
factors are typically determined by the �lm maker. The video data used in the
human-robot interaction setting on the other hand, the temporal segmentation
boundaries between individual actions are not clearly determined, objects and
activities are either observed from a single viewpoint or multiple viewpoints are
simultaneously available [63, 1].

What are the type of actions that we are interested in? Most of the current
research in computer vision has focused on actions that can be described by an
observable motion pattern alone without reference to the environment, examples
for these types of actions are global motions such as walking, running, jumping,
waving, clapping, boxing, etc. or simple interactions between two people and
the environment, e.g, hugging, kissing, opening a door, getting up from a chair.

Unfortunately, there are many actions that cannot be uniquely described
only based on their visual appearance. If we take for example, the following set
of pictures depicting actions that consist of the same turning motion of the hand,
but have di�erent semantic meaning based on the environment and type of ob-
jects that the action is applied to. For these type of actions it is necessary to not
just accurately describe the visual motion patterns that are present, but also the
identity and appearance of the objects involved, and their spatio-temporal re-
lationships (e.g. relative positioning, contact points over time), and the overall
context where the action is occurring (e.g. indoors, outdoors). Without fur-
ther external domain constraints it is very di�cult to accurately determine all
the extraneous variables because although all these constraints taken together
nicely de�ne the context for a given action, the large number of possible variable
assignments and the ambiguity in their estimation makes it practically impos-
sible to solve the action recognition problem in a scalable and practical manner
without additional external constraints on the context.
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1.2 Related work

The general problem of video annotation and understanding is very complex as
it often involves temporal interactions between semantic entities (people, people-
objects, cars etc) taking place in di�erent and changing environments/scenes and
domains. The domains and scenes, where the activities take place often pro-
vide useful contextual information regarding the type of activities or geometric
layout in the scene. In the absence of textual descriptions and with availability
of some labeled data, the problem of action recognition has been studied in
several instances previously. In the past most of the focus of computer vision
community was on the study of human actions that were characterized by move-
ment and change of posture change, such as walking, running, jumping etc. For
these types of actions the understanding of the role of features derived from mo-
tion and the development of global or semi-global motion features/descriptors
was followed by di�erent strategies for solving the supervised classi�cation prob-
lem [18]. Recognition of activities determined by human pose have been studied
in [73]. This approach is applicable only to a small number of actions and the
labeling and segmentation is often painstaking endeavor. With the advances on
textual processing and detection, recognition and localization of faces and peo-
ple several works focused on using sources of data readily available "in the wild"
to tackle the problem. Static images and captions were analyzed in [8, 52] and
the problems of action recognition aligning screen plays and videos have been
studied in [20], simple human movement actions were learned and recognized
in movies in [49]. Powerful cues provided by presence of humans (determined
by the reliable detectors) and their pose it has been demonstrated that several
actions representations can be attained in static images [38] from names and
verbs extracted from captions. Additional approaches demonstrating the strat-
egy of using the unstructured textual information and images have been mostly
applied in the static setting [82]. The problems of action recognition in the
robotics domain has been studies typically in isolated setting mostly focusing
on development of invariant motion representations using 3D motion capture
systems [37] and object-action interactions in case of manipulation actions [96]

1.3 Our approach

In this project we speci�cally focus on the domain of commercial videos of
arts and crafts, where we seek to develop techniques for automated annotation
and labeling of the video data. The commercial videos of arts and craft shows
typically have available transcripts and/or textual descriptions of tasks to be
accomplished, are partitioned into shots and have clear temporal segmentation
boundaries. Objects do not have large scale variation and activities are typi-
cally observed from limited number of viewpoints; where all these factors are
typically determined by the �lm maker. In the art and craft domain we plan
to use commercially available high de�nition videos of art and craft shows and
their associated transcripts. For the activities of daily living we intend to start
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working with cooking activities as available in the University of Rochester -
Activities of Daily Living and CMU Kitchen data sets ([63, 1]). From the per-
spective of computer vision tasks, we will assume that we have a set of videos
and the associated set of verbs and nouns extracted from the transcript. These
descriptions will be extracted by linguistic component of the project described
in Part I. The ambiguities which we will need to deal with are related to the
fact that not all verbs and nouns extracted have visual counterparts and some
verbs and nouns may be missing or only their synonyms appear. This is similar
to the ambiguities encountered in names and faces associations studied in [8].

In the domain of learning and recognition of manipulations actions there is
a close interaction between the type of motion hands or human body undergo,
shape of the hand and tool being held as well as object being manipulated. We
study and model these interactions and cues explicitly and exploit them in the
action recognition framework. In the �rst stage we use the previously developed
object detectors [29], hand detectors and motion descriptors [49] to gather some
evidence about presence of individual cues in the key frames and also propagate
this evidence via tracking and detection across the sequence. We then model
the interactions in the Conditional Random Field [44] framework and formulate
the video annotation as a problem of most likely sequence assignment given the
available evidence.

Assuming weakly set of weakly annotated set of videos with correct verbs
and nouns of a particular domain and we plan to exploit action and object in-
teractions to learning action representations using multiple instance learning,
develop novel techniques for action recognition exploiting correlations between
the pose and hand gestures and object presence or absence and �nal tempo-
ral annotation of videos using the action/object representations and dynamics
learned with the aid of textual descriptions.

In this work we speci�cally explore how one can leverage external textual
descriptions such as transcripts, plot summaries, cooking recipes or craft in-
structions to automatically annotate arts and crafts videos that have been cre-
ated for a children's broadcast TV show. Applying natural language processing
techniques to the textual descriptions can provide us with both semantic and
temporal information about the actions in the video we are processing..

This overall approach is summarized in Fig. 1.1. We assume that we are
given a video of an arts and crafts show and also a transcript of the words
that are spoken. This could either come from closed captioning information, a
transcript created by a fan of the show, or the actual �lm scripts used to record
the episode. We then extract the action verbs and relevant objects from the
text, �lter them using domain knowledge automatically extracted from external
knowledge source and then use a previously learned model of our domain to
combine this semantic information to interpret the output of visual action and
objects detectors that have been applied to the input video. The ideal output of
our system is then a time aligned annotation of the input video (see Fig. 1.2).

Semantic information can be extracted by parsing the phrasal constituents
of each sentence to determine the type of action and human interaction via the
presence of objects, instruments, and other contextual information. One can
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Figure 1.1: General Approach

extract from language the appearance and functional properties of objects and
their spatial, temporal, and semantic relationships (e.g. via adjectives, adverbs,
prepositions). The language descriptions allow us to identify di�erent entities,
varying from named � e.g. persons, characters, etc... to unnamed entities � e.g.
locations, instruments, action type, etc.

The textual description can also provide us with temporal information and
constraints, such as in what order are the actions happening and if time-aligned
text is available (e.g. closed captions or speech recognition) we can actually
closely constrain the temporal presence of an action.

1.4 Contributions

As part of our e�orts we created a new baseline data set (see Figs. 1.3 for some
examples) for research into recognition of complex manipulation actions which
we hope will be used as a benchmark data set for future research. We were able
to license 27 premium broadcast videos from PBS Sprout which were manually
annotated. The annotations included the presence of actions, the locations of
objects and tools of interest, the time and type of shot transitions, as well as
the camera view point.

We also created an end-to-end system that autonomously annotates real-
world broadcast videos with the presence of actions and objects. Both the
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Figure 1.2: Example video �Babysitter's Animal Sewing Cards�, PBS Sprout
TV with desired annotations (shot boundaries and action labels)

dataset and the code will be publicly available from the workshop website,
thereby reducing the barrier of entry for further research.

In the following chapters we will describe the algorithmic approaches we
explored and devised, as well as the results we achieved. The overall architecture
of the system consisted of the following steps as detailed in the �ow chart shown
in Fig. 1.4.

First we will describe the natural language processing steps. The descriptive
text, we looked at show transcripts as well as associated instructions downloaded
from the web, was passed to the information extraction module (Chapter 2)
where action verbs and the associated objects and tools are automatically ex-
tracted from the text. The extracted (verb,object,tool)-tuples are then pruned
and re�ned using domain knowledge which is automatically learned from exter-
nal knowledge sources such as Wikipedia, WordNet and search engines such as
Google and Yahoo (Chapter 3).

During the preprocessing stage of the video pipeline, the input video is �rst
segmented into semantically meaningful shots and clustered according the pres-
ence of human faces and their size using o�-the-shelf algorithms for shot bound-
ary detection ([54]), face detection and recognition (Pittsburgh Pattern Recog-
nition), and visual clustering using visual words ([86]). Since these techniques
are external software solutions, we will not further describe them in this report.
During the next stage the individual video frames are analyzed for the presence
of actions, objects, and human hands. We speci�cally look for human hands
because we are speci�cally interested in manipulation actions, and thus are in-
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Single Shot Action Recognition using STIP (SVM) 0.42
previous + Tool + Hand Feature 0.47
Single Shot Joint CRF Model (STIP+Tool+co-occurrence of verb
and tool)

0.51

Sequence Model CRF with temporal constraints extracted from
transcripts (pairwise ordering constraints)

0.52

Previous model with relaxed pairwise ordering constraints 0.52
Sequence Model CRF with temporal constraints extracted from
online instructions (pairwise ordering constraints)

0.53

Previous model relaxed pairwise ordering constraints 0.53

Table 1.1: Overall action classi�cation accuracy for the Sprout TV Handcraft
Show dataset.

terested in those speci�c objects that are either moving with or are located in
relative proximity to a hand in the videos. The exact algorithms used are de-
scribed in Chapters 4 (Action Recognition), 5 (Object Detection) and 6 (Hand
Segmentation).

At this point now, for each shot a candidate set of actions, tools, and objects
has been detected, as well as a list of action verbs and nouns, and their likelihood
of their co-occurrences has been computed. We combine all this information into
a local model using a CRF as described in detail in Chapter 7. Up to now we
have treated each shot as being independent of all the others. During the last
step, we take advantage of the fact that we know in which order the verbs and
nouns appear in the descriptive text, and that this order should be re�ected
in the order of the actions that we recognize. Thus, we learn a global CRF
model that uses these ordinal relationships as additional features to improve
the accuracy of the action annotation (Chapter 8).

In our work we demonstrated how non-visual semantic and temporal infor-
mation can be integrated with visual information to improve action recognition.
In the following Table 1.1 we collected the results we get when we include more
and more information. The results show that the information we automatically
extracted from text and unstructured domain knowledge is indeed helpful and
improves the accuracy of our action annotation system.

Using a local (single shot) model consisting of a support vector machine
(SVM) classi�er and only spatio-temporal image descriptors as input features,
we achieved an overall recognition rate of 42%. We were able to boost the recog-
nition rate by augmenting the SVM feature space using detection likelihoods
for di�erent tools and hands to 47%. Integrating the co-occurrence constraints
that we automatically learned from text into the local model again increases
the recognition rate to 51%. By integrating the global temporal constraints
extracted from transcripts and online instructions into a global model we are
able to get the best recognition rate ( 52% and 53% respectively).

In summary, during this workshop we successfully demonstrated that the
integration of visual and textual information can lead to better action recog-
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nition results, and that the relevant domain information necessary to fuse the
two information sources can be learned automatically by using freely available
data sources on the web. Our hope is that the ideas, code and the dataset
that we developed during this workshop will o�er a good starting point for the
community to continue and build upon this work in a new and exciting research
area.

Finally, we want to thank the organizers of the workshop for the great work
they did hosting us, and without their tireless work to assemble funds and al-
lowed for this workshop to be so successful. We also want to thank Y. Aloimonos,
G. Hager, R. Vidal, and S. Khudanpur for their instrumental help during the
planning phase of the workshop.
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Part I

Natural Language Processing
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As said in the introduction, NLP in this project has been used to ground
temporal and semantic information in video processing. Among the approaches
that are available, we decided to select a simple methodology that could be
easily used with any algorithmic framework, that of Information Extraction
(IE). In NLP, the role of Information Extraction (IE) is to extract structured
information from unstructured documents and this is usually template driven,
i.e. �nd who, what, where, etc. . . In the following sentence, one can identify the
following entities: �Yesterday, New-York [location] based IBM Inc [organization].
announced their acquisition of Bank of America [organization]�.

The goal of IE is to allow computation to be performed on unstructured data
via the identi�cation and the recognition of entities. We adopted this approach
and extended it to an Enriched Information Extraction that is able to capture
more complex relationships, such as verbs (to capture action types), objects
(to capture what is acted upon), instruments (the tool that is being used),
and location (to guide the contextual recognition). We capture also syntactic
structures such as verb-object relationships. We allow logical reasoning to draw
inferences based on the logical content of the input textual data.

The work that was pursued here extends in two di�erent directions:
1. syntactic parsing to process and understand textual data such as tran-

scripts; we used the Stanford probabilistic parser for dependency relations as
well as adapted the Stanford Named Entity Recognizer (CRF) for our task.

2. semantic processing to determine the semantic relatedness between word
relations, such as verb-object and object-intrument. We used statistical mea-
sures of lexical collocations and lexical similarities and build matrices of co-
occurrences to feed action recognition.

The following chapters will develop these 2 aspects.
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Chapter 2

Information Extraction from

Text

2.1 Introduction

As has already been discussed, the task of action description is context-dependent:
that is, the environment in which an action is done, as well as domain words
appropriate to that environment, heavily in�uence the description of an action.
When presented with an instructional video and the corresponding transcript,
we need to strategically use the transcript to help the action detection1.

How exactly can language help? First, the transcript contains a lot of useful
information. The �rst category that comes to mind is that of syntactic informa-
tion. This syntactic information can tell us the person doing the action, what he
or she may be using to complete the action, and what objects the action entails.
Note though that to get reliable information regarding the actual action, we
need to examine the semantics � and sometimes even the pragmatics � of the
transcript. However, if we know the domain/environment of the transcript we
may reasonably assume that initial information linking the verb to an action can
be derived from syntactic information. For instance, while there may be many
di�erent ways to cut something in general (such as with a chef's knife when
cooking, or with scissors in a craft show, or with a saw in a home improvement
show), in any particular domain it is reasonable to assume that there are a very
few, predetermined number of ways to complete the action. Further semantic
and pragmatic analysis could be helpful, but the syntactic information regarding
verbs can provide a good base.

The second way in which language helps is by providing an ordering of the
actions. Ideally, the text would be time-aligned (as in closed captioning) to the
video, so that exact start and end points could be reported. However, even
without time-aligned text, we may get, at the very least, a partial, relative

1Note that while the converse is true (video data can be used to help extract information
from text) such a task was beyond the scope of this project.
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ordering of the actions. This can be very useful if given to an appropriate
global temporal model. Speci�cally, the language can provide seed information
for targeting certain actions, objects and tools all within a relative temporal
framework.

Throughout this paper, we will refer to the terms �semantic density� and
�semantic relevance� . Semantic relevance is de�ned at the word-level: we say
that a word w is semantically relevant if it is meaningful to and useful for
performing the desired task. A sentence or clause is deemed semantically dense
if a signi�cant portion of the words in that sentence are semantically relevant;
we may de�ne semantic density similarly for a document.

There are two points to make regarding semantic density and relevance:
�rst, both are dependent on the domain and the task at hand. For instance, a
document that is semantically dense for one task (e.g. for a general question-
answering or paraphrasing system about that document) will not necessarily
be semantically dense for another task (e.g. extracting action-related informa-
tion from that document). Second, deciding semantic relevance and ranking
semantic density is inherently subjective. One may try to arrive at metrics to
precisely and rigorously quantify the de�nitions, but any such metric will be
heavily in�uenced and a�ected by the �rst issue mentioned. These terms do
however provide a way of comparing (more abstractly and generally) two di�er-
ent documents or data sets and so will be used in such a way throughout this
chapter.

This chapter will progress as follows: in Section 2.2, we will discuss the
gold-standard annotation creation and evaluation metrics for both the main
Sprouts data set used in the overall project, and for a newly acquired data set
used speci�cally for the task of extracting action information from text. In
Section 2.3 we will discuss the primary linguistic tools we used to complete this
extraction, including how we adapt a named-entity recognizer (NER). We will
(informally) compare other linguistic tools we could have used and discuss the
reasons we used the tools we did. In Section 2.4 we sample some of the past
work done that is related to our task. Armed with this history, we then describe
the main algorithm we used to extract actions, as well as versions leading up
to the �nal one. Prior to presenting the results for these algorithms, it is most
helpful to run some diagnostic tests on the NER to get a sense of its overall
performance. In Section 2.6, we discuss the results of the algorithms presented
in Section 2.4. As in all projects, there is never enough time to explore all
the possibilities, and so in Section 2.7 we discuss some of these possibilities for
future work. In Section 2.8 we summarize our work done and presented in this
chapter.

2.2 Corpora

In this section, we explain the two corpora we used. The PBS Sprouts Crafts
corpora (Section 2.2.1) is the primary corpus used in this project and system,
and so will be familiar to the reader. However, there are aspects of that corpus
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which are unique to this task, that is, unique to extracting action-object-tool
triples from the transcripts. In Section 2.2.2, we describe a data set newly cre-
ated for this project. In both sections, we discuss the gold-standard annotation
process along with our methods of evaluation.

2.2.1 PBS Sprouts Crafts

As the reader will recall, the primary project data set consists of 27 PBS Sprouts
Craft where both the video and the transcript are available. There are generally
40 sentences per show. The transcripts are generally of very high quality and
contain few typos. They are also very structured in that each show is a dialog
between the same two characters (the host Nina and her co-host Star). As the
Sprouts TV shows are made for children, one might think it reasonable to ex-
pect a somewhat limited vocabulary along with fairly simple sentence structure.
Since these shows are �how-to� by nature, we might also assume that the shows
are semantically dense.

Unfortunately, since the show is a dialog by nature, they are semantically
sparse (evidence of this may be found in Section 2.5.5). While the two hosts try
to verbally engage the viewer, the discussion is generally irrelevant to the task
of extracting action-object-tool triples. The shows are much more narrative in
nature rather than imperative. This has the consequence of not guaranteeing
simple sentence structure: though some instructions are very clearly and simply
stated (such as �Cut the paper�), others are hidden within the narrative. Fur-
ther, since the shows are in the arts-and-crafts domain, determining the richness
of the vocabulary is a bit di�cult, as nearly anything can be used in a craft: a
rock, a co�ee �lter, an egg shell, a bottle cap, etc. Although the use of synonyms
may be limited, the set of possible objects used is extremely large.

Were the transcripts simply instruction sets, we could be assured that every
intended action was speci�ed in the text. However, since the transcripts accom-
pany the video, we have no such guarantee. There are times when actions are
performed in the video but not mentioned in the text (or only mentioned in the
cursory manner of �And now we do this.�), and there are times when actions
are mentioned in the text but not performed. Therefore, there is no one-to-one
correspondence between the video and text.

Below we describe how the gold-standard annotations were constructed and
how we will evaluate our program's performance against them. As we use the
Sprouts data in diagnostic tests (Section 2.5.5) it is necessary to mention that
the methodology described below is not su�cient. To run the diagnostic tests on
the Sprouts data we processed the Sprouts data in the same manner as described
in Section 2.2.2.

Gold-Standard Construction To construct the gold-standard triples for
the Sprouts transcripts, a human annotator viewed each episode and recorded
when a given action occurred and how long it lasted, along with the objects
(and tools) used and how the human interacted with the objects to accomplish
the action. The annotator also listed the relative sequential order of the actions.
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Property Value

Number 3
Verb Cutting

Objects Paper, Scissors
Description Hands cut out drawing
Start Time 1:32.0
End Time 1:40.0

Camera Angle Full, Close Up

Table 2.1: Sprouts annotations for the sentence �Cut him out with safety scis-
sors.�

Word Tag

Cut verb
him object
out prep
with prep
safety tool
scissors tool

. O

Table 2.2: Web annotations

Please see Table 2.1 for an example annotation of the instruction �Cut him out
with safety scissors.�

Note that the annotations contain information which cannot be derived from
text alone, such as describing the camera position and providing the start and
end times of the action. Given time aligned text, the times could be provided,
but that was outside the scope of this project. Further, providing the �Descrip-
tion� was outside the scope of this project. For the remainder of this chapter,
we will only focus on extracting the number �eld, the verb �eld and the objects
�eld. Of course, the number �eld will be relative and dependent on prior detec-
tions; therefore, the exact number is not as important as the relative numbering
is.

Evaluation Given the fact that there is no one-to-one correspondence between
the actions mentioned in the text and the actions performed in the video, two
evaluation standards must be employed. For each evaluation standard the recall
and precision are calculated. Since there is some repetition of actions in the
shows (Nina may say �Cut the paper� in one sentence, and then in the next say
�Once you are done cutting the paper. . . �) we are not concerned with duplicate
verb-object-tool triples as long as they actually correspond to a valid action.
We also consider something a false positive detection if and only if it is clearly
invalid. An instance of this occurring is if given the sentence �Color the dog
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any color you like,� the second �color� is labeled as a verb in a triple. Note that
given this counting method, the number of false positives is invariant against
either of the evaluation standards, as described below.

The primary evaluation standard is against the gold-standard annotations
described above. As these annotations were constructed from viewing each
show (rather than reading the transcript), this corresponds to judging against
the video. This means that we judge the program's output triples against what
was seen. However, it is also valid to judge against the text : that is, to judge
the program's triples against what was actually mentioned in the text. In both
cases, the evaluations are performed manually. Although it may not seem com-
pletely valid to compare the recall and precision on each evaluation standard
(the denominators will be di�erent), it can still provide insight into the strength
of the algorithms and program.

2.2.2 Crafts from the Web

One of biggest limitations of the Sprouts transcripts is that the number of tran-
scripts is just too small. With only 27 shows (and approximately 40 sentences
per show), our ability to apply machine learning algorithms or statistical meth-
ods to the data is greatly hindered. We therefore decided to mine from four
websites2 420 crafts. Whereas the Sprouts crafts were primarily for little kids,
the crafts we obtained from the web were intended for a much larger range of
ages: anywhere between 3 and 13 years of age. Although these instructions
must stand alone (there is no accompanying video), the structure is not always
strictly imperative. Particularly, as the intended age range increases, we can
expect the instructions to become more narrative. As a result, the semantic
density will vary as well. Unfortunately, as this data was mined from the web,
noise is introduced in the form of possible typos, localized idioms and di�erent
format (some are in itemized lists while others are prose-like).

Gold-Standard Construction While we would like to be able to determine
whether a clause represents an action, we take the more �ne-grained approach
of determining whether every word is semantically relevant or not3. Although
many parsers are available (see Section 2.3.1 for more details), they alone are
not su�cient for determining semantic relevance: not every linguistic verb is
an action verb, just as some actions may be anaphoric references. As we are
interested in extracting action-related information, we are primarily interested
in whether a given word represents an action verb, an action-related object or
tool, some word modifying either an object or tool (mod), a preposition prep
related to an action, an adverb adv describing some action, or some other word

2http://familyfun.go.com/crafts/, http://parentinghumor.com/, http://crayola.com, and
http://www.amazingmoms.com/htm/kidsart.htm

3Technically, we determine whether every token is semantically relevant or not. The tokens
are de�ned by the Stanford CRF NER, as described in Section 2.3.2. However, we will continue
to refer to the tokens as words, since there is nearly a one-to-one correspondence between the
two.
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Have your kids cut the shapes with scissors .
O O O verb O object prep tool O

Figure 2.1: Example gold-standard annotations for the web-extracted sentence
�Have your kids cut the shapes with scissors.�

(O) which is deemed as irrelevant to action extraction. To that end, we may
de�ne the set of appropriate tags as T = {O, adv,mod, object, prep, tool, verb}.
Given the tag set T and a document D, every word (token) w ∈ D was assigned
a tag t ∈ T . Note that these tags are with respect to action descriptions and
so do not necessarily correspond to linguistic concepts. As a concrete example
of this, please see Figure 2.1. Notice that although there are two verbs in the
sentence (�have� and �cut�), we are only interested in �cut�; in this case �have�
is rather weak when it comes to describing actions.

Due to time constraints and for consistency, the tags were assigned only
by one person. While using multiple annotators is preferable, one major issue
is that some words may reasonably have multiple tags. For instance, in the
sentence �Using glue, paste the shapes,� should �glue� be tagged as an object or
as a tool? It is extremely di�cult to give a �correct� answer in this case, as glue
may be applied by a glue stick or bottle (in which case it would be better to tag
it as a tool), but glue may also be applied by using a brush (in which case it
would be better to tag glue as an object). For this reason, we allow every word
(token) w to map to a non-empty set Tgold = {t | t ∈ T}. In all 420 crafts, there
are 58,399 tokens, but only 208 of them have more than one plausible tag. For
the most part then mapping to a set of plausible tags does not pose a problem.

As mentioned in Section 2.2.1, the Sprouts data were also tagged in this man-
ner. An example is given in Table 2.2. To annotate/construct gold-standards
for both the web data and the Sprouts data according to this style, a simple
boot-strapping procedure was used. Details may be found in the documentation.

Evaluation For the web-based data, we are concerned with individual word
tags and so we simply have a multi-class classi�cation problem. Therefore unlike
the evaluation described in Section 2.2.1, the evaluation for the web-extracted
data may be done automatically. For any given binary classi�cation, we may
use the following confusion matrix,

Gold Standard

True False
Prediction True A B

False C D

and calculate the accuracy, de�ned as A+D
A+B+C+D ; the recall, de�ned as

A
A+C ; and the precision, de�ned as A

A+B . We examine eight binary classi�ca-
tion problems: seven are of t vs. all other tags, for every t ∈ T , and the eighth
is whether a word was correctly labeled as semantically relevant, even if its
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predicted tag did not correspond with the gold standard tag. Since we allowed
the mapping between words and tags to be multivalued, we simply check if the
predicted tag tpredict ∈ Tgold.

Note, if we made Tgold an ordered set, where the order of the tags in Tgold
directly corresponded with how correct a given tag was, then we could apply the
(slightly) more strict evaluation of checking whether tpredict = Tgold (1). That
is, simply check if tpredict is the same as the �rst entry in Tgold. Given that
only 3.5% of the tokens in the entire web-based data set have more than one
plausible answer, one would not expect the results to change dramatically. This
is veri�ed in Section 2.5.

Alternatively, interpreting Tgold as an ordered set, one could attempt to ar-
rive at some weighting scheme where a prediction tpredict was considered correct
if tpredict ∈ Tgold, but was given a penalty based on how removed tpredict was
from the initial position in Tgold. That introduces a whole plethora of issues,
namely determining the penalties. Depending on the context, some tags may
be more plausible than others and so any weighting scheme should re�ect that.
Determining these penalties is outside the scope of this project, however, and
so this option was not pursued.

One important distinction to note between the evaluation just described
here and the evaluation described in Section 2.2.1 is that the evaluation here is
word/token-based, whereas the evaluation previously described is action-based.

2.3 Primary Linguistic Tools

As described in Section 2.1, natural language text contains a lot of useful infor-
mation; and as we are exploring in this chapter, the key is how to automatically
extract that information. Since we are concerned with verb-object-tool triples,
the most direct way is to use a syntactic parser. In Section 2.3.1 we describe
the parser we use, and in Section 2.3.2 we discuss the limitations of the parser
and how we attempt to overcome them.

2.3.1 Probabilistic Parser

The task of syntactically parsing a sentence is one with a very rich history, to
which we cannot hope to do justice in this chapter. For an excellent introduction
to the tomes written on this topic, please see [4]. Similarly, while there are too
many available parsers to provide an exhaustive list, we will brie�y highlight
a few parsers which have had success. One such parser (MINIPAR, [55]) has
been used in other successful systems, such as in [56]. Another such parser is
MontyLingua [57] which attempts to use �common sense� in the parsing task.
Unfortunately, [57] does not make the dependencies easily available. While [55]
does provide the dependencies, we decided to use the Stanford probabilistic
parser, as described in [40, 41], since it was extremely easy to set up and it also
easily provides the parse tree. Although we did not end up using the parse tree,
initially we were unsure of whether we would use it or not and did not want
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to restrict ourselves. Needless-to-say, the Stanford parser provides the part-of-
speech tags for a given parse of the sentence and the dependency relations. It
also makes it very easy to access the k best parses for a sentence. All of these
options made the Stanford parser very appealing to use.

2.3.2 Adapting a Named Entity Recognizer (NER)

However, every parser has its advantages and disadvantages. We found out that
one disadvantage of the Stanford parser was its inability to handle imperative
sentences correctly. For instance, given the sentence, �Once that is done, tape
or glue the pieces. . . ,� neither tape nor glue would be labeled as verbs; rather,
they would each be labeled as nouns.

As mentioned above, we did have the option of examining the k best parses.
When we did this, the parser generally correctly parsed imperative sentences
within k ≤ 3. However, doing so caused some nouns to be labeled as verbs, hence
introducing false positives. Without more knowledge, it could be quite di�cult
to distinguish between any true positive and false positive verb detections.4

We examined other parsers, such as [57, 55] but the results for imperative
sentences/clauses were largely the same as with the Stanford parser. It is not
entirely surprising that many of the statistically trained parsers cannot handle
imperative sentences well since they are primarily trained on professional news
data (from sources such as the Wall St. Journal, for example). We would not
expect many news stories to contain imperatives and so cannot expect parsers
trained on the news data to perform well on all imperative sentences.

If we make the assumption that imperative clauses directly correspond with
an action (especially in instructions sets, which both of the corpora are), then it
is reasonable to hypothesize that we do not need to do a full syntactic parse5; we
just need to extract certain pieces of information. It su�ces then to create an
action/imperative speci�c part-of-speech tagger. Note how this is very similar
in nature to named entity recognition, except instead of extracting or recog-
nizing named entities, we are recognizing action-related events (and associated
objects). Given the remarkable ease with which one can train it, we decided to
use the named entity recognizer (NER), implemented as a conditional random
�eld, made available by Stanford ([32]). As it has been demonstrated that a
CRF can perform very competitively as a POS tagger, when compared to other
probabilistic models ([45]), we hypothesized that an NER could help in recog-
nizing patterns and so would be well suited to our task. Empirical evidence
supports this hypothesis, as discussed in Section 2.5. Although we are techni-
cally not using the Stanford NER ([32]) as a named-entity recognizer, but more

4We could have employed some weighting scheme, similar to that described in Section
2.2.2, to try to handle the multiple parses. There was not enough time to accomplish this and
so could be pursued as future work.

5Not to mention that doing so could be extremely costly. The new data would have to be
annotated by multiple linguistic experts to ensure consistency. There was not enough time to
attempt this. However, as will be discussed, the point regarding the need for a full syntactic
parse for imperatives is moot.
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as an action-related part-of-speech tagger, we will still refer to it as an NER.
The details regarding the training of the NER can be found in Section 2.5.

2.4 Algorithms

In this section we document the primary algorithm used in the project itself.
Before that though, in Sections 2.4.2 and 2.4.3, we document and describe the
preliminary systems version1 and version2 of the primary algorithm, where
the latter uses the Stanford parser (Section 2.3.1) to build upon the former.
Then in Section 2.4.4 we describe the main (primary) algorithm, version3,
which is built upon version2 but incorporates the NER as described in Section
2.3.2. First though, we discuss previous and related work in Section 2.4.1, and
discuss how our task and data set are di�erent from what others have done.

2.4.1 Related and Previous Work

The key challenge of this portion of the project is to be able to automatically
generate the verb-object-tool tuples. As has been alluded to previously, this is
very much akin to information extraction, although it would be better described
as enhanced information extraction. While the general idea is the same (extract
the who, what, when, and where) for actions, we wish to incorporate additional
linguistic information. Further, to make the process truly scalable, we wish to
extract more than just standard named entities, locations, etc., as evidenced in
Sections 2.2 and 2.3. As a result, we must look beyond the standard approaches
of information extraction.

To perform this enhanced information extraction we would ideally like to
extract a deep semantic understanding, along with the syntactic information.
The canonical approach has been to augment the grammar with λ-reduction
rules to achieve a �rst-order logic representation [4]. Unfortunately, not only is
this approach expensive, it requires experts to successfully augment the gram-
mar. One may try to learn dependencies relations for creating inference rules
[56], although the results can vary quite dramatically even with 1 GB of data.
Especially recently, there has been a lot of work to try to automatically learn
semantic augmentations: for instance, [35] provides a framework for an aug-
mented CFG which on certain domains (such as parsing commands given in
a chess game) works well. There has been a successful attempt to perform
unsupervised semantic parsing on biomedical abstracts [72]. [53] presented a
generative model that has been shown to yield increased performance on three
di�erent data sets [53].

However, our task, with respect to our domain, is signi�cantly di�erent than
the above mentioned previous work. With only 27 three-minute transcripts,
we do not have nearly enough data to apply a DIRT-algorithm to our task.
There is also the underlying theme among the above work of relatively high se-
mantic density: by examining commands given in a chess game (such as �Move
the knight to B8�), [35] can be relatively assured of high semantic density in
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their data (given the concentration involved in chess, one would not expect a
lot of semantically-irrelevant data). Similarly, by using biomedical abstracts,
[72] have made the decision to restrict themselves to a set with high semantic
density. [53] test on three di�erent data sets, but all of those have relatively
high semantic density, especially compared to the Sprouts data. Although the
semantic density issue may not seem to be an incredibly serious issue, we brie�y
examine and analyze it throughout Section 2.5. While working toward a full se-
mantic analysis would be more appealing, the low semantic density could result
in the costs involved in creating semantic rules (such as augmenting grammars)
far outweighing the bene�ts. The size of the data set also presents challenges to
using established and successful techniques. Given this, we decided to pursue
and provide our own algorithm, demonstrating what is needed to successfully
extract action-related information from our text.

2.4.2 Phrase-Based Extraction

Given the challenges facing us, such as very low semantic density (page 13), a
new data set and a fairly untackled task, we decided to start with the most basic,
most naive algorithm we could think of: simple pattern matching. For instance,
pattern matching and variants thereof have been used to some success [39],
though we had no intention of doing anything as complicated as [39]. Rather,
we simply wanted a rather basic baseline, which we will call version1.

To that end, we hypothesized that given we were working with children's
shows, the host would want to be very engaging and so might be more likely
to lead the viewers into the next instruction such as in �And now we're going
to 〈do-some-action〉,�); or prompt instructions via modals, such as �After this
is done, you can 〈do-some-action〉.� From the very beginning of planning this
algorithm, there was no intention of using it in the �nal project so we tried to
match four di�erent phrases, and hence did not try to make this option very
competitive. Though it may have been possible to �nely tune version1 so as
to get both high recall and precision, intuitively it would not scale well to other
domains (such as cooking shows, home improvement, or even other craft shows).
One of our objectives was to design a scalable algorithm and spending time to
re�ne version1 would have been counterproductive to that.

2.4.3 Seed Words + Phrase-Based Extraction

One of the main limitations of version1 is that it uses no linguistic knowl-
edge � despite us having access to it (Section 2.3), and only minimal domain
knowledge � if one wishes to count matching four generic phrases as �domain
knowledge.� To proceed in a scalable manner, we wanted to see what we could
do with varying levels of both linguistic and domain knowledge.

There are many ways one can have domain knowledge; one of the �rst that
comes to mind though is if one had access to a list of accepted verbs used in the
domain. Therefore for our next implementation, version2, we �rst assumed
that we had access to a list of seed craft action verbs. To generate the list for
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this bag-of-words approach, we simply thought of acceptable craft verbs (such
as �{cut}, {glue}, {color}�), and then, as a slight simpli�cation, age-appropriate
synonyms (such as �{snip, tear}, {paste, attach}, {shade, brush}�)6. While this
may initially resemble a standard bag-of-words approach, if we used no other
knowledge, the system would predict that some nouns would be actions (for
instance, both cut and color can be verbs and nouns). To incorporate linguistic
knowledge, we obtained the POS tags and dependencies from the best parse of
each show provided by the Stanford parser (see Section 2.3.2 for a discussion
of the best parse returned versus the k-best parses returned, and why we chose
only to use the parse with the highest probability).

The algorithm for version2 proceeded as such: for every sentence in the
transcript, we would try to match the same four action-introducing phrases as
described in Section 2.4.2 for version1. However, it also extracted those lines
and clauses that contained one of the prede�ned action seed words. It then used
the POS tags and parse dependencies provided by the Stanford parser to verify
that the found action word was actually a verb and to extract the direct objects
and (sometimes) the implements.

2.4.4 CRF + Seed Words + Phrase-Based Extraction

The success (or failure) of version2 is almost entirely dependent on [(1)]
1. the list of seed words provided, and
2. the output of the parser . However, as noted in Section 2.3.2, the parser

has trouble when it comes to imperatives. As the Sprouts data are, �rst-and-
foremost, instructional videos, the inability to handle imperatives could cer-
tainly pose a problem. As described in Section 2.3.2, some of the most successful
and current parsers lack the capacity to handle imperatives. This need to com-
pensate for the parser lead us to the idea of using an NER as an action-related
POS tagger, as described in 2.3.2.

We must allow the possibility for the parser and the NER to tag some words
incorrectly. However, having hypothesized that adapting the NER, and training
it speci�cally to look for action-related information in text, would act as a
secondary part-of-speech tagger, we would hope that the parser and the NER
could work together and complement each other. Therefore we simply need to
�nd strategic ways to use the NER (or rather, its output on a given show) in
the algorithm for version2. The algorithm is given on page 24 in Algorithm
2.1.

First and foremost, we want to use the NER output to compensate for
potential parser errors . We may also use it to verify verbs (increase or decrease
the system's certainty/con�dence that a detected word is actually an action
verb), and also add seed words to the bag. The issue of verifying verbs and the
certainty measure is discussed below. We did not incorporate using the NER to

6There are obviously synonyms that we did not use. That was because we deemed those
verbs too complex/sophisticated for a children's show. This simpli�cation did not seem to
harm the performance; indeed, including them would have resulted in many useless computa-
tions.
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add verbs to the bag, though it would be very simple to implement and feasible,
as will be discussed in Section 2.5.6.

We also use the CRF output to help develop heuristics or certainty measures
to say how certain it is that a returned verb-object-tool tuple is actually an
action. Currently everything is based on the verb v in the verb-object-tool
triple (and the stemmed version of v, vstemmed), and the certainty measure is
just a linear combination of four features f :

[(1)]

1. whether the Stanford parser says the verb v is a verb (f1 ∈ {0, 1}),

2. whether the CRF says the word is a verb (f2 ∈ {0, 1}),

3. whether the CRF says the word is semantically relevant to action detection
(f3 ∈ {0, 1}), and

4. the frequency count (normalized to 1) of vstemmed in the CRF training
data (f4 ∈ [0, 1]).

Features 1, 2 and 3 are binary, and feature 4 is a real number between 0 and
1, inclusive. To calculate f4, if vstemmed has been seen by the CRF before, then
simply divide the number of times the CRF saw vstemmed by the maximum count
of all stemmed verbs seen by the CRF; otherwise if vstemmed has not been seen
by the CRF before, just set f4 = 0. Using four weights w, the certainty is just
c = w · f . Although ideally the weights would be parameters to be learned,
for this project we have just manually set the weights as 4/13, 4/13, 2/13 and
3/13, respectively. Note that this way c is a real number between 0 and 1; it
can therefore be interpreted as a very rough approximation of the probability of
v representing a legitimate action. It would also be good if more features were
added to it as well, though we leave that to future work.

There is at least one additional possible use for the NER, which we unfortu-
nately did not have time to fully explore. We would have liked to use the NER
in a web-crawling/mining fashion: that is, given a list of websites, have the some
seeded/minimally-trained NER mine each site for craft instructions. When it
found instructions, it would predict on the instructions and add them to the
overall training data. One potential problem with this is that the NER would
be advising itself in the learning so for the tags and patterns it got correct, it
would be likely to get future ones correct as well; but for the tags and patterns
it got incorrect initially, it would be likely to get similar future ones incorrect
as well. However, if minimal training could seed the NER to do very well, this
potential issue could either be acceptable, or require sampled correction of fu-
ture mined data. While a full implementation of this idea is left to future work,
we were able to simulate this web-crawling in Section 2.5.4 with a fair bit of
success.
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Algorithm 2.1 Algorithm for version3 of ActionExtractor.
T =transcript of a Sprouts show

P =parse of T
L =set of labels for NER as in Sec. 2.3.2

S =break T into sentences, corresponding to those in P
W =

⋃
s∈S;w∈s{w} //all words in T

Cs : W → L =output of NER on T, indexed by s ∈ S
A =seed action-verbs (bag-of-words)

D =predefined dependency predicate names

Pt : S ×A→ {0, 1}//POS tags from parse of T
Pd : S → D ×W ×W //dependencies from parse of T w =
(4/13, 4/13, 2/13, 3/13) //weights for certainty measure

f = 0 ∈ R4 features for certainty measure

foreach s ∈ S
if s matches a phrase, as described in Sec. 2.4.2

Process it as in Sec. 2.4.2

foreach a ∈ A
if a ∈ s AND Pt (s, a) == 1

f1 = 1
DirObj=()
Tools=()
foreach (d, a, o) ∈ Pd (s)

if d ∈ D is direct object dependency

Append o to DirObj

foreach {(d, a, t) , (d, o, t)} ∈ Pd (s)

if d ∈ D is tool dependency

Append t to Tools

if a ∈ s AND Cs(a) ==`verb'

f2 = 1

if Finding d.o. and tools in above manner fails

DirObj={o | Cs(o) == `object'}
Tools={t | Cs(t) == `tool'}

if a ∈ s AND Cs(a) 6=`O'

f3 = 1

Calculate f4 from
⋃

s∈S Cs (·)
Calculate certainty cert = w · f
print (a, DirObj, Tools, cert)
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2.5 Adapting a CRF NER

As mentioned in Section 2.2, the PBS Sprouts data form too small of a data
set to be adequately used for training; further, using the Sprouts data directly
for any statistical purposes or machine learning algorithms would create possi-
ble train/test con�icts later on in the project. However, we may without fear
of con�ict use the data mined from the web (Section 2.2.2) for machine learn-
ing/statistical techniques. Below in 2.5.1, we describe the various ways in which
we partitioned the 420 web-mined crafts. Then in Sections 2.5.2-2.5.4 we exper-
iment with various partitions of the data and report the results. Section 2.5.5
discusses diagnostic tests of the NER on the Sprouts data; that is, we compare
the di�erences between the Sprouts data and the web data.

2.5.1 Partitioning of Data

Recall that there are 420 crafts mined from the web. As the creation of a new
data set contains a lot of overhead (�rst in obtaining it and then in constructing
the gold standard), we decided to �rst obtain a fraction of the crafts we could
possibly get and see how much the CRF and new data actually a�ected our
system (that is, analyze the di�erence between version2 and version3). As
a result the data arrived in two stages and initially there were only 121 crafts.
We therefore set about obtaining an additional 299 crafts. By the time we
realized just how bene�cial this new data were, there was not enough time to
consistently and faithfully annotate the additional crafts. We could not reliably
use these new annotated data for additional training, but we still were able to
use the plain text of the additional crafts.

As a notational convenience, we will refer to the various classi�ers that we
trained as Training-Testing:NumberCrafts; that is, using NumberCrafts,
we used (roughly) Training% of them for training and Testing% for testing.
Since we acquired the crafts in two discrete stages, if NumberCrafts ≤ 121,
then we used a subset of the initial 121 crafts of size NumberCrafts.

Using this notation then, we primarily trained two classi�ers: 70-30:121
and 100-0:121. Speci�cally, we trained 70-30:121 on 87 crafts and tested on
the remaining 34; whereas for 100-0:121 we trained on all 121 crafts. Training
this classi�er would result in no crafts remaining from the initial 121, so the
only experiments for which we used 100-0:121 are described in Section 2.5.5.
In all other cases, unless explicitly speci�ed otherwise, all tests were done on
the original 34 web-mined crafts.

One of the reasons for using [32] is the ease with which one can train it.
Therefore the exact training instructions and procedure are left to the instruc-
tions/FAQ found online7 and the documentation for this project. Also, one may
recall the boot-strapping procedure described in Section 2.2.2 to annotate the
data.

7http://nlp.stanford.edu/software/crf-faq.shtml
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Semantic Relevance for 70-30:121
Acc. Acc. Rec. Rec. Prec. Prec. F1 F1
One Mult. One Mult. One Mult. One Mult.
(%) (%) (%) (%) (%) (%)

7 Classes 89.10 89.88 82.15 82.96 90.33 91.59 86.04 87.06
3 Classes 91.23 91.87 85.21 86.03 87.39 88.60 86.28 87.30

Table 2.3: Results for 70-30:121 with 7 classes and 70-30:121 with 3 classes,
tested on the 34 web-based craft �les from the original 121 crafts.

2.5.2 Fully Supervised Training

Initially we wanted to get an upper-bound on the performance we could expect
from the NER. To do this we trained the 70-30:121 classi�er on all 87 training
�les and tested on the 34 test �les. Recall from Section 2.2.2 (page 17) that we
could evaluate the results using only one possible answer (so tpredict was equal
to the �rst element of Tgold, interpreted as an ordered set) or using multiple
answers (tpredict ∈ Tgold). For both of those, we have eight ways of viewing
the problem as a binary classi�cation: examining each of the tags individually,
and also checking whether the classi�er was correct in determining semantic
relevance. The results for semantic relevance (was a token correctly tagged as
semantically relevant or not, even if the predicted tag was not correct) are given
in Table 2.3, in the row �7 Classes� (this is the default).

The �rst thing one should notice is the di�erence between evaluating against
only one answer versus a whole set of answers (the One vs Mult. columns
in Table 2.3); while the multiple answers scheme does perform better than
the singular answer scheme, the di�erence between the two is minimal. The
conclusion that using either scheme does not make a very signi�cant di�erence
is mostly veri�ed in all other experiments run on the NER. When it is not,
it is typically due to a tag which accounts for a very small percentage of all
the tokens. Therefore, after concluding the primary analysis of Table 2.3, we
will only focus on evaluating with multiple plausible answers, especially since
by evaluating with multiple plausible answers, we do not run into the troubles
described in Section 2.2.2.

As mentioned previously, the recall is what is most important to the overall
project. It may seem a bit disappointing then that while the precision is very
high, the recall is low when compared to the precision. With only 87 training �les
there may not be enough data to su�ciently learn all the necessary parameters,
so we decided to train a new classi�er on those same 87 �les, but use three
possible tags (O, object and verb) rather than the seven used in 70-30:121.
These results are in Table 2.3, in the row labeled �3 Classes.� To accomplish
this, we used the mapping {O, adv, prep} 7→ O ; {mod,object, tool} 7→ object ; and
{verb} 7→ verb. As expected, this simpli�cation bettered the accuracy; it also
bettered the recall. However, it harmed the precision. However, Table 2.3 is only
examining one of the eight possible evaluations; Table 2.4 compares the 7-class
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Per-Tag Results for 70-30:121
Measure: Acc. Acc. Rec. Rec. Prec. Prec. F1 F1
# Tags: 7 3 7 3 7 3 7 3

(%) (%) (%) (%) (%) (%)
O 89.80 91.82 94.69 94.67 88.86 93.37 91.06 94.06

object 93.85 92.65 81.02 83.15 90.87 86.67 85.66 84.87
verb 97.84 97.96 87.84 88.51 87.64 87.92 87.74 88.22

adv 99.66 � 55.17 � 80.00 � 65.31 �
mod 98.98 � 60.78 � 84.93 � 70.86 �
prep 97.72 � 81.98 � 91.23 � 86.36 �
tool 99.38 � 72.13 � 75.86 � 73.95 �

Table 2.4: Results for 70-30:121 with 7 classes and 70-30:121 with 3 classes,
tested on the 34 web-based craft �les from the original 121 crafts.

NER and the 3-class NER under the seven remaining (per-tag) evaluations.
Although recall is generally more important than precision, as will be ex-

plained in Section 2.6.3, in dealing with the Sprouts shows we actually want
to use the default 7-class 70-30:121 instead of the 3-class (put brie�y, this is
because our recall is more-or-less optimized and we do not want to hurt the
precision). From here-on-out, unless explicitly stated otherwise, any Train-
Test:Number classi�er will be trained and evaluated using seven tags.

2.5.3 Semi-Supervised Training

While the results of 70-30:121 from the above section are strong and promising,
one potential downside is that it is fully supervised. This could seem to be
con�icting with the idea of using the CRF in a web-crawler type of fashion, to
become better and gather more domain-related terms (as described in Section
2.4.4. We then decided to explore just how many crafts one needs to train the
CRF on before it approaches (or reaches) similar performance to that of the
fully supervised CRF, described above.

The underlying algorithm is quite simple: using only the training portion
C121 of the 121 crafts (87 crafts in total), for every integer n ∈ {n | n1 ≤ n ≤
n2, n = k ·∆n + n1, k ∈ Z≥0}, for I iterations we chose a random subset T of
size n. We then trained a classi�er C on T. We used C to predict tags (H) for
every craft in C121\T. We assumed the output was correct, retrained C on C121
and H and then tested on the test portion of the 121 crafts. To get statistics, we
averaged over all I iterations. For a more formal algorithm, please see Algorithm
2.2. In our experiments, n1 = 5, n2 = 85,∆n = 5 and I = 10.

The left-hand side of Figure 2.2 compares the recall and precision in the
binary semantic relevance tagging measure. And since with the Sprouts data
we are most interested in �nding action verbs, the right-hand side of Figure
2.2 shows the recall and precision scores for the semisupervised learners, with
respect to the verb tag. The straight line in each graph represents the perfor-
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Algorithm 2.2 Algorithm for semi-supervised training of crafts.
C121 = set of 87 training crafts of 70-30:121

G121 = set of 34 test crafts of 70-30:121

for n = n1 to n2 by ∆n

for i = 1 to I

Get random subset T ⊂ C121, |T| = n
Train NER C1 on T

H = predictions of C1 on C121\T
Train NER C2 on T ∪ H
Test C2 on G121 and record results
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Figure 2.2: Recall and precision comparison for semantic relevance metric using
semi-supervised learning. The corresponding fully supervised classi�er is 70:30-
121.

mance of 70-30:121, the fully supervised classi�er. As expected, all the results
converge to the fully supervised learner. Interestingly though, the recall takes
a much longer time to converge than does the precision, in both the semantic
relevance and the verb classi�cation problems.

Notice how we can get comparable accuracy and precision to the fully su-
pervised learner by using about one-third of the data, but we need nearly all
of it (about 70-75 well-annotated transcripts) to get comparable recall. These
data indicate that given more training data, the verb recall would continue to
increase.

2.5.4 Simulated Web-Crawling

The above semi-supervised learning experiments suggest that we can get fairly
comparable performance overall even if we do not fully annotate all of the data.
We then extended the experiments of semi-supervised learning to include all the
training data. We used Algorithm 2.2, with parameters n1 = 50, n2 = 110,∆n =
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Figure 2.3: Select graphical results for the simulated web-crawling experiments,
compared to 70-30:121 and 70-30:420.

Classi�er Used Accuracy Recall Precision F1
70-30:121 89.88 82.96 91.59 87.06

no extra training
70-30:420 85.83 93.76 77.02 84.57

no extra training
70-30:121 84.27 94.18 74.59 83.25

predict on all training

Table 2.5: Results for simulated web crawling, tested on the 34 web-based craft
�les from the original 121 crafts.

5 and I = 3. We tested on the 34 test �les from the initial 121. Interestingly,
while our accuracy and precision decrease, our recall increases when we simulate
web-crawling, with respect to 70-30:121. These data indicate that training on
a very few number of really well annotated �les and then crawling and mining
the web for more data (semi-)automatically can result in performance quite
comparable to that of training on many more, human-annotated �les! That
makes the web-crawling idea/program seem quite promising. Please see Figure
2.3.

2.5.5 Diagnostic Testing on Sprouts Shows

None of the NERs were trained on the Sprouts data, so it is quite reasonable
to suspect that none of the NERs would do as well on the Sprouts as on the
web-obtained crafts. The question though is just how big is that di�erence?
Recall that the output from the NER is evaluated by token/word while the
output from any of the action extractors described in Section 2.4 is evaluated
by action phrase; while we can expect a large performance increase or decrease
from the NER on the Sprouts data to a corresponding performance increase
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Classi�er Used Accuracy Recall Precision F1
70-30:121 94.83 78.39 72.97 75.58
100-0:121 95.13 80.06 74.34 77.09
70-30:121 84.39 91.34 39.53 55.18

all extra training
70-30:420 88.06 91.13 46.53 61.61

Table 2.6: Results for semantic relevance diagnostic tests on Sprouts data.

Classi�er Used Accuracy Recall Precision F1
70-30:121 98.63 75.93 70.49 73.11
100-0:121 98.72 73.98 73.52 73.75
70-30:121 94.34 85.92 32.13 46.77

all extra training
70-30:420 96.63 91.42 44.21 59.59

Table 2.7: Results for semantic relevance of only the 'verb' tag on Sprouts data.

or decrease from the action extractor, the same cannot necessarily be said for
small performance changes. This is due to the di�erences in evaluation, but also
because we use additional information in the extractor (at least in version2

and version3).
As compared to the web corpus where there are nearly 59000 tokens, there

are only 13727 tokens/words in all 27 Sprouts Craft transcripts. However, the
biggest potential issue seems to be the semantic sparsity of the Sprouts data.
This is evidenced by the �O� tag comprising nearly 90% of the entire corpus;
compare this to the �O� tag comprising roughly 60% of the test web data. The
�rst metric we will examine is how various NERs do with regard to semantic
relevance. The results are given in Table 2.6. In addition to testing the standard
70-30:121, we also trained and tested a 100-0:121 classi�er (Section 2.5.1).
These are arguably the most stable and reliable classi�ers to use. However, to
see just how well the web-crawling idea could actually be adopted, we decided
to test 70-30:121 augmented with all the extra training data (as described in
Section 2.5.4). Given the similarity between this �web-crawling� classi�er and
the less reliable 70-30:420, we also tested the Sprouts data on the latter.

As evidence in Table 2.6, the above claim that 70-30:121 and 100-0:121 are
the most stable of the four tested warrants merit. Between those two classi�ers,
as we provided more consistent training data to the classi�er, all of the measures
increased. With more reliable training data, we would hope that 70-30:420
would have followed that pattern, but unfortunately it decreased the F1 score
(though as above, signi�cantly increased the recall), just as it did in previous
experiments.

Similarly, we may examine any of the other seven binary classi�cation prob-
lems for these classi�ers and the above comments will generally still be valid.
For sake of space and relevance to the overall task though, we will show only
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the results for classifying the `verb' tag in Table 2.7. Notice how 70-30:121
yields strong performance, though 100-0:121 is the strongest overall.

2.5.6 Additional Bene�ts of the NER

Obtaining the new craft data set from the web enables us to use the CRF NER as
an action-related POS tagger, but it also provides a whole bunch of data which
can be analyzed statistically. For instance, one of the primary downsides of
version2 is that it relies on a bag-of-words approach. However, examining the
verbs in all the data used for the CRF provides additional supporting evidence.
For instance, the bag-of-words used in version2 contains 49 stemmed words,
whereas we get 205 stemmed words just from the training portion of the 121
�les. Of those 49 in the bag, there are three words that 70-30:121 legitimately
fails to have seen as verbs in its training set. Using all of the training data
though results in all of the verbs in the bag as having been seen. Therefore, the
problem of generating the seed words (the bag) has been solved.

We can also extract frequency counts for the verbs seen in the training of
the CRF (or if we extend it, to the auto-extracted data from websites). For
instance, the top 26 most commonly seen verbs in the 70-30:121 training data
were (from most common to least): use, cut, attach, place, tie, make, glue,
add, paint, fold, press, draw, apply, decorate, cover, bend, turn, secure, roll,
remove, �ll, dip, create, tape, hang, form, wrap. How frequently a verb had
been seen in training/extraction has already been used as a very simple heuristic
for extracting actions from the text, as described in Section 2.4.4; the results
are discussed in Section 2.6.3.

The NER indicates that it is scalable to other domains as well. First, we
have already seen initial evidence in Section 2.5.4 implying that the idea of using
the NER to crawl the web for more data has a lot of potential, especially as it in-
creases the recall (and is on-par with potentially inconsistent human-annotated
data!). In annotating the web data (Section 2.2.2), there was nothing speci�c
to the craft domain, but rather only to actions. There is not strong evidence,
then, to suggest that the same process cannot be applied to other data involving
instructions � such as cooking shows, home improvement, etc. Although there
was not enough time to fully and accurately test these hypotheses, they remain
promising and are de�nitely viable options for future work.

2.6 Results on Sprouts Shows

The results for each of the three versions of the action extractor can be sum-
marized very concisely, and is done in Table 2.8. As expected, as the version
number increases, the action recall increases, under both evaluation metrics (by
video and by text). However, as discussed in each of the subsequent section
these statistics must be interpreted knowing that there were 127 actions that
could have been detected in the against-the-video metric, while there were 137
actions that could have been detected using the against-the-text metric. In the
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Recall (%) Precision (%)
Evaluation ↓ 1 2 3 1 2 3
version→
To Video 37 85 92 88 88 65
To Text 46 85 99 90 89 69

Table 2.8: Results of version1, version2 and version3.

rest of this section, we analyze the successes and failures of each version, and
look at how each could potentially be improved. In Section 2.6.1 we look at
version1; in Section 2.6.2 we look at version2; and in Section 2.6.3 we look
at version3.

2.6.1 Phrase-Based Extraction

Unsurprisingly, version1 did not yield extremely strong results as evidenced
by 35% recall and XX% precision, evaluated against the video. Recall that this
was simply matching four action-introducing phrases, and so would be useless
for a sentence such as �A grown up sprout can help you with cutting out your
construction paper, or you can tear the paper carefully!� While it is arguable
that such a phrase could have been included in the matching process, doing so
would have greatly diminished both the robustness of the system (we can easily
come up with action introducing phrases which would require either a lot of
creativity to handle in a general case or a lot of hand-tailoring) and how well it
generalizes to other domains and tasks.

There are technically three main areas in which version1 is weak: the
inability to handle general instructions/phrases, the inability to handle imper-
atives and the inability to handle anaphoric description. As just discussed,
though, the �rst issue could theoretically be handled if enough time were spent
to hand-tailor cases. The latter two weaknesses are ones which we consider too
di�cult to handle without additional knowledge or information. For instance,
how can imperatives be handled with neither linguistic information nor domain
information? The third disability mentioned is anaphoric action description. As
an example of that we mean that a cutting action may be described in the text
solely by the sentence �We're now going to do this.� Except for detecting that
some action is taking place, based solely on the text (i.e. with no visual input)
there is no easy way to �gure out what might be occurring. Doing so would most
likely require semantic, and hence linguistic, analysis. Interestingly though, as
anaphoric description tended to be included in our action-introducing phrases
(the ones used for version1) we were able to detect the presence of these de-
scriptions: they were not just entirely helpful if one wants a speci�c action
named in a shot, rather than just the fact that some action may be happening.
However, anaphoric descriptions a�ect all three versions and so the issue will
be discussed in more detail in the next section.
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2.6.2 Seed Words + Phrase-Base Extraction

Using both lexical domain information and linguistic information, version2 was
able to get much better results than version1. Speci�cally, against the video
version2 yielded 85% recall and 88% precision, while against the text it yielded
85% recall and 89% precision. While we have to keep in mind that these num-
bers are not entirely comparable, they do indicate that the transcripts present
to version2 challenges proportional to the metric used. From the discussions
in previous sections (2.6.1, 2.3.2), one can guess that these challenges are pri-
marily handling imperatives and handling anaphoric description. As anaphoric
description is not included in the against-the-text evaluation, that would seem
to indicate that there are a signi�cant number of imperative sentences that are
incorrectly parsed (and hence the incorrect POS tags are returned). Further,
since the evaluations were done manually, all of the data were manually in-
spected, and we were able to see that, save one or two sentences, nearly all of
the actions that were not detected in the text were due to imperatives. Here
we have empirical evidence indicating that some other information source is
needed. The precision will be discussed shortly.

Unfortunately, the against-the-video metric is a theoretically slightly more
di�cult task for version2. This is due not only to the imperatives-issue, but
also because of anaphoric description. When anaphoric description occurs, the
only source of information is visual, so the anaphoric description will be included
in against-the-video count. Since version1 was able to detect most anaphoric
descriptions, version2 could as well. Such detections were counted as valid only
if the action that was seen in the video could be obtained from the action-object-
tool tuple returned. As an example, if we had the (slightly easier) anaphoric
description, �Now we're going to do this with the tape,� version2 may detect
〈verb:do; object:; tool:tape〉. We would then be able to detect that some
action with tape is occurring, which could then in theory be passed along as
information to the visual detection portion of the system.

Despite this potential increase in di�culty, the results for version2 against-
the-video are nearly identical to those against-the-text: there was 85% recall and
89% precision. Remember though that there were 137 possible actions in the
text, versus only 127 depicted in the video. In analyzing this metric, the manual
evaluation and inspection of the results are more helpful than simply using the
recall and precision numbers to try to reason out strengths and weaknesses.
Speci�cally, the manual inspection indicates two things: although imperatives
are still an issue when measuring against the video, anaphoric description is
just as much an issue. Since the results for both metrics of version2 are nearly
identical, it makes gleaning support for these claims slightly more di�cult; it
also enables one to become trapped in comparing the two metrics. The results
for version3 however provide strong evidence to greatly support this claim.

The precision for both metrics is something that needs to be addressed. As
mentioned in Section 2.2.1, a predicted action was considered a false positive
detection when it clearly had nothing to do with introducing an action related
to that craft. As a result of this de�nition, the number of false positives was
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invariant to the metric used. It is worth noting, then, that although the precision
was 88% against the video and 89% against the text, there were only 15 false
positive detections across all 27 shows. On average then there were 0.55 false
positive detections per show.

2.6.3 CRF + Seed Words + Phrase-Based Extraction

We have veri�ed our hypothesis that using linguistic and domain information
helps to extract action related information from text. But we have also seen
that there are some issues that have not been resolved, such as the inability
to reliably handle imperatives and anaphoric descriptions. version3, built
upon version2 but with additional information provided by the NER, was
designed to �x and better signi�cant parts of version2. The classi�er used
to generate these results was 70-30:121. When measured against the text,
version3 achieved a 99% recall but 69% precision; when measured against the
video, it achieved a 92% recall and 65% precision. In total, there were 62 false
positives for a total of 2.30 false positives per show.

Clearly the recall is an improvement from version2 under both metrics. For
instance, against the text, version3 missed only one action in all shows. This
one action was a `rare' imperative (one that had never been seen by the NER)
sandwiched between a lot of narrative (conversational, and hence semantically
irrelevant) dialog. We believe that the combination of these two reasons caused
the NER to miss that action verb. (Needless-to-say, version2 also missed that
action.) As the only di�erence between the detection portion of version2 and
version3 was the addition of the NER to version3, this is extremely strong
empirical evidence that, despite the diagnostic test results from Section 2.5.5,
the NER was a tremendous help.

Analyzing the recall from the video metric, we see evidence to suggest that
the NER output helped there as well. Given how bene�cial the NER was above,
it is reasonable to suspect that the primary hurdle when judging against the
video is the anaphoric description. This is best veri�ed by manual inspection
of the predicted tuples, which showed that nearly all of the missed detections
(when judged against the video) were due to anaphoric descriptions. This is
clearly an area that needs to be worked on, and is discussed in Section 2.7.
Regardless, by manual inspection we were able to determine that the recall, for
both metrics, is nearly optimized, which gives much credence to the validity of
our approach.

The precision is a bit disappointing, although it can be more bene�cial to
consider the false positive per show statistic of 2.30 rather than the precision
percentages themselves. However, as many shows have between 4.70 and 5.07
actions per shows, there can be no denying that the false positive rate is an issue
that should be dealt with. In Section 2.4.4 we discussed the certainty measure
c = w · f , which was just a linear combination of four features f . Although the
coe�cients w were hand-chosen the certainty measure is a surprisingly good
indicator of whether a predicted tuple was actually an action. For instance,
nearly all of the 28 predicted tuples with certainty c < 0.3 are false positives.
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Not only that, but nearly all of the tuples with certainty c ≥ 0.5 are correct
(true) detections. For instance, if all of the 28 tuples with c < 0.3 were false
detections and we applied a threshold cuto� of 0.3, the precisions would become
80% against the text and 77% against the video. This provides very strong
evidence to suggest that with some proper thresholding, and perhaps a more
comprehensive certainty calculation, we could signi�cantly reduce the number
of false positives detected while not signi�cantly reducing the overall recall.
Implementing this was beyond the scope of the workshop however, and is left
to future work.

As mentioned above, we used the 70-30:121 classi�er in version3. How-
ever, we showed throughout Section 2.5 that some classi�ers (e.g. 70-30:420
or 70-30:121 in the web-crawling sense) had better recall than 70-30:121, or
just overall better performance (e.g. 100-0:121). However, the version3 re-
sults explain why we decided to use and report 70-30:121 in the system rather
than 70-30:420. While on the web data and in the diagnostic tests we may
have gotten higher recall with 70-30:420, as just discussed, the recall is nearly
optimized in version3. On the other hand, the precision for 70-30:420 was
much lower than that of 70-30:121, and our system precision was deemed low
enough so that we would not want to do anything to decrease it. And while
it would have been nice to use 100-0:121, since it had both higher recall and
precision than 70-30:121 (though in many cases not signi�cantly), the man-
ual evaluation process was very expensive to do and we ran out of time at
the end to experiment with it in the system. Further, by using 70-30:121 we
have shown what can be done with only 87 well-annotated training �les; had
we used 100-0:121, we may have gotten slightly better performance (almost
certainly precision-wise), but at the cost of having to say that those numbers
required 34 additional well-annotated training �les (nearly a 40% increase in
the number of required �les). The annotation process can be expensive and so
we believe that by using 70-30:121 we have presented stronger (and hopefully
more generalizable) results.

2.7 Future Work

As described in Section 2.2.2, the NER operated on a word granularity: it
tagged individual words as being semantically relevant (and how). This though
made it di�cult to intuitively gauge how the performance of the NER would
translate to performance in the overall action-extraction system since in the
action-extraction we were focused on was an action-based evaluation, which in-
herently operated over clauses rather than words. This metric discrepancy will
be familiar to anyone involved with speech processing. Many approaches to
speech recognition has been focused at the phoneme level, but it is generally
considered that a more comprehensive approach is better. Indeed, as seen by
systems such as SCARF ([98]), this belief is given empirical supporting evidence.
Given the similarities that can be found between the problem of action-related
part-of-speech tagging and speech recognition, it would be interesting to adapt a

35



SCARF-based model rather than just an NER. By doing so we could be abstract-
ing over the words and gathering more semantic information than we currently
are, without having to pay the expense associated with typical semantic parsing
and understanding.

As mentioned in Section 2.6, one of the biggest problems among all versions
was that of anaphoric description. There are multiple ways to try and handle
this. The �rst, and most appealing from a comprehensive A.I. viewpoint, is
to more fully incorporate the vision with the language. Speci�cally, if we are
able to predict that there is some action going on (we are just not sure what
action exactly), we would ideally like to be able to prompt the vision for certain
features (such as common tools, etc.).

However, we may also want to try and �nd patterns in various action se-
quences: for instance, is �cut� a more likely action to follow �color,� or is �glue?�
Indeed the whole group had looked at action transition data from the actual
Sprout shows and concluded that due to immense sparsity, the matrix would
not be too informative. However, that conclusion was based on the Sprouts
data; once we had the new web-data properly annotated, that allowed us to
potentially extract action transition probabilities from the web data. With this,
we could see if

1. there were any patterns which could be useful in some later stage or
iteration of the project, and

2. it would provide as another useful heuristic .
We did not have enough time to fully analyze it in either regard, but with

respect to objective 2 we think it seems quite promising.
Two issues that have not been appropriately discussed are those of synonyms

and word sense disambiguation. Over the years, it has been determined that
WordNet ([28]) is fairly well-suited to that task. Indeed, both [67] and [15] have
used WordNet. Using these approaches could be extremely useful, especially
when we would want to map all the detected actions to some (much) smaller
set; for instance, it would be much too cumbersome and weak if we had to have a
classi�er/label for each action name even if two were extremely similar (such as
�cut� and �tear�). However, there is an additional potential bene�t to examining
verb similarity: if we used WordNet and corresponding similarity measures, we
could potentially greatly decrease our false positive rate, since we might be able
to tell (based on the verbs that are most similar to the query verb) whether
or not a predicted action was valid. We began to explore WordNet similarity
measures, especially with regards to the craft domain, but unfortunately time
did not permit a full investigation into this method.

2.8 Conclusions

In this chapter, we were presented with the task of automatically generating
verb-object-tool tuples from our newly created Sprouts data set. The idea be-
hind these tuples was to have them replace the much more costly human created
tuples in the overall action detection and labeling system. We have shown that
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we are able to generate such tuples from the text semi-automatically. Since there
is some discrepancy between the actions mentioned/described in the text and
those enacted on video, two di�erent metrics must be used to comprehensively
capture the strengths and weaknesses of our system. When measuring against
the text, our best reported results are 99% recall and 69% precision, while when
measuring against the video, our best reported results are 92% recall and 65%
precision.

Initially, we were not able to achieve those results. We purposefully con-
structed a very naive baseline, version1, that simply matched four �action-
introducing� phrases (which we determined). As this was only to act as an
extremely rudimentary baseline, it was not optimized in any way. We then
built version2 on top of version1, by using linguistic information, in the
form of part-of-speech tags and the dependencies as provided by the Stanford
probabilistic parser ([40, 41]), and domain information, in the form of seed ac-
tion words. This worked very well against both metrics, but the inability of the
parser to handle imperatives and the issue of anaphoric description of actions
created hurdles which had to be overcome.

As the inability to handle imperatives was not isolated to just the Stanford
parser, but was a limitation of many other parsers we experimented with, we
decided to adapt a named entity recognizer [32] to act as an action-related part-
of-speech tagger. Given the size of the Sprouts data set and the di�culties
presented by the narrative structure � and corresponding low semantic density
� we decided to train this NER on craft data which we could extract from the
web. Initially only 121 instructions out of the 420 total newly obtained craft
data were hand-annotated by the authors; these were broken up into training
and test sets on a 70/30 basis. We then trained a classi�er (70-30:121) which
was to become our standard and very reliable NER classi�er. We experimented
with variants of 70-30:121, including running `semisupervised' classi�ers and
simulating a the classi�er in a web-crawling set up. These all indicated that
the 70-30:121 could be used as an action-related part-of-speech tagger which
could be generalized to other domains and uses, such as for cooking shows, home
improvement shows, etc.

In our �nal action extractor (version3) we used the results from running
the NER on the Sprouts shows as a way to help compensate for short-comings
in the parser. As we ended up with a 99% recall when measured against the
text, we have strong empirical evidence to suggest that the NER did what it
was intended to do. There is a slight issue of a decrease in precision from ver-

sion2 to version3, however we are able to use the NER output to construct
a �certainty measure� that corresponds extremely well with true positive and
false positive detections. There was not enough time to experiment with this
certainty measure, but we believe it could be very useful to increasing the pre-
cision while keeping the recall at its near-optimal state. The NER also allows
us to successfully address the issue of the generation of the seed words used
in both version2 and version3. We have therefore shown that we can semi-
automatically extract action-related information from the text transcript of an
instructional video/show with near-optimal recall.
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Chapter 3

Extraction of Domain

Knowledge

Domain knowledge is one method of using language to aid in object and action
recognition in video. Rather than utilizing the video transcript directly, we
extract information from the web and other sources of information to develop a
semantic background for the results from vision. In this project, this semantic
background takes the form of a co-occurrence matrix, which gives a likelihood
of a tool and action occurring at the same time in a video. However, domain
knowledge to aid in object recognition need not be limited to co-occurrences �
we will cover other applications towards the end of this section.

This co-occurrence relationship is known as a �common sense� relationship.
Common sense means that the semantic information is understood through
common experience, and often applies to daily life. Because they are known to
most people, common sense facts rarely appear in text. For example, it is rare
to say, �Cut the paper with scissors�, because it is understood that scissors are
the most common tool for cutting paper. However, we cannot always assume
that if we are cutting something, we are using scissors. For example, if one
says to �Cut the steak�, then common sense knowledge tells us that we should
use a knife (and a steak knife, not a butter knife) to cut the steak. Therefore,
we must take into account both the object and the domain when determining
co-occurrence relationships.

3.1 Co-occurrence Matrices

To create the co-occurrence matrices to aid in action and object detection, we
experimented with three di�erent sources of domain knowledge � Wikipedia
(with WordNet), ConceptNet, and Yahoo search results. Each of these sources
have their own strengths and weaknesses, but these sources can be used in
conjunction with each other in the global model (which integrates vision and text
features). However, since we extract relationships di�erently from these sources,

38



the resulting co-occurrence matrices takes two di�erent forms depending on the
source � binary for Wikipedia and ConceptNet, or real-valued for Yahoo search
results. In our co-occurrence matrix for Wikipedia and ConceptNet, we put a
�1� in the intersection of a tool and action if the tool is used to perform the
action, and a �0� if this relationship does not apply. In the co-occurrence matrix
for Yahoo, we put either a probability of the action and tool co-occurring, or a
distance value to indicate the semantic distance between them.

Table 3.1: Co-occurrence Matrix from Training Data - �Writing tool�
represents the sum of �pencil�, �marker�, �pen�, and �crayon�

coloring cutting drawing gluing painting placing

brush 0 0 0 1 8 0
glue 0 0 0 20 0 0

scissors 0 38 0 0 0 0
writing tool 12 0 42 0 0 0

3.2 Wikipedia Matrix

Wikipedia is an online, user-edited encyclopedia that covers a broad range of
topics. We can use the information in Wikipedia to extract the relationships
we are looking for. In this method, we also use WordNet, a lexical database
for English that categorizes words into semantic categories. It can be used as
a dictionary, or to �nd relationships between related words. Our method for
�nding action-tool relationships in Wikipedia is rather simple:

1. look up the page corresponding to a particular action,

2. �nd the nouns, and

3. check WordNet to see which nouns are tools.

3.2.1 Method

A few modi�cations needed to be made to this method to achieve the best
results. First, we create the �ing form of the verb in question, because the
Wikipedia pages for actions are typically in that form. Second, we can improve
the precision at a slight cost of recall by checking nouns only within links and
captions in the Wikipedia page. The assumption is that links which are related
to the topic will be links in the page, and that links in the page are related to
the topic. Captions also provide useful information, because we are ultimately
interested in the relationship between textual semantics and vision information.
For example, the page for gluing gives a caption, �Nitrocellulose adhesive outside
a tube�. �Tube� does not appear anywhere else in the document, and it directly
correlates to a shape that we would expect to see in video.
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3.2.2 WordNet

To use WordNet[28, 64] to check our parsed words, we make use of WordNet's
relationship properties, which are given for each synset. To �nd whether a
word could be a tool, we retrieve the hypernym paths of each synset containing
that word. The hypernym paths provide all of the lexical categories that the
synset belongs to � from this list, we can �nd whether the object belongs to
the �implement� or �tool� category. Depending on the domain, we can also
extend this to include a broader range of �tools�: we would include �utensil�
and �chemical� for cooking, for example.

3.2.3 Challenges

One drawback of using Wikipedia is that words are not sense-tagged. We must
therefore look for nouns that have any possible sense that is a tool, regardless
of whether it is used in that context. This approach ensures a high recall,
but low precision. While there are some sense disambiguation tools available
online, those we evaluated on sample Wikipedia pages were not accurate enough
to use. Parsing only the links in the page improved precision at the cost of
recall, and solves the sense tagging problem to an extent. However, there are
some important tools that are not links in their corresponding action page,
such as �pot� in the �boiling� page. Another problem we encountered was the
appearance of key words only in articles related to the action's page, but not the
action's page itself. For example, �crayon�, �marker�, and �pencil� were found
in the page for �Coloring book�, but not in the page for �Coloring�. Therefore
we expand our search to include a few related pages to ensure that we do not
miss tools that may not be in the original article.

3.2.4 Results

Our results from Wikipedia were promising in that they matched both intuition
and the actual co-occurrences of our training data. In this project, we used a list
of tools and actions that we knew would appear in the test data, and restricted
the co-occurrence matrix to include only those tools and actions. However, our
results could also be used if we did not know the tools (or actions) that would
appear in video. For example, we could use online image databases such as
image.net or Google Images to retrieve images for a particular tool to train on.
An alternative option would be to �nd physical characteristics of these objects
from domain knowledge on the web, and look for these in the video. Work on
this method will be presented later in the paper.

3.3 ConceptNet

We explored ConceptNet[58] as another knowledge base to extract action-tool
representations. ConceptNet is a common-sense semantic network where seman-
tic relationships are added to the database by any web user that has registered
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Table 3.2: Wikipedia Action-Tool Matrix - �Writing tool� represents the
logical AND of �pencil�, �marker�, �pen�, and �crayon�

coloring cutting drawing gluing painting placing

brush 0 0 1 0 1 0
glue 0 0 0 1 0 0

scissors 0 1 0 0 0 0
writing tool 1 0 1 0 0 0

for the Common Sense Initiative website. This database includes relationships
such as PropertyOf, IsA, and UsedFor to de�ne words in terms of semantic
relationships with other words.

3.3.1 Method

Using ConceptNet, we do not have to do any further processing to �nd action-
tool relationships - we only need to look up the relationships UsedFor or Capa-
bleOf if we want to �nd the actions a tool is used for. If we want to �nd the
tools used for a particular action, we use the same relationships, but we search
for all occurrences of the relationship with the action as the second argument.
When creating our co-occurrence matrix, we would put a '1' in the matrix if we
found one of these relationships for a given tool and action.

3.3.2 Challenges

Since ConceptNet relies on contributions from users of the Common Sense Ini-
tiative web applications and not knowledge supplied by a group of experts, there
are many gaps in the knowledge base. While ConceptNet does use algorithms
for inducing relationships, there were many relationships we expected but did
not �nd.

There were also some errors in the database, such as the tool �saw� being
stemmed to form the word �see�. Also, while there is some semantic generaliza-
tion applied to input, often there were details that were parsed from the user
input that were not relevant to the semantics of a particular term, and would
introduce noise if we did not perform some processing on our results.

3.3.3 Results

While the interface of ConceptNet makes �nding action-tool relationships sim-
ple, we did not use the ConceptNet matrix in the �nal project because the data
was too sparse. In our project, we found only �ve of the twelve co-occurrences we
expected using ConceptNet. Since we obtained better results from Wikipedia,
including ConceptNet in our global model could have over-emphasized those
co-occurrences that occurred in the ConceptNet results.
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3.4 Web Matrix

Rather than simply having a binary matrix to say whether an action-tool rela-
tionship exists, we would also like to have a continuous measure of how closely
related an object and an action are. This helps us determine if one particular
object is more closely related to an action than another plausible object. For
example, one would think of �crayons� when �coloring�, but one can color with
colored pencils or markers as well.

These similarity values could be extracted from any su�ciently large and
relevant corpus using measures such as point-wise mutual information. Data
sparsity is a particular problem for this project since we are working with a
speci�c domain - to �nd action-tool co-occurrences for arts and crafts shows, we
would need corpora speci�cally relating to arts and crafts. However, since we
only need occurrence and co-occurrence data, we can use search engine results
from the web to retrieve co-occurrence data from the vast information of the
web and thereby avoiding data sparsity problems.

3.4.1 Previous Work

Relatedness measures have often been used to �nd relationships between words.
While a relatedness measure can be used to �nd synonymous words, related-
ness (as opposed to similarity) can also be used to �nd words that share any
association, such as automobile and gasoline. Resnik[76] and others have used
Wordnet in conjunction with information content from other corpora to deter-
mine word similarity. However, Wordnet's relationships are limited to the same
part of speech. Therefore, Wordnet similarity measures could not be used to
�nd action-tool relationships.

Web-based relatedness measures have also been explored in previous work.
Baroni and Vegnaduzzo [6] used a variant of point-wise mutual information with
AltaVista using the �NEAR� operator, which only returns searches that contain
the speci�ed words within a certain word distance of each other.

3.4.2 Method

To create a matrix with these values, we use a semantic distance measure called
the Normalized Google Distance (NGD)[19]. The NGD is a relatedness measure
based on the Normalized Compression Distance and modi�ed to use the number
of results returned by Google to stand in for the compressor in NCD. In this
project, we use Yahoo instead of Google because the Yahoo API is more �exible,
and the Google API did not provide the number of search results returned. The
implementation remains the same.

To �nd the semantic distance between two terms x and y, we use the Nor-
malized Google Distance equation:

NGD(x, y) =
max{log f(x), log f(y)} − log f(x, y)

log(N)−min{log f(x), log f(y)}
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where f(x) is the number of search results for query x, f(x, y) is the number
of search results for query x and y, and N is the total number of pages indexed
by the search engine. This returns a value between 0 and in�nity (because of the
details of how Google calculates the number of results), but most values returned
are between 0 and 1. The lower the number, the more related two queries are,
with two identical queries having a distance of 0. We calculate the NGD for each
action-tool pair and enter it into a matrix to form our co-occurrence matrix.

3.4.3 Modi�cations

Verb Forms An issue with using the web for a distance measure is that many
verbs have a noun form that is identical to the verb form. We achieve results
more correlated with our expectations by using the -ing form of a verb instead
of the in�nitive form. This modi�cation restricts our results to the action we
are interested in and avoids noun forms in our search.

Domain-Speci�c Comparison Action-tool relationships can di�er accord-
ing to a particular domain. For example, in arts and crafts, one associates
cutting with scissors. However, in cooking, one would associate cutting with
a knife. We would like to capture these domain-speci�c relationships to im-
prove the accuracy of our reported similarity. To restrict to a particular domain
using the NGD, we append the domain to each of our queries. For example,
to determine f(′scissors′), we perform the query <scissors �arts and crafts�>.
Likewise, to determine f(′scissors′,′ cutting′), we perform the query <scissors
cutting �arts and crafts�>.

Domain Scaling We found that simply adding the domain to the search
query did not completely disambiguate domain-speci�c relationships. Even if
we specify the domain as �arts and crafts�, we obtain a smaller distance between
�knife� and �cutting� than we do between �scissors� and �cutting�. We further
enforce domain speci�city by multiplying our distance by a scaling term, which
is the distance between the object and the domain. Thus, if a particular object is
not associated with the domain, it will be given a larger distance. The equation
is then as follows:

SNGD(x, y) = NGD(x, y) ∗NGD(x, domain)

where x is the object and y is the action.

Pattern Matching Our implementation so far has been searching for a co-
occurrence of two words anywhere in an entire web page. However, given the
variety of content on a typical web page, the context of these two words may
be di�erent, and their co-occurrence may be entirely incidental. We would like
to discard these matches in our search query, and work under the assumption
that two words are related only if they occur within a certain word distance
within each other. We achieve this by using the pattern matching feature that

43



is provided by the Yahoo (and other search engines) API. This pattern matching
feature allows us to perform similar queries to those we could make with Al-
taVista's �NEAR� operator. If we change our query to < �scissors * cutting� OR
�cutting * scissors� �arts and crafts� >, the search will only return pages where
�scissors� and �cutting� appear within two words of each other. This preferable
to searching for words that are adjacent to each other, given that there are of-
ten prepositions or other words in between a tool and an action. One can also
increase the distance up to within 5 words of each other by adding additional
asterisks. To search for words within three words of each other, the query would
be < �scissors * cutting� OR �cutting * scissors� OR �scissors * * cutting� OR
�cutting * * scissors� �arts and crafts� >. We found that a distance of two words
provided results that most coincided with our expectation of co-occurrence.

3.4.4 Results

We tested the domain scaling modi�cation to see how well it performed domain
discrimination when objects came from di�erent domains. We then compared
the di�erent domain discrimination techniques on our scissors and knife exam-
ple mentioned previously. We would like to show that a knife is more related
to cutting than scissors in the cooking domain, but scissors are more related to
cutting in the arts and crafts domain. We �nd that domain scaling successfully
enforces this relationship, but pattern matching also aids in domain discrimi-
nation to a lesser extent. The results are shown in Figure 1. One drawback of
domain scaling is that it can introduce noise to the distance values when objects
are all of the same domain, and since that is true of the objects we will �nd in
our video, we did not use it in our �nal project.
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Figure 3.1: Domain Discrimination Results

Our results for the Web matrix correlate with both our expectations and the
co-occurrences of the training data. Table 3 shows the �nal matrix that was
used in the global model. In this matrix, the action-tool pairs that we expect
to see in video have the lowest distance values. In this case, values below 2.0
indicate that an action-tool relationship exists, and this pattern provides the
co-occurrence information that can be used in the global model.

Table 3.3: Web Matrix - Distance values from the Normalized Google Dis-
tance with a speci�ed domain and pattern matching. Lower values indicate two
terms are more related. INF values indicate little or no co-occurrence, and were
smoothed to a high distance value in the model. �Writing tool� represents the
average of �pencil�, �marker�, �pen�, and �crayon�.

coloring cutting drawing gluing painting placing

brush 2.51 2.11 2.40 INF 1.85 INF
glue 2.51 2.51 2.51 1.2 2.44 INF

scissors 2.47 1.76 2.36 INF 2.68 INF
writing tool 2.12 3.51 1.72 INF 2.08 INF

3.4.5 Discussion

Our modi�ed NGD algorithm can have other uses aside from constructing a
relatedness matrix. For example, we may have a large number of results from
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Wikipedia mining, but some may not be related to the particular domain we
are interested in. We can use our distance algorithm to prune results that are
not speci�c to the domain by using domain scaling and pattern matching.
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Part II

Computer Vision
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Chapter 4

Action Recognition

4.1 Introduction

The analysis of actions and activities from videos is a very active research
topic in Computer Vision due in part to several promising applications such
as surveillance, elderly care, human-machine interfaces, video-indexing based
on actions, etc. However even after almost two decades of research, the problem
of automatic action recognition remains mostly unsolved. There are numerous
challenges for the development of robust and general action recognition algo-
rithms: scene and self occlusions, environmental a�ects such as lighting, in-door
vs outdoor, clothing, carry-on accessories, technical a�ects such as video size,
sampling rate, camera motion, as well as myriad other factors such as multiple
actions/humans, human/object interactions, di�erent semantic interpretation
of the same scene, etc.

Most of the work in the area of automatic action recognition considers whole
body actions such as walking, running, jumping, etc. This is also the scenario
that is most common in surveillance applications. Over the past years, several
benchmark datasets have emerged that contain relatively modest variations in
camera motion, scale, clothes of the actors, etc., for the development of robust
action recognition algorithms. State-of-the-art methods also show promising
recognition rates on these datasets. Recently, there has been a shift towards
recognition of not just whole body actions but also human interactions with
other humans as well as objects. Moreover, for elderly care applications, it
is important to recognize activities of daily living such as cooking and clean-
ing, etc. The activities of interest here are manipulation tasks such as cutting
food, gluing materials or painting which could have very di�erent appearance
depending on the camera location. In this section, we consider the automatic
recognition of hand-crafts such as cutting, coloring, gluing, painting, etc. We
will show that state-of-the-art approaches that only consider spatial-temporal
patterns of motion and intensity of the moving objects do not perform well on
manipulation tasks such as ours. However, these approaches still provide meth-

48



ods for generating robust features for action representation which will be used
later.

4.1.1 Prior Work

There is a long history of human motion analysis in computer vision. The sur-
veys by Gavrila ([33]), Aggarwal et al. ([2]), and by Moeslund et al., ([65, 66]),
provide a broad overview of over three hundred papers and numerous approaches
for analyzing human motion in videos, including human motion capture, track-
ing, segmentation and recognition. Most of the work in activity recognition can
be divided into two classes: 1) collections of local models and 2) global models.
Local models compute a collection of spatio-temporal interest points such as
the ones de�ned in [24, 48, 90] and compute a descriptor based on intensity,
optical �ow and their gradients in a spatio-temporal cuboid centered at each
interest point ([24, 50, 90]). The action in a particular video is then modeled as
a distribution over a dictionary of codewords learned from a large collection of
these spatio-temporal descriptors extracted from a database of human actions.
Wang et al. ([88]) provide a comparison of the recognition performance of vari-
ous 3D interest point detectors and their corresponding descriptors on standard
datasets such as the Weizmann dataset ([34]), KTH dataset ([78]) and the Hol-
lywood action datasets ([50, 62]). Another local approach proposed by �kizler
et. al. ([36]) learns local limb motion models from labeled motion capture data
to query more complicated actions as a composition of these local models.

On the other hand, global models for human actions compute statistics of
motion and intensity over the whole frame or an extracted human skeleton or
silhouette. Efros et al. ([26]), modeled human actions at a time instant by his-
tograms of optical �ow. These histograms were then used to match the motion
of a player in a soccer match to that of a subject in a control video. Tran et al.
in ([83]) present an optical �ow and shape based approach that uses separate
histograms for the horizontal and vertical components of the optical �ow as well
as the silhouette of the person as a motion descriptor. Gorelick et al. ([34])
and Yilmaz et al. ([94]) represent human activities by 3-D space-time shapes.
Classi�cation is performed by comparing geometric properties of these shapes
against training data. Another class of global models speci�cally models the
temporal dynamics of human activities. In general, the recognition pipeline is
composed of 1) �nding features in every frame, 2) modeling the temporal evo-
lution of these features with a dynamical system, 3) using a similarity criteria,
e.g. distances or kernels between dynamical systems, to train classi�ers, and 4)
using them on novel video sequences. Bissacco et al. used joint-angle as well as
joint trajectories from motion-capture data ([10]) and features extracted from
silhouettes in [11] to represent the action pro�les. Ali et al. in ([3]) used joint
trajectories to extract invariant features to model the non-linear dynamics of
human activities. Chaudhry et al. in [16] use non linear dynamical systems to
model the temporal evolution of optical �ow histograms.

As mentioned earlier, all the above approaches model full body human ac-
tions such as running, walking and jumping etc. With the recent interest in
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manipulation tasks, datasets such as the CMU Quality of Life Grand Challenge
Kitchen Dataset ([1]) and the University of Rochester Activity of Daily Living
Dataset (URADL) ([63]) have been released. Benchmark results such as those
presented in [63] show that state-of-the-art approaches that use spatio-temporal
interest points do not scale well. Instead, an inference approach using veloc-
ity features extracted by tracking points across frames performs much better.
Recently, another tracking based approach was proposed by Raptis et al. in
[74] where spatio-temporal interest points were extracted and tracked. At each
tracked location a descriptor that averaged the intensity gradients or the �ow
was computed. A bag-of-words like approach using these features was shown to
get promising results on both the KTH dataset as well as the URADL dataset.

Finally, there has been some work at recognizing actions in individual images
and frames. Most relevant is the recent work by Yao et al. ([93]) where object
detectors and human pose detectors are jointly used to classify the object and
pose (action performed) of the human.

4.1.2 Contributions

In this chapter we will evaluate some of the most common action recognition
approaches on the Sprout TV Crafts dataset. In section 4.2, we describe three
supervised approaches for shot-level action recognition. In section 4.3, we de-
scribe a simple Multiple Instance Learning based approach for automatically
learning the labels of the individual shots in an episode by using episode-level
labels only.

4.2 Supervised approaches

4.2.1 Global Histograms of Oriented Optical Flow

The optical �ow of a scene describes the motion characteristics of moving objects
in a scene as well as the motion of the camera. If the camera is stationary, the
optical �ow is only the result of object motion. Moreover, if there is only one
person in the scene, the optical �ow at each frame is characteristic of the state of
motion at that time. To model the temporal evolution of the motion of optical
�ow, Chaudhry et al. proposed a system theoretic approach in [16] where the
variation in the optical �ow signature caused by the human action is modeled
as a Non-Linear Dynamical System (NLDS). Given a video, the optical �ow is
computed for each pair of consecutive frames. The �ow in each frame is then
quantized into B bins according to the direction of the optical �ow vector. More
speci�cally, for the optical �ow vector (u, v), at pixel location (x, y), and having
magnitude m =

√
u2 + v2 and angle, θ = arctan y

x contributes to bin b where,

− π

2
+ π

b− 1

B
≤ θ < −π

2
+ π

b

2
(4.1)

The contribution of each optical �ow vector is equal to its magnitude m. The
resulting histogram is then normalized to one to make it invariant to the scale
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Table 4.1: 1-NN Classi�cation using global laterally invariant HOOF (Metric
labels are: M = Martin, BC = Binet-Cauchy, BC-MSV = Binet-Cauchy Max-
imum Singular Value, KL = KL Divergence, Means = Di�erence of temporal
means. Hybrid metrics use a linear combination of the corresponding metric
and the di�erence of temporal means. See [17] for more details)

Metric Regular Hybrid

M 27.17 26.09
BC 28.26 26.09

MC-MSV 28.26 28.26
KL 13.04 22.83

Means 22.83

of the person in the scene. The quantization of the 2-D space according to Eq.
(4.1) makes the histogram feature invariant to lateral motion of the person. This
is especially useful when we do not want to distinguish between, for example,
running left and running right. For each video, a time-series of these Histograms
of Oriented Optical Flow (HOOF) is extracted. Each time-series is then modeled
by an NLDS and metrics de�ned on the this space of NLDS are used to compare
HOOF time-series. Any classi�cation algorithm such as k-Nearest Neighbors (k-
NN) or Support Vector Machine (SVM) can then be used to classify actions in
novel video sequences based on learnt models from a training set of interesting
actions. For more details, we refer the reader to [16].

For our �rst set of experiments, we focus on the manually annotated shots in
the original episodes. Of all the 30 annotated actions, there are 11 actions that
have more than 5 annotated shots per action with a total of shots. We use 50% of
the shots for each action as training and the remaining for testing. To compute
the optical �ow for each shot, we use the GPU-based TV-L1 norm optical �ow
method in .We divide the 2D +ve x-axis plane in 64 equal parts according to the
angle to the horizontal. This gives us 64 bins for computing the HOOF features.
Once a time-series of HOOF features has been computed for each shot, we use
the kernel k(hihj) =

∑
k

√
hi(k)hj(k), to compute the system parameters of

the NLDS that generates this time series. We use a system order of 10. In this
way, the system parameters for all the training and testing shots are computed.
To �nd the action label of a test sequence, we compute the distance between
the parameters of the test shot and all training shots and assign the label of
the training system that is the closest to the test system. Table 4.1 shows the
results for 1-NN classi�cation using several dynamical systems metrics.

As we can see, the best recognition rate achieved is 28.26% which is only
marginally better than the recognition rate achieved by simply assigning the
label of the most frequent class in the training set to all test samples, 22.83%.
Figures 4.1 and 4.2 show the confusion matrices for the regular and hybrid
Binet-Cauchy maximum singular value kernel when used to compute the dis-
tance between two NLDS in the 1-NN classi�cation scheme. As we can see, the
performance is very poor and the classes that have larger number of sequences
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Figure 4.1: Confusion matrix for 1-NN classi�cation using the regular Max
SV kernel on the test set from the manually annotated shots. The right most
number indicates the number of test samples for each class.

seem to overshadow the ones that have a smaller number of sequences. For
example, most of the sequences are classi�ed as Cutting or Placing which are
the most dominant classes.

When using a version of HOOF that is not laterally invariant, by dividing the
whole 2D space into B bins instead of just the +ve x-axis, we get get slightly
better results as shown in Table 4.2 with the best result achieved with the
Martin distance. Figure 4.3 shows the corresponding confusion matrix and as
we can see that qualitatively there is not much of a di�erence from the previous
confusion matrices.

One of the main reasons that the HOOF based global approach is not working
well is that the videos contain a number of artifacts such as camera motion,
zooming and fading. These artifacts cause spurious optical �ow patterns that
are not a result of the motion of the objects of interest. The dynamical systems
estimated thus, are not entirely representative of the action but also try to model
these spurious optical �ow signatures. Since the artifacts are unpredictable and
vary in frequency and form across the videos, it is very di�cult to remove
them from the original video. The global HOOF based approach hence tends
to perform poorly. We also see the e�ects of insu�cient training data for some
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Figure 4.2: Confusion matrix for 1-NN classi�cation using the Hybrid Max
SV kernel on the test set from the manually annotated shots. The right most
number indicates the number of test samples for each class.

of the classes. Table 4.3 shows the recognition results when we only focus on
the three most frequent classes: Cutting, Drawing and Placing. Similarly Table
4.4 shows the recognition results when we only focus on the two most frequent
classes: Cutting and Drawing. As we have a smaller number of classes and a
relatively balanced number of sequences per class, the recognition results are
better. However because of the camera artifacts, the results are poor, and as
we will see later, local approaches tend to perform much better.

4.2.2 Local Spatial-Temporal Interest Points

Global models for action recognition tend to perform poorly whenever there
are camera or scene artifacts such as moving cameras, self occlusions, etc. For
object recognition in images, local features such as SIFT [59] have proven to be
very useful. These features have a small spatial extent and a complete object
is represented as a sum of these local features as a frequency distribution over
a set of automatically chosen representative features. Laptev et al. in [48]
showed that similar features can be constructed for videos by extracting corners
in space-time instead of just image space. In a similar fashion, Dollar et al. in
[24] presented an alternative method for extracting candidate space-time points
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Table 4.2: 1-NN Classi�cation using global laterally invariant HOOF (Metric
labels are: M = Martin, BC = Binet-Cauchy, BC-MSV = Binet-Cauchy Max-
imum Singular Value, KL = KL Divergence, Means = Di�erence of temporal
means. Hybrid metrics use a linear combination of the corresponding metric
and the di�erence of temporal means. See [17] for more details)

Metric Regular Hybrid

M 33.70 32.61
BC 23.91 22.83

MC-MSV 27.17 26.09
KL 17.39 19.57

Means 17.39

Table 4.3: 1-NN Classi�cation for 3-classes using global laterally invariant
HOOF (Metric labels are: M = Martin, BC = Binet-Cauchy, BC-MSV = Binet-
Cauchy Maximum Singular Value, KL = KL Divergence, Means = Di�erence of
temporal means. Hybrid metrics use a linear combination of the corresponding
metric and the di�erence of temporal means. See [17] for more details)

Metric Regular Hybrid

M 55 48
BC 41 48

MC-MSV 46 52
KL 38 43

Means 43

Table 4.4: 1-NN Classi�cation for 2 classes using global laterally invariant
HOOF (Metric labels are: M = Martin, BC = Binet-Cauchy, BC-MSV = Binet-
Cauchy Maximum Singular Value, KL = KL Divergence, Means = Di�erence of
temporal means. Hybrid metrics use a linear combination of the corresponding
metric and the di�erence of temporal means. See [17] for more details)

Metric Regular Hybrid

M 75 70
BC 60 68

MC-MSV 73 78
KL 65 65

Means 70
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Figure 4.3: Confusion matrix for 1-NN classi�cation using the Martin distance
with Laterally Variant HOOF on the test set from the manually annotated shots.
The right most number indicates the number of test samples for each class.

by �ltering the video volume with spatial Gaussian and temporal Gabor �lters.
In general these Space-Time Interest Points (STIP) can be extracted at several
spatial and temporal scales corresponding to the scales of the various �lters
used. Once these STIP have been extracted, a feature is extracted at each
STIP that describes the spatial and temporal characteristics of intensity and
�ow in a neighborhood of that point. Commonly used features are intensity,
optical �ow and their derivatives. In particular Laptev et al. in [50] introduced
the Histogram of Gradients (HOG) and Histogram of Flow (HOF) features
which have shown promising results on several human action datasets. Once
local features have been extracted, a set of representative features or codewords
is extracted by clustering all the features extracted from a training set. The
cluster centers represent areas of high density in the feature space and a shot
containing several features can thus be represented as a frequency distribution
over these codewords. With each shot thus represented as a histogram, we can
use any histogram metric such as the χ2 distance to compare di�erent action
shots using any classi�er such as 1-NN or SVM.

To parallel the �rst experiment in the previous section, we use publicly
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Figure 4.4: 1-NN classi�cation, recognition rate 42.39%

available code1 provided by Laptev et al. to compute STIP and HOG+HOF
features from all the manually annotated shots. This extracts STIPs at spatial
scales of σ2 = {4, 8, 16, 32, 64, 128} and temporal scales, τ2 = {2, 4}. With the
key point extracted, an 18σ× 18σ× 8τ cuboid is considered with the key point
at the center. This cuboid volume is further divided into 3× 3× 2 parts and for
each part a 4-dimensional Histogram of Gradients (HOG) and a 5-dimensional
Histogram of Flow (HOF) is extracted to get a 18× (4 + 5) = 162 dimensional
feature. From the training dataset consisting of 50% of all annotated actions, all
the features are extracted and clustered in 100 and 4000 clusters (codewords).
For each shot, the term frequency of each codeword is computed by �nding
the number of features in each shot that are closest to that codeword. After
normalization, we get a histogram of term frequency for each shot. Using the
χ2distance and 1-NN classi�cation, the recognition results on the remaining 50%
data used as test data are shown in the confusion matrices in Figures 4.4 and
4.5.

As we can see the recognition rate is better than the global HOOF approach.
Moreover, we see a better diagonal structure in the confusion matrix. However,
the problem of varying number of samples per class manifests itself in this as
well. As we can see a number of smaller classes are classi�ed as Cutting or

1http://www.irisa.fr/vista/Equipe/People/Laptev/download/stip-1.0-winlinux.zip

56

http://www.irisa.fr/vista/Equipe/People/Laptev/download/stip-1.0-winlinux.zip


.50 .50

.67 .33

.16 .63 .11 .05 .05

.50 .50

.05 .62 .05 .24 .05

.40 .20 .40

.10 .30 .10 .30 .20

.20 .40 .20 .20

.06 .25 .06 .06 .44 .06 .06

.67 .33

.33 .67

Bending

Coloring

Cutting

Decorating

Drawing

Folding

Gluing

Painting

Placing

Taping

Threading

Bending

Coloring

Cutting

Decorating

Drawing

Folding

Gluing
Painting

Placing

Taping
Threading

2

6

19

2

21

5

10

5

16

3

3

HOG/HOF features − 100 clusters

Figure 4.5: 1-NN classi�cation, recognition rate 43.48%

Placing, the classes with larger number of sequences. Figure 4.6 shows the
classi�cation results for the 2-, 3-, and 5- class sub problems. As we can see
the sequences with smaller number of classes tend to be confused with the more
frequent classes. The small number of training samples creates a challenge
to learn a good 1-NN classi�er. Even with balancing the number of training
samples by choosing the same number of samples per class, the results are no
better than choosing all as can be seen in Figure 4.7. Moreover, although not
shown here, the results depend heavily on the initial sample set used in training.

For the second part of our experiments, we focus our attention on automat-
ically extracted shots using a shot-segmentation algorithm. Moreover, we only
consider the 5 most common actions: Coloring, Cutting, Drawing, Gluing and
Painting. As part of training, we choose 13 out of the 27 full episodes and the
remaining 14 are used for testing. The labels of the manual annotations are
transferred to the automatically extracted shots. The label of a manually anno-
tated shot is transferred to an automatically segmented shot if at least half of
the latter overlaps with the former. We observe that almost all automatically
segmented shots overlap nicely with the manually annotated ones. Action shots
from other classes are given the label �Other� or �Uninteresting�. Zoomed-out
shots can be detected using a context-detection algorithm and with almost 100%
accuracy removed for further analysis. All zoomed-in shots with the correspond-
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Figure 4.6: Variation of recognition rate with number of classes
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Figure 4.7: Variation of recognition rate with number of classes with equal
training samples for each class

ing transferred labels are used for training and testing by using the same feature
extraction pipeline as above.

Figure 4.8 shows the confusion matrix for the above mentioned scenario.
The recognition rate is 50%, whereas labeling every sample with the label of
the most frequent class - Uninteresting - is 47%. The large number of training
and testing samples for the Uninteresting class again biases the results towards
high. However, the average class recognition rate, which is the average of the
diagonal values of the confusion matrix is 43.33% which is much better than the
corresponding chance level of 17%.

Since the STIP HOG+HOF features and the corresponding bag-of-features
approach gives the best results on this dataset, we will use the resulting fre-
quency histogram per shot as the action feature to be used later when combin-
ing with other features such as tool and hand detectors as well as co-occurrence
statistics from language.

4.2.3 Local Histograms of Oriented Optical Flow

As a compromise between the global and local feature, we propose to extract
STIP key points as in the previous section, but as a feature, we compute the
HOOF NLDS as in [16] for each cuboid. For the clustering stage to compute
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Figure 4.8: Recognition rate 50%, average class-level recognition rate 43.33%

codewords, we need to cluster NLDS. This is not trivial as the space of NLDS
is not Euclidean and a simple k-means procedure on vectorized parameters of
the NLDS will not give the correct answer. We choose to use the approach
described in [75], which uses MDS on the all-pair dynamical systems based
distance matrix to embed all the NLDS in a lower-dimensional Euclidean space
and perform clustering on that space. As cluster representatives in the NLDS
space, the data-point closest to each cluster center in the lower-dimensional
Euclidean space is chosen. When computing term frequency histograms, the
assignment of a feature to a codeword is done by �nding the codeword that is
the closest to the feature in terms of the dynamical systems based distance.

We only perform one experiment on the manually annotated shots with the
50% training and 50% test split as before. To �nd keyword candidates in training
data, we use the Martin distance to �nd all pairwise NLDS distances, perform
MDS on these to get 90 dimensional Euclidean vectors. K-means is used to
cluster these vectors in 100 clusters as before to compare to HOG/HOF. Term-
Frequency histograms are computed for the training videos. For cuboids in test
videos, the Martin distance is used to compute keyword memberships before
computing TF histograms. The remaining classi�cation procedure is the same
as the usual bag-of-features approach.

Unfortunately, computing the all-pair distance matrix of all local HOOF
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features is not possible because of the sheer number of local HOOF systems in
the training set ~ 800k. To keep the computation tractable, we sample 1000
candidate points and cluster these into 100 clusters to �nd the keywords. On
the 2-class sub-problem, we get a recognition rate of 67.5%.

Since this approach does not perform as well as the local STIP HOG+HOF
approach, we did not perform any more experiments and as described earlier, the
action feature to be used from now on per shot will be the frequency histogram
over STIP HOG+HOF feature codewords as described in the previous section.

4.3 Unsupervised approach

Labeling all the shots manually even for training purposes is an expensive task
as it could possibly take hundreds of man-hours to annotate shot boundaries and
all corresponding actions in a set of video episodes. Since our dataset provides
a transcript for each video, we could extract possible episode level labels from
the transcript by extracting action verbs from the transcript. In this section, we
develop an approach that takes episode-level labels and automatically computes
all the shot-level labels for each episode. This problem naturally falls in a
Multiple Instance Level (MIL) framework where we can create positive bags for
each action label as the episodes that contain at least one instance of that action
and negative bags that contain no instances of that action. Figure 4.9 provides
an illustration of this.

Figure 4.9: +ve and -ve bags formed from episodes of our dataset

In the following, we will brie�y describe the Diverse Density algorithm [61]
and then apply a multi-class version to our problem.
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Table 4.5: 1-vs-all binary classi�cation for each action

Accuracy (%) Bag Level Instance Level

Coloring 71 94
Cutting 50 20
Drawing 57 22
Gluing 50 10
Painting 86 95

4.3.1 Diverse Density algorithm for MIL

The Diverse Density [61] algorithm aims at �nding areas in feature space that
have a high density of positive instances and a low density of negative instances
of the class of interest. Denoting positive bags as B+

i , the jth instance in that
bag as B+

ij and the negative bags as B−i , we want to �nd x, the point in feature
space that maximizes, P (x = t|B+

1 , B
+
2 , . . . , B

+
n , B

−
1 , B

−
2 , . . . , B

−
m) where t is

assumed to be the point in space that represents the concept. Using Bayes' rule
and independence assumptions on the bags, this is equivalent to,

argmaxx
∏
i

P (x = t|B+
i )
∏
i

P (x = t|B−i ). (4.2)

Using P (x = t|B+
i ) = P (x = t|B+

i1, B
+
i2, . . .) = 1 −

∏
j(1 − P (x = t|B+

ij)), and
P (x = t|B−i ) =

∏
j(1 − P (x = t|B−ij)), and the probability de�nition, P (x =

t|Bij) = exp(−‖Bij − x‖2), the above problem is solved using gradient ascent.
Since the optimization function is non-convex, multiple initializations are used
to �nd the optimum x. Moreover, each dimension of the feature can be weighted
by a scaling factor sk in the distance de�nition, ‖Bij − x‖ =

∑
k s

2
k(Bijk − xk)

and the optimum s found during the gradient ascent procedure. Once the
optimum x has been found, a new instance is labeled as belonging to the class
if its probability is above a certain threshold using the exponential probability
de�nition just described. For more details, please refer to [61]. We used the
code provided in the Multiple Instance Learning Library (MILL) Toolkit2 in
our experiments. It provides a number of MIL methods, however we chose to
use Diverse Density following our arguments above.

Following our previous training-testing breakdown, we use 13 episodes for
training and the remaining episodes for testing. At �rst we consider each class
separately and use the default binary MIL classi�er provided with the toolkit.

Table 4.5 shows the result of MIL for the 1-vs-all scenario. In each case,
the episode bag is labeled as +ve if it contains at least one instance of the
class of interest and -ve otherwise. The default threshold of 0.5 was used in
these experiments. Bag Level accuracy illustrates the percentage of times a
bag in the test data was correctly labeled as +ve or -ve depending on the
occurrence of instances of the class of interest. Instance Level accuracy details

2http://www.cs.cmu.edu/∼juny/MILL
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Table 4.6: Automatic labeling of the whole dataset

Action # +ve bags / 27 Accuracy (%)

Coloring 6 94
Cutting 17 80
Drawing 18 77
Gluing 13 89
Painting 4 94

the percentage of action shots that were labeled correctly as +ve and -ve in all
the test episodes. As this is a binary classi�er, the results are not comparable
to the results shown in the previous section. Moreover the accuracy is high
even when all the instances are classi�ed as -ve due to the large amount of -ve
instances in the data.

Table 4.6 displays the results when we considered the whole dataset - all 27
videos - and assumed that all the bag-level labels and a few positive instance
level labels were known a-priori. The +ve instances are used as starting points
in the gradient ascent procedure. Eventually we are able to compute the labels
for all the points in the dataset using a 1-vs-all classi�cation scheme for each
action. The high accuracies are promising, however one reason for the high
rate is the large number of -ve labels for each action. Consider that of all
the 186 annotated actions, the highest occurring class, Drawing, has a total of
42 sequences, whereas the lowest occurring class, Painting, has a total of 11
sequences. Hence if we label all the sequences as -ve, the default accuracies are
at least 77.4% and at most 94%. Since the accuracy achieved lie in this range,
our results are unfortunately inconclusive.

Finally, we tested our method on the automatically extracted zoomed-in
shots. We implemented an all-vs-all scheme that encapsulates the binary clas-
si�er provided by the MILL toolkit to perform multi-class classi�cation. More-
over, the threshold was learnt using a 5-fold cross-validation scheme on the
training set for each binary classi�er (there being 6C2 of these for each class:
Coloring, Cutting, Drawing, Gluing, Painting and Uninteresting). Again, 13
videos were chosen as training and 14 for testing. The instance level accuracy
achieved was 46.98% but unfortunately all the instances were labeled as be-
longing to the Uninteresting class and the high frequency of instances of that
class led to this high recognition rate.

Overall our MIL experiments have been inconclusive, however we observe
that this has mostly been due to the small amount of data. MIL algorithms
generally require large amounts of training data to be successful. Given the
original motivation of only having to label episodes and only a few instances,
developing a method that automatically extracts all instance level labels in a
training set and generalizes to test data remains a promising research path.
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4.4 Summary and Future Directions

From the above discussion, we have seen that state-of-the-art action recogni-
tion approaches do not scale well to a realistic scenario with limited amounts
of training data in a complicated domain. Moreover, the results achieved by
applying global approaches designed for human actions to manipulation tasks
in real world videos, containing many camera artifacts, are not promising. Local
feature based approaches perform the best but still the recognition rates are not
very good. There is clearly a need for modeling the Uninteresting class di�er-
ently from the interesting classes. Context and Domain knowledge will need to
be added to the scheme to make it successful.

Overall, the STIP HOG+HOF feature pipeline with the bag-of-words ap-
proach has provided a good action representation that will be combined with
textual, object and hand features later to achieve better results than the ones
shown here. As future work, the idea of �nding the best feature for action
representation is still an open research question. We are looking into creating
other combinations of �ow and texture feature distributions over time, as well
as using motion trajectories. Finally, we are looking at other MIL algorithms
that might not need such a large amount of training data as Diverse Density
and ideally, we would like to train using labels extracted using MIL and action-
names from textual analysis instead of ground-truth annotations to make the
overall recognition pipeline as unsupervised as possible.
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Chapter 5

Object Detection

5.1 Introduction

Object detection is one of the fundamental problems in computer vision. It deals
with detecting instances of particular objects (such as humans, cars, buildings)
in images and videos. It is a di�cult problem because the appearance of objects
can vary due to changes in illumination, viewpoint and also due to deformations.
An image is composed of many objects, many of them occluding each other and
appearing in di�erent poses. The possible variations(like deformations, shape
and appearance) present within a class makes it unlikely that we can simply
perform an exhaustive search based on a database of class examples.
In the problem that we explore, the ability to predict the absence or presence of a
particular class of objects can provide us with strong cues to determine possible
actions being performed by the subject. For example, a high con�dence for
presence of a tool like scissor or knife can indicate the possibility of a cutting
action being performed in the scene. We present an approach which use state
of the art object detectors and extend them to providing us with cues to the
presence of particular objects in a sequence of frames.

5.2 Related Work

The "bag of words" model ([21, 97]) quantizes local image descriptors into vi-
sual words which can then be used to describe di�erent object classes. Local
descriptors like [60] are �rst extracted from images. These are then clustered
into visual words using approaches like k-means ([81]) or hierarchical clustering
([68]). The system then computes histogram of visual words using the computed
visual vocabulary and can use approaches like Naive Bayes or Support Vector
Machines for classi�cation. However these models do not try to learn relative
locations of the visual words. Detecting objects using shape features has also
been explored by some. [7] measure similarity between shapes and exploit it
for recognition. They compute a shape context descriptor for a set of points on
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the contours of a shape. The shape context at a reference point captures the
distribution of the remaining points on the contour relative to it and o�ers a
globally discriminative characterization.
Sliding window classi�ers are well suited for rigid objects and have been used
for detection of faces, cars and pedestrians in [71, 87]. The approach involves
scanning the image with �xed templates and applying a classi�er to the sub-
image de�ned by the window. The process may be repeated at multiple scales
so that objects can be detected at any size. However they fail to take into
account contextual cues and have di�culty in detecting classes with large intra-
class variation. Parts-based models ([30, 29]) represent objects as set of parts.
They model the relative location between parts and learn the appearance of
individual parts. The advantage with such models is that local features for the
individual parts provide information about the appearance while loose geometric
constraints can provide �exibility for within-class variation.

5.3 Discriminatively Trained Part Based Models

5.3.1 Overview

We use an object detection system ([29]) that represents objects using de-
formable part-based models because of its ability to detect objects while per-
mitting deformations which is useful in our problem where some parts of the
tools may be occluded by hands or materials like paper and plastic. It builds on
the pictorial structures framework ([30]). Pictorial structures represent objects
by a collection of parts arranged in a deformable con�guration. The individ-
ual part captures local appearance properties of an object while the deformable
con�guration characterize relative location of parts with respect to each other.
A star-structured part-based model is de�ned by a root �lter plus a set of parts
�lters and associated deformation models. The score for a model at a particular
position ad scale within an image is the score of the root �lter at the given
location plus the sum over parts of the maximum, over placements of that part,
of the part �lter score on its location minus a deformation cost to penalize the
deviation of the part from its ideal location relative to the root. The �lter scores
may be de�ned as dot product between the �lter and a sub-window of the image.
A single deformable model may capture some variations in the appearance of
an object but they may not be rich enough for some categories. For example
the category of bicycles which can be viewed in di�erent poses (front versus side
views). Therefore, the system described by [29] uses mixture models to deal
with these variations. The score of a mixture model at a particular location and
scale is the maximum over components, of the score of that component model
at that location. A strong motivation for using this framework is its ability
to detect objects using a mixture of models which permit intra-class variation.
Fig. 5.1 shows one such component of the mixture model learned for markers.

In the following sections, we describe the models and how training and
matching using such models is performed and also provide a description of the

65



(a) (b) (c)

Figure 5.1: Visualization of one of the component of marker model. The model
is de�ned by (a) A coarse root �lter (b) Higher resolution part �lters (c) Spatial
model for each part's location relative to the root

features used.

5.3.2 Models

The part-based model uses linear �lters on feature maps which are arrays of fea-
ture vectors computed over a dense grid of locations in an image. Each feature
vector describes a local image patch. To help de�ne scores at di�erent positions
and scales in an image, a feature pyramid is used. The feature pyramid speci�es
feature maps at multiple scales in a �xed range and can be computed through
repeating smoothing and sub-sampling. As one moves further down in the fea-
ture pyramid, the resolution at which a feature map is computed increases.
As mentioned in the previous section, a single model is composed of a coarse
root �lter which covers the entire object while part �lters which are obtained
at higher resolution cover smaller parts of the object. The part �lters capture
�ner resolution features that are localized to greater accuracy when compared
to features captured by the course root �lter. This can be done by running the
root �lter at a higher location in the feature pyramid and placing the part �lters
at lower levels of the feature pyramid.
A model for an object with n parts is formally de�ned as a (n + 2) tuple
(F0, P1, ..., Pn, b) where F0 is the root �lter, Pi is the model for the i-th part
and b is a bias term. Each part model Pi is de�ned by a 3-tuple (Fi, vi, di)
where Fi is the �lter corresponding to that part, vi speci�es an anchor position
for the part relative to the root position and di de�nes the deformation cost for
the placement of the part relative to the anchor position vi. The bias term b is
added to make the score of multiple models comparable when they are combined
into a mixture model.
An object hypothesis z speci�es the location of each �lter in the feature pyramid
and is de�ned by a (n+1) tuple (p0, p1, ..., pn) where pi = (xi, yi, li) speci�es the
level and position of the i-th �lter. The score of a hypothesis z is given by the
sum of scores of a �lter at its location in the hypothesis minus the deformation
cost caused by displacement from its anchor position plus the bias.

score(z) =
∑n

i=0 Fi · FP (H, pi)−
∑n

i=1 di · FD(dxi, dyi) + b
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where FP(H, pi) is a vector obtained as a sub-window from the feature pyramid
H of size equal to �lter Fi and top-left corner at point pi, (dxi, dyi) is the dis-
placement of i-th part relative to the anchor and FD(dxi, dyi) is the deformation
feature.
For detecting objects in an image, the overall score for each root location is com-
puted as the best possible placement of the parts of the object. For calculating
the best location for placing the parts, dynamic programming and generalized
distance transforms are used. The method is e�cient, taking O(nk) time, where
n is the number of parts and k is the number of locations in the feature pyramid.
We refer the reader to [30] for more details. For object detection using a mixture
model, the system �nds root locations for each component independently using
the method described above.

5.3.3 Training models

The training data consists of images and each image is annotated with bounding
boxes for each object class present in the image. The annotations do not provide
contain any information about the individual component labels and their part
locations making it a weakly labeled setting. Since the part locations are not
labeled, they are treated as latent variables during training.
For training using this weakly labeled data, [29] uses a latent variable formula-
tion of MI-SVM ([5]) which they call latent SVM (LSVM). The latent SVM is
trained using a coordinate descent approach. More details can be found in [29].

5.3.4 Features

For visual features to represent an object category, [29] uses the histogram of
oriented gradients (HOG) features introduced in [23]. HOG features are count
of occurrences of gradient orientation in localized portions of the image.
A pixel-level feature map is de�ned as an oriented edge map with p orientation
bins. For each pixel, one of the bins is chosen by discretizing the gradient
orientation for that pixel. and its magnitude de�nes the edge strength in the
feature map. Fig. 5.2 shows the HOG map for a sample image.

(a) (b)

Figure 5.2: HOG Map Visualization (a) Sample Image (b) HOG Feature Map
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To achieve invariance, the gradient is normalized into 4 factors. In the
experiments, the value for p is 9 gradient orientations. This gives a HOG feature
vector of 36 dimensions which has been de�ned using 4 normalizations of a 9
dimensional histogram over orientations. PCA is performed on these vectors and
the dimensionality is reduced to 11 which leads to models with fewer parameters
and faster learning algorithms.

5.4 Results

5.4.1 Object Class Selection

After an analysis of the data, the set of objects present in the PBS Sprout TV
dataset was divided into two classes - "Tools" and "Stu�". The "Tools" class
are objects which can be used to perform particular actions and they maintain
a consistent visual appearance across the shots. The "Stu�" class objects may
undergo transformation during an action and their visual appearance can un-
dergo major changes during the course of the action. An example of the two
classes would be WritingTool and Paper respectively as shown in Fig. 5.3. It
can be observed that Paper undergoes transformations in color and shape while
the general appearance of WritingTool remains the same.

(a)

(b)

Figure 5.3: Visualization of examples from two object classes (a) Paper (b)
WritingTool

After these observations, the "Stu�" class was discarded since their appear-
ance was subject to large variations in shape, color and texture. We concen-
trate on the "Tools" class which contains WritingTool, Scissors, Brush and
GlueBottle.
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5.4.2 Training

Images corresponding to the four object classes discussed in the previous sec-
tion were obtained from external sources like ImageNet1, LabelMe2 and Google
Images3. Training images included objects at di�erent scales and orientations
with occlusions present in some of them and may include multiple instances of
the same object in one image. Each training image was labeled by a human an-
notator with bounding boxes for the object class present in each image. These
images are then used to train individual models for the four classes using [29].

5.4.3 Experiments

Experiments were performed on "Full/Tight" shots from the PBS Sprout TV
craft dataset. A single shot is a sequence of images. Running object detectors
on each image of the shot to obtain object cues for the shot is an expensive task.
Instead we run object detectors on a sample of the sequence of images in the
shot. We run object detectors on every k-th image (k = 5 in this case) of
the sequence. For each model, the top object hypothesis score for that image is
computed. Performing this on the sample of images will lead to a set of detector
scores for the shot. The presence of a particular object should lead to a set of
higher scores for that object relative to the other object models. To obtain a
summary of the object detector scores for a shot, we discretize the scores into
5 bins. The histograms de�ne the "objectness" of the shot with respect to the
particular object. Fig. 5.4 shows histograms obtained by running WritingTool
detector on two shots, one of which contains a WritingTool while the other
contains a Scissor object. It can be noticed that the histogram for the coloring
shot has more peaks towards the right bin centers compared to the cutting shot.

(a) (b)

Figure 5.4: Histogram for WritingTool detector. The histogram bin centers
represent detector scores while the percentage of images in a shot with scores
in a particular bin are displayed on the y-axis (a) Shot where marker is being
used for coloring paper (b) Shot where scissor is being used to cut paper

We compare the discriminative performance of the histograms for detect-
ing particular objects in shots. Histograms were computed for "Full/Tight"

1http://www.image-net.org/
2http://labelme.csail.mit.edu/
3http://www.google.com/imghp
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shots from 13 training episodes and used for analysis of detector performance
on "Full/Tight" shots from 14 test episodes. Models were learned using multi-
class logistic regression with L2 regularization using publicly available imple-
mentation LIBLINEAR4. Fig. 5.5 shows the confusion matrix for running this
classi�cation on the aforementioned test episodes.

Figure 5.5: Confusion matrix for tool classi�cation in shots. The number at
the end of each row is the number of test shots for that object. It is observed
that models for objects with higher frequency of occurrence perform better.
GlueBottle is classi�ed as WritingTool in some cases because its conic shaped
top is very similar to a WritingTool like marker or pencil

The results of using detector score histograms for object classi�cation in
videos encourage us to use these histograms as object detector features in the
system that will be used for joint modeling of textual and visual features (de-
scribed in the next section).

4http://www.csie.ntu.edu.tw/ cjlin/liblinear/
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Chapter 6

Attribute based descriptions

6.1 Motivation

In previous sections we have utilized language only to provide contextual infor-
mation between objects and actions. We visually recognized the static entities
in images (the objects) and the dynamic entities in video (the actions), and we
mapped from visual space to language space, speci�cally to nouns and verbs.
But clearly, these do not make up the full language space. Besides nouns and
verbs, there are (a) prepositions that depict the temporal (e.g., before, after),
spatial (under, on, in), and semantic relationship (e.g., with) among the nouns
and verbs, (b) adverbs (e.g., fast, repetitive) and (c) adjectives (e.g., red, big,
round) that depict the properties of the nouns and verbs. The prepositions, ad-
jectives and adverbs are necessary ingredients to describe the scene and activity
(i.e. to realize the map from vision space to language space). On the other hand,
we need the prepositions, adjectives and adverbs to reason about the scene and
activity and produce correct judgments from the noisy and ambiguous images
and videos (from language space to vision space).

Within the workshop we took the �rst steps along these lines and worked
on an approach to attribute-based object description. In principle, there are
many advantages of using attributes for visual object description. Attributes
are a higher level representation and could provide a way of going beyond what
appearance based trained visual descriptors can achieve. Through language we
can obtain organized knowledge about objects, that may not be possible to learn
with current learning approaches. Even if learning can provide this knowledge,
it may require large amounts of data. Using attributes we can transfer the
knowledge of attributes and avoid supervised learning of object categories.

6.2 Overview of the approach

Previous work on attribute-based approaches (described in the next subsection)
have dealt with images of single objects, and either did not consider the segmen-
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tation of objects, or the problem was greatly simpli�ed. In order fully utilize
the language machinery information, we need to have a way of segmenting the
scene, that is to locate the image regions containing objects in the scene. After
we have found the regions we compute their attributes. Then we compute on
these regions the properties of objects.

Segmentation is a very di�cult task in general. Many state of the art com-
puter vision algorithms allow us to compute optical �ow, color models, edge
maps, and segment regions. But within the context of manipulation, we can
take an active, purposive approach, that makes segmentation feasible by intro-
ducing additional constraints. We are interested in the objects or tools held in
the hands. Since tools are �extension� of the hands, they are tightly connected
with the hands when they are in use. This makes the motion of a handheld tool
very similar to that of the hand. Using this observation, we then developed the
following approach. Using a CRF model we �rst detect the hands using color,
edge and motion information, and the moving regions using motion and edges..
Then we remove the hand region from the moving regions to localize the tools.
The implicit assumption follows from the observation that the tools which are
relevant to the action must move with the hands.

The remainder of the section is organized as follows. Section 6.3 discusses
related work. Section 6.4 presents our approach for segmenting the tools in the
scene. Section 6.5 describes our implementation of a set of visual attributes
and our ideas on visual object attributes and the design of the appropriate
language tools in general. Finally Section 6.6 discusses further attribute based
descriptions.

6.3 Related work

We review a few concepts from computer vision related to the visual processing
in our approach.

Attribute-based object description has recently been addressed in a few
studies. [31] learn to localize simple color and texture attributes from loose an-
notations provided by image search. [47] and [27] learn new object classes from
known classes by transferring attribute descriptions. [43] use binary classi�ers
trained to recognize describable aspects of visual appearance in face veri�cation.
[84] propose learning models for obtaining color names from this noisy data. [89]
extract color attributes from text description and use them to classify animal
and plant species. [9] explore how to automatically discover attribute vocabu-
laries and learn visual representations from unlabeled images and text data on
the web.

Image Segmentation aims at partitioning an image into regions, where
pixels in the same region are similar with respect to some representations, such
as color, intensity, or texture. Graph based approaches (Normalized Cut [79])
and Partial Di�erential Equation based approaches (Level Set Methods [70])
are frequently used in computer vision. Recently, Conditional Random Field
(see below) based approaches have been widely used in a number of di�cult
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multi-class image segmentation tasks with impressive results.
Conditional Random Field (CRF) is a discriminative model [46] that

learns the conditional distribution of a class labeling given the input image data,
and it has been widely used in a number of state of the art segmentation algo-
rithms (see [80, 95, 91, 42]). CRFs extend the standard Markovian assumption
in MRFs that nearby pixels are more likely to have the same labels by adding
an additional conditional dependency on the input data. Such dependencies are
modeled as unary and pairwise potential functions which are computed over a
small pixel neighborhood clique. The �nal segmentation of the image is then ob-
tained by determining the optimal labeling of the image pixels, which yields the
lowest total energy over all the potentials. This can be e�ciently accomplished
using the well known α-expansion algorithm ([13]).

6.4 Tool segmentation

Our approach to detecting the tool in the hand has the following steps:

1. Detecting and segmenting the moving hands in image frames using a
trained CRF model. The hand segmentation result is denoted as Sh.

2. Using the same CRF model applied on the computed optical �ow, we
obtain a segmentation of high optical �ow regions which indicate mov-
ing objects in the scene that includes both hands and tools. This �ow
segmentation is denoted as Sf .

3. The tool is then e�ectively localized by removing Sh from Sf followed by
a few simple post-processing steps. The location of the tool is de�ned by
a bounding ellipse and is denoted as RT .

6.4.1 Conditional Random Fields (CRF)

The classical CRF model for segmentation amounts to setting up an energy
function E(x), with x a label assignment over the image I from the set of all
possible labellings L, and it consists of unary and binary potentials as follows:

E(x) =
∑
i∈I

φi(xi) +
∑

(i,j)∈E

φij(xi,xj) (6.1)

The unary potentials φi encode the likelihood that a label is assigned to pixel
i, and the pairwise potentials, φij , between adjacent points i and j encode
consistency within segments.

Inference of the CRF involves minimizing Eq. 6.1 to obtain the labeling, x∗:

x∗ = arg min
x∈L

E(x) (6.2)

and provides the segmentation of the image.
We encode two unary potential functions into Eq. 6.1
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φi(xi) = θcolφcol(xi) + θflowφflow(xi) (6.3)

where θcol and θflow are the weighting parameters for the color, φcol, and optical
�ow, φflow, respectively. φcol is obtained from a Gaussian Mixture (GMM) color
model, learned from training data over the CIELab color space. φflow is a unary
prior that encodes the motion of the hand and the tool. φflow is obtained from
a bimodal GMM of optical �ow learned from the training data. By combining
the color and �ow potentials, we induce priors on hand-like regions that are
moving.

By adjusting the weighting parameters θcol and θflow we bias the segmenta-
tion either towards the color model (to get more hand-like regions) or the �ow
model (to get regions with higher �ow). To obtain a segmentation that favors
the hand color model, we set θcol > θflow such that the posterior likelihood
computed from the hand color GMM is greatly increased. This means that pix-
els with color closer to the hand color will be labeled as hand, even if the �ow in
that region is small. Conversely, in order to obtain a segmentation that favors
regions of high �ow, we set θflow > θcol.

In order to enforce consistent labels within segments, the pairwise potentials
are de�ned as:

φij(xi, xj) =

{
0 if xi = xj

f(xi, xj) otherwise
(6.4)

where f(xi, xj) is an edge based contrast function de�ned over the image gra-
dient, color and �ow di�erence:

f(xi, xj) = π exp(−β ‖xi − xj‖2) (6.5)

where β = (2 ∗
〈
(xi − xj)2

〉
)−1 and 〈·〉 represents taking the mean. π is a con-

stant parameter that is di�erent for the gradient, color and �ow features. Eq. 6.5
favors color and �ow constancy within regions of similar color or �ow by penal-
izing less the potentials when similar labels are assigned within a clique. This
formulation had been widely used in several state of the art color segmentation
algorithms ([12, 77]) with impressive results.

6.4.2 Segmenting Hands and Flow

The system must initially be trained to obtain the GMM color and �ow models.
This is done by randomly sampling 5 frames from the training sequence (each
of length 100 frames) where binary labels of the color classes (hand and non-
hand regions) and �ow classes (large �ow and small �ow) are manually assigned
(Fig. 6.1).

During the testing phase, a sequence of test image frames are presented to the
algorithm which computes Sh and Sf in the following four steps as illustrated
in Fig. 6.2:
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Figure 6.1: Training the GMM color and �ow model. �+ves� and �-ves� denote
the manually labeled positive and negative regions for the color (top) and �ow
(bottom) images.

1. Compute the optical �ow F using the implementation of [14] between the
previous and current image frames.

2. Compute the unary and pairwise potentials from Eqs. 6.3 and 6.4.

3. Obtain two energy functions E(x) for the hands and �ow by adjusting
the unary potentials weights θcol and θflow in Eq. 6.1. Since we still want
consistent labels within the segments, the pairwise potentials φij are the
same in both cases.

4. Perform α-expansion optimization on both energy functions using Eq. 6.2
to obtain Sh and Sf .

6.4.3 Detecting Tools

The hand and �ow segmentations, Sh and Sf , provide the hand region and
the regions of signi�cant movement, respectively. Since Sf includes both the
hand and the tools, the di�erence of the two segmentations will provide the tool
location. In practice the following series of binary operations was used to obtain
a good tool localization (Fig. 6.3):

1. Obtain the initial potential tool regions, Sr, by removing Sh from Sf by:
Sr = (Sh ⊕ Sf ) ∩ Sf . This removes the hand regions while retaining only
the regions in Sf that are connected to the hands. Note that Sr may be
disjoint as the hand often occludes part of the tool.
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Figure 6.2: Segmenting hands and �ow from a test image sequence. Labels with
numbers correspond to the description in Sec. 6.2. (1) Compute the optical
�ow. (2) Compute the unary and pairwise potentials. (3) Perform inference to
get the best labels to obtain the hand and �ow segmentation in (4).

2. Compute an optical �ow threshold, tf , to accept the potential tool regions
by taking the mean of the optical �ow in the hand region: tf = 〈Sh ∩F〉.
Since the tool moves with the hand, its �ow must be almost the same as
the hand region

3. Process Sr to remove small spurious regions and accept only regions that
have �ow larger than tf and merge these regions together to form the
�ltered Ŝr.

4. Perform edge detection to obtain the edge fragments within Ŝr. By de-
tecting only regions with signi�cant edges, we remove false �ow detections
due to shadows (cast shadows from the moving objects create strong �ow
as well) since shadows have weak edges.

5. A minimum enclosing bounding ellipse is then �tted over the edge frag-
ments which gives us the desired tool region, RT (visualized as the blue
ellipse in Fig. 6.3).

6.4.4 Evaluation of tool localization

The algorithm for tool detection was evaluated over a subset of 10 video se-
quences (of 100 frames each) from the �Sprouts-TV� (STV) dataset that contain
the �ve tool classes: {marker, paintbrush, crayon, scissors, glue}. All sequences
had been hand-labeled with the tool's location to evaluate the accuracy in lo-
calization.

The video sequences were processed by the algorithm described above, which
gave us the location of the tool, RT , for every frame. We considered a detection
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Figure 6.3: Localizing the tool region, RT . The numbered labels correspond to
the steps described in Sec. 6.4.3. (1) Input hand and �ow segmentation from
the test image. (2) Applying tf as a threshold to remove regions with �ow that
are di�erent from the hand region to obtain (3). (4) Perform edge detection and
(5) Fit the best ellipse over the edge fragments to locate the tool.

Tool Class dt(%)

Marker 89.1
Paintbrush 92.3
Scissors 87.9
Glue 84.0
Crayon 89.4

Table 6.1: Detection rates for the 5 tool classes in the STV dataset.

as `correct' when a particular RT overlaps at least 50% and not more than 120%
of the area in the ground-truth label. The upper bound is necessary so we do
not falsely count detections that cover the entire image as `correct'. dt was
therefore computed as:

dt =
Nc

NS
, (6.6)

where Nc is the number of correct counts and NS is the total number of frames
in the sequence (100 in all the sequences considered). The detection rates are
given in in Table 6.1.

The average detection rate over all 5 classes is 88.5% which is reasonable
given the the large variability of the tool classes in the dataset. This result
is even more signi�cant, since the proposed approach makes no implicit as-
sumption on the tools that are detected � we only model the hand and motion,
which are universal assumptions. This shows the feasibility of our approach in
detecting tools in general situations where a hand action is occurring.
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6.5 Computing attributes

As attributes of objects we can use color ('red', 'green', blue'), texture ('plaid',
'linear', pebbled'), surface re�ectance ('metallic', 'matte'), shape ('round', 'elon-
gated', 'square') and size. Computer Vision has the tools to compute descriptors
which can capture these properties. We then need to develop classi�ers based
on these descriptors that are trained on databases of labeled images such as
LabelMe. Color has previously been used, and is well understood [84]. The
successful texture classi�ers are based on modeling joint distributions of local
neighborhoods [85], �lter banks [51],[22] and fractal descriptors [92]. Surface
re�ectance is related to the material properties of an object [25], and can be
classi�ed with texture-like frequency operators. Shape attributes can be derived
from the geometric properties of the segmented region. Finally size properties
are available from comparing the object size with the size of the hand.

In future work we need to develop the language tools to relate objects with
attributes. Color, and size are easily obtained from the web, such as Wikipedia
and existing lexical databases (Wordnet, ConceptNet, etc.). The shape of com-
plex objects may derived by �nding the parts of an object and descriptions of
the shape of parts and their geometric con�guration. The texture of objects is
a property of materials. We suggest then that texture attributes may be ob-
tained in a hierarchical way by �nding the constituent parts of an object and
the materials these parts consist of. The texture properties of a small set of
elementary parts will be de�ned manually. For example, we may �nd from lan-
guage that a brush has bristles and bristles are made from hair, and hair has a
linear structure. Figure 6.4 illustrates the idea.

Ongoing NLP work

183

• Extract physical characteristics from web and 

Wikipedia to aid in unsupervised object recognition

crayon marker brush scissors glue

color other other silver silver white

bristles no no yes no no

elongated yes yes yes no no

convex yes yes yes no yes

‘bristles’, ‘elongated’, 

‘convex’
Figure 6.4: Ongoing NLP work: Language tools to extract the attributes of
objects from the web and lexical databases.

6.5.1 Experiments

To demonstrate the idea of attribute-based object description, we selected four
attributes and evaluated them on the ten video sequences used in 6.4.4. These
attributes are color, texture and two attributes of shape. Speci�cally, we dis-
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tinguished between three color classes (white, silver and others), two texture
classes (linear texture vs. others), the elongatedness of the region containing
the object and a measure of convexity of this regions. Color was computed from
color histograms in CIELab space, texture was computed using the Gist clas-
si�er [69], the elongatedness was derived from the ellipse �tted to the objects
as the ratio of the major axis over minor axis, and the convexity was derived
from the ratio of the area of the segmented region over the area of its convex
hull. SVM classi�ers were trained on labeled objects of internet images using
the attribute category assignment as shown in Fig. 6.4. The average recognition
rates for the color, texture and the two shape classi�ers was found 87.0%, 93.3%,
91.0% and 93.3%, respectively, demonstrating the potential for attribute-based
object recognition.

6.6 Discussion

The next step in combining language with vision for activity recognition in video
is to utilize attributes of objects and actions. Attributes provide a higher level
description and thus allow us to employ abstract visual descriptions. Objects
are described by their adjectives and constituent parts. Actions can be can be
described by properties that specify their style, direction, magnitude, speed,
periodicity, by the position and the change of position of the hands and other
body parts relative to the body and to objects, as well as by the transformation
of objects during the action, for example the change in color (e.g., in paint) or
shape (i.e., in cut).

Going from language to vision, we need to develop the linguistic tools such
as the ones described before, to automatically obtain attributes of objects and
actions so that we can search for the objects and actions through them. Going
from vision to language we need to develop operators that can facilitate the
extraction of the �red elongated� object or the �periodic� movement or �the
object next to an object the system already knows�. These operators are not
just classi�ers, but they involve necessarily also the segmentation. Visual seg-
mentation has been considered a very di�cult problem, and it does not appear
that it can be solved in a purely bottom-up fashion. It appears that we need
to introduce additional constraints through the process of attention, which is
a higher cognitive process. Using attribute descriptions gives us a systematic
way for addressing attention and introduce additional constraints into the visual
segmentation. For example, if we know from language that we are looking for
an object of certain color or texture, the vision system will pay attention to this
color and texture, and the appropriate color or texture modeled can be intro-
duced as priors into the optimization that delivers the segmentation. Coming
back to our segmentation in Section 6.4.3, we used priors on the motion and
color model of the hand, and implicitly we assumed we have knowledge about
them. When we have all the tools in place, we can obtain information about
these priors automatically from language.
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Part III

Joint Modeling of Text and

Visual Features
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Chapter 7

Single Shot Action and Tool

Recognition

7.1 Introduction

In the previous sections we have described several sources of information which
all capture semantically meaningful aspects of action recognition: Spatial tem-
poral interest points (STIP) capture local motion patterns, and are a popular
and competitive representation for action recognition. Hand pose descriptors
capture the orientation of the hand, which is highly correlated with what action
is being performed, and more semantically meaningful than the bag-of-interest-
points representation of STIP codewords. Finally, object detectors directly de-
termine which tools are present, which also implicitly aids in the recognition of
tool-correlated actions.

In this section we describe how to combine these sources of information for
action and tool classi�cation. We treat each zoomed-in shot in our dataset as a
single example, which we wish map to a single action category (e.g., Cut) and
a single tool category (e.g., Scissors). We assume a �xed �nite list of actions
and tools, and model the rest of the possibilities with action category Other
and tool category Other/None.

We �rst discuss a straight-forward combination via standard supervised
multi-class machine learning methods. Next, we propose a joint model for in-
ferring about actions and tools, which can explicitly model the co-occurrence
relations between di�erent actions and tools. Finally, we show that we can in-
corporate prior domain knowledge into our joint model, which allows our system
to scale to di�erent and larger domains with minimal human supervision.
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7.2 Independent modeling

Let fhand(x), ftool(x), and fstip(x) be our three sources of features, described
above, for an example image x. Let A be a set of action labels we are interested
in applying. In our setting, A = { Color, Cut, Draw, Glue, Paint Other}. A
standard way to model a multi-label classi�cation task is with a linear function
of the features for each class a ∈ A:

ga(x) = wa · f(x)

where ga(x) is a score for example x having label a, and f(x) is a vector of
features for example x, which can be some or all of [fhand(x); ftool(x); fstip(x)]1.
Using a labeled dataset, we can learn a set of parameters wa for each class
a ∈ A using a one-class-versus-rest type loss function. Depending on the exact
form of the loss function, we can use o�-the-shelf machine learning optimization
algorithms to learn {wa}a∈A � multinomial logistic regression using log-loss;
Support Vector Machine (SVM) using hinge-loss and an L2 penalty on the
weights. At test-time, the most likely action label a? can be obtained by

a? = arg max
a∈A

ga(x).

Similarly for example x we wish to determine which tool t ∈ T is being used
where T is the set of labels { Brush, GlueBottle, WritingTool, Scissors, None}.
We can learn linear parameters wt for each tool, and classify with

t? = arg max
t∈T

gt(x) = arg max
t∈T

wt · f(x)

7.3 Joint action-tool modeling

Clearly, di�erent actions are highly correlated with the use of di�erent tools.
We would like to leverage this information in order to improve accuracy of both
action and tool recognition. For example, a strong signal for a particular action
(e.g., Cut) may help with an ambiguous signal for what tool is present (e.g.,
Scissors), and vice versa. When modeling actions and tools independently as
in the previous section, this type of information can be learned implicitly by
including object detector features when learning action recognition models, and
action recognition features when learning tool recognition models.

However, this type of implicit modeling has several issues. For one, there
is no way to jointly choose the best action-tool combination for a particular
example. Two, there is no straightforward way to encode or learn priors on
action-tool pairs. Finally, expressing these implicit features as a subspace in a
larger feature space for which we learn a linear discriminative function may not
be optimal.

1We use the convention that vectors in d dimensions are d× 1 (vertical), and use notation
[x; y] to mean the concatenation of vectors x and y.
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In light of this, we propose to model the joint probability distribution over
possible actions and tools for each example: p(A = a, T = t | x). We de-
compose this distribution into factors for how likely each action and tool are
independently, as well as a term which explicitly encodes the likelihood of each
possible (action,tool) pair.

Incorporating Domain Knowledge

One of the important things this model allows for is the incorporation of ex-
plicit, prior domain knowledge about action and tool co-occurrences into the
model. This is bene�cial for many reasons. Assuming that domain knowl-
edge can be obtained at little or no cost�as is the case when automatically
extracting it from web text�this signi�cantly reduces the amount of human
work labeling data. This is of critical importance when scaling up to larger or
more varied domains. Furthermore, when working with a small dataset, the pro-
vided annotations might provide only a sparse, unreliable belief in action-tool
co-occurrences. Substituting the annotations with domain knowledge automat-
ically estimated from a much larger corpus (e.g., the web) can provide much
more robust co-occurrence beliefs.

7.4 Action-Tool Conditional Random Field

We model p(A, T | x) as a log-linear conditional random �eld ([46]):

p(A = a, T = t | x) = (7.1)
1

Z(x)
exp
(
wA · fA(a, x)

)
exp
(
wT · fT (t, x)

)
exp
(
wA,T · fA,T (a, t)

)
(7.2)

where wA/fA and wT /fT correspond to action (respectively tool) parame-
ters/features, and wA,T /fA,T correspond to action-tool co-occurrence parame-
ters/features. The term 1/Z(x) is a normalization constant which ensures the
distribution sums to 1 over all (action, tool) pairs. Next we describe each term
in our model, as well as inference and learning procedures.

Unary terms wA ·fA and wT ·fT : We set fA(a, x) = [ga(x); ea] and fT (t, x) =
[gt(x); et], using the notation ei to denote the unit vector with a 1 in the ith

dimension and zeros elsewhere. Thus our CRF features are the outputs of the
independent action and tool models described in Section 7.2, in conjunction
with class identity features ea and et which allow the model to learn a prior
likelihood of each class occurring (e.g., that Draw occurs more frequently than
Paint). Using only these features constrains the model to only learn parameters
wA and wT to balance the independent beliefs of di�erent action and tool classes
and class priors against the belief in action-tool co-occurrences, described next.

Pairwise action-tool co-occurrence term wA,T · fA,T :
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It is intuitive to think of the term exp(wA,T · fA,T (a, t)) in the form of
an action-tool compatibility matrix: for every action-tool pair, it contains a
corresponding real-valued score re�ecting how likely the pair is to go together
(e.g., Cut-Scissors should be very likely, Cut-Brush very unlikely). Thus we
need to specify how to learn the entries of the action-tool compatibility matrix.
We explore two di�erent approaches.
(1) Direct estimation of action-tool compatibility. In this case we directly learn
every entry in the action-tool compatibility matrix from our ground truth action-
tool co-occurrences. To do this we express fdirectA,T (a, t) = [e(a,t); 1]. The last
component is a bias term to balance the values with the other terms in the
CRF. The vector e(a,t) ∈ R|A||T | has a 1 in the (a, t)th dimension and zeros
elsewhere, simply indicating the identity of the (action,tool) pair.
(2) Action-tool compatibility via outside domain knowledge. As discussed in the
beginning of this section, there are several advantages to incorporating outside
domain knowledge into our model instead of using training data. We assume
domain knowledge comes in the form of K co-occurrence matrices Ck, where
Ck

a,t is the real-valued entry in the k
th co-occurrence matrix for action a and tool

t. The matrices can encode action-tool compatibility or incompatibility; the sign
of the learned weights plus bias term can account for di�ering semantics. We
incorporate these outside sources of information as a weighted combination of
these co-occurrence matrices, where the learned weights re�ect the usefulness /
willingness to �trust� this knowledge compared to the other terms in the model.
To accomplish this we set fdomain

A,T (a, t) = [C1
a,t; . . . ; C

K
a,t; 1].

Note that because of the nature of our discriminatively-trained models, the
action-tool co-occurrence values cannot be interpreted as joint probabilities,
nor is the direct estimation approach as simple as computing ground truth co-
occurrence frequencies.

Inference: Given the small number of variables (2) and state spaces (≤ 10) for
each variable, inference can be performed quickly by brute force, enumerating
and computing scores for all possible (action,tool) pairs. During testing we
classify using the maximum a posteriori (MAP) decision

a?, t? = arg max
a∈A,t∈T

p(A = a, T = t | x).

If we were to introduce more variables and structure into our model (e.g.,
modeling hand pose or temporal consistency), we could apply standard undi-
rected graphical model e�cient inference techniques, such as belief propagation
dynamic programming.

Learning We learn parameters by maximizing the log-likelihood of our train-
ing data, with an additional regularization term. Let w = [wA;wT ;wAT ] be the
parameters we wish to estimate. Assume we have a training set of m exam-
ples which come with action and tool labels {(x(i), a(i), t(i))}mi=1. The learning
optimization problem is then
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minimizew
λ

2
||w||22 −

m∑
i=1

log p
(
a(i), t(i) | x(i); w

)
We use �rst-order gradient descent to optimize this convex function.

7.5 Results

We �rst analyze our proposed independent modeling of actions and tools de-
scribed in Section 7.2, and then discuss our joint action-tool model.

To evaluate our techniques, we use the PBS Sprout TV craft dataset. Each
of the 27 episodes is split into shots which are each a consecutive sequence of
frames coming from one camera track. Furthermore, these shots can be divided
into �Full/Tight� or not. We discard all non-Full/Tight shots as uninteresting,
i.e., no action is present. The shot segmentation and classi�cation can be done
automatically with near perfect accuracy, as explained in for example [54], but
for these experiments we use the perfect ground truth information to draw
conclusions. We use ground truth annotation for learning and test evaluation:
each shot is labeled with a single action and single tool class. We split the data
into 13 training episodes and 14 test episodes, with the split chosen to have
roughly the same number of examples of each action class in the training and
test sets.

In this multi-class classi�cation setting, we report normalized accuracy : the
mean over all classes of the mean within-class accuracy. This performance mea-
sure is more robust to datasets where the number of examples of each class is
very imbalanced, as in our data.

7.5.1 Independent modeling

Table 7.1 shows results for di�erent multiple-action-classi�cation settings, vary-
ing the number and types of classes, and features were used to learn the models.
We learned models using multi-class logistic regression with L2 regularization,
using the publicly available implementation LIBLINEAR 2. We found this to
perform slightly better than linear, polynomial or Gaussian kernel SVM.

In the �rst column we examine a nearly balanced binary classi�cation task
between two intuitively distant actions, in terms of tools used, hand pose and
motion pattern: Cut and Draw. We see that features ftool and fSTIP alone
do very well separating the data as expected. The hand features perform worse
but better than random guessing.

Next we consider �ve-way classi�cation between all action classes we have
enough training data to model (i.e., more than �ve training examples). Again
the hand features alone are the weakest cue, followed by tool features and STIP
features. The combination of all three feature sources does better than any in
isolation.

2http://www.csie.ntu.edu.tw/ cjlin/liblinear
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color (6) color (6) brush (5)

class (# in class) → cut (18) cut (18) cut (18) gluebottle (20)

draw (20) draw (20) draw (20) writingtool (28)

normalized acc.(%) ↘ glue (8) glue (8) scissors (18)

paint (5) paint (5) none/other (48)

other (50)

fhand 63.3 27.8 20.5 23.5

ftool 91.7 42.9 37.1 48.8

fSTIP 97.5 61.1 42.1 32.3

fhand + ftool + fSTIP 97.5 67.1 44.0 46.0

guess most frequent class 50.0 20.0 16.7 20.0

Table 7.1: Independent modeling of actions and tools using logistic regression.

To obtain real end-to-end system results, we must also make a classi�cation
decision on the heavy tail of Other actions which occur infrequently and are ex-
tremely varied. Examples include �Crease�, �Crackle�, �Decorate�,�Shape�,�Sprinkle�
etc.. In the third column we include this class, and see that performance suf-
fers. This indicates the need to model more classes, or use other sources of
information, like natural language, to narrow down the set of possibilities.

The general trend in these results is that the hand features perform the
worst, but better than random; the tool features perform better, and the STIP
features in isolation perform best of all. However, combining all three source of
information can improve over STIP alone.

In the last column we perform a similar experiment on all shots, modeling
the tool type rather than the action. Using the tool features works the best,
while the hand features provide very little helpful information. The fact that
STIP features work moderately well for tool classi�cation and tool features work
well for actions is empirical evidence that action cues can help determine tools
and vice versa.

7.5.2 Joint modeling

Table 7.2 shows results from our CRF experiments. We found that explicitly
modeling the co-occurrence of actions and tools either directly using our ground
truth (column 2) or using domain knowledge (column 3) signi�cantly helped
results. For domain knowledge, we learned a weighted combination of the action-
tool co-occurrence matrices obtained from the web, described in Chapter 3.

The action accuracy (row 1) remained nearly constant throughout experi-
ments, but the tool accuracy (row 2) and accuracy in getting the correct tool and
action together in the same example (row 3) increased signi�cantly when mod-
eling action-tool co-occurrence. Most importantly, these results demonstrate
that it is possible to �plug in� domain knowledge as a substitute for ground
truth information and get comparable performance gains over using no joint
modeling.
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normalized no ground truth domain

accuracy joint action-tool knowledge

(%) modeling modeling modeling

correct action 50.9 50.8 50.8

correct tool 44.9 46.7 48.3

correct action and tool 28.0 40.7 37.8

Table 7.2: Joint modeling of actions and tools using a CRF.

7.6 Conclusion and Future Work

In this section we have described several models of increasing structure for ac-
tion recognition. First, simple linear classi�ers to model actions and tools using
features based on hands, tool detectors, and motion interest points. Here we
found that we can outperform the popular STIP motion descriptor by including
the semantically meaningful hand and tool features. One possible extension of
this work would be more sophisticated ways of combining the three sources of
features. Currently, our models we simply concatenated the features to create
one larger joint feature space. It may be bene�cial to instead describe (kernel-
ized) spaces for each feature source independently, and then learn to combine
them as is done in multiple kernel learning.

Next, we propose a way to combine these models in a conditional random
�eld which allows us to explicitly model the co-occurrence of action and tool
classes. Our �exible model allows us to incorporate external domain knowledge
as a replacement for ground truth co-occurrence information. This allows us to
have more robust estimation when our ground truth information is very sparse.
This is of critical importance when scaling up to many di�erent domains in
which actions and objects have interesting relationships.
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Chapter 8

Temporal Modelling of Action

Sequences

8.1 Introduction

In the previous chapters, we have discussed how to model the action within a
single video clip. However, in real-world videos, such as those in the Sprout TV
Handcraft Show, a whole video episode usually contains a sequence of actions.
An example video episode is illustrated in Figure 8.1, which contains four ac-
tions: �draw�, �color �cut�, �thread�. The texts associated to the videos, such
as the transcripts of or online instruction provide us with cues for the tempo-
ral order of the actions in the video. The goal of this chapter is to investigate
the methods to exploit the prior extracted from texts for temporal modeling of
action sequence to improve the performance of action classi�cation.

8.2 Method

From the example illustrated in Figure 8.1, we �nd that the order of actions
within the transcript verb list provide us an important cue for the order of
actions within the video episode. Formally, we hypothesize that the action
bigram in the transcript implies the partial order of actions in videos, i.e., if there
is an action bigram (v, w) in the text, the chance to �nd a corresponding action
pair in the video sequence should be higher than otherwise. This hypothesis
can be veri�ed using the example video episode illustrated in Figure 8.1:

• The verb list extracted from the transcript

� make make draw draw draw draw color cut tear use take

• The actions in the video

� draw color cut thread
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Figure 8.1: Example video �Babysitter's Animal Sewing Cards�, PBS Sprout
TV

Since the text and video are not strictly aligned in real videos, we further relax
the action bigram to incorporate action pairs across up to two positions. The
following example illustrates such a scenario:

• The verb list extracted from the transcript

� use show cut tear cut make �atten take write

• The actions in the video

� cut cut cut cut draw draw place place place

Similarly, such action bigrams can often be extracted from the online instruc-
tions. Thus, from the transcripts or the online instructions of training video
episodes, we can compute the frequencies of action bigram. These frequencies
provide us with the prior knowledge about the next action given the current
action. Figure 8.2 and Figure 8.3 illustrate the frequencies of action bigrams
computed from the transcripts and the online instructions of training video
episodes respectively.

To integrate this knowledge with the probability of action classes obtained
from individual video shots, we designed a chain CRF as illustrated in Figure
8.4. In this chain CRF, each hidden node (white circles) represents the action
class label of a single video shot, and each observed node (grey circles) represents
the observed visual features including motion and object features as discussed
in previous chapters. The node potential is p(Ai|Xi), the the probability of
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Figure 8.2: Frequencies of action bigrams in transcript in Sprout TV Handcraft
Show

Figure 8.3: Frequencies of action bigrams in online instructions of Sprout TV
Handcraft Show
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Figure 8.4: The chain CRF model for the action sequence in a video episode.

action class for video shot i given the observed visual features Xi, and the edge
potential is the exponential of the weighted frequency of the action bigram of
consecutive video shot, φ(Ai, Ai+1) . The conditional probabilities of the action
classes in a video episode can be represented as follows:

p(A1, A2, ..., Ak|X1, X2, ..., Xk) =

∏k
i=1 p(Ai|Xi)

∏k−1
i=1 αiexp {φ(Ai, Ai+1)}

Z(X1, X2, ..., Xk))
,

(8.1)
where Z(·) is the partition function, αi a parameter to weight the edge poten-
tials. In the training stage, we need to estimate the weights αi from the training
corpus. Because the Sprout TV Handcraft Show dataset is very small and has
only 13 training video episodes, we enforce αi = α to avoid over-�tting. The
single parameter α can be estimated using cross-validation from training data.
Given a test video episode, we �rst estimate p(Ai|Xi) using algorithms described
in the previous chapters. Then we substitute these values to Equation 8.1 and
run the Viterbi Algorithm to �nd the most likely sequence of actions.

8.3 Experimental Results

In this experiment, we are interested in a relative performance change in ac-
tion classi�cation accuracy, i.e., with and without prior temporal knowledge
obtained from transcripts and online instructions.In Table 8.1 we summarize
the performance of average classi�cation accuracy for the Sprout TV Handcraft
Show dataset. These results show that the temporal knowledge extracted from
transcripts and online instructions indeed improve the classi�cation performance
compared to the single shot model. Between two types of text sources, online
instruction is slightly more helpful than transcripts. It is possibly because the
transcripts are much noisier than online instructions as it contains large amount
narration. Consequently, the verb list extracted from transcripts has more ir-
relevant verbs besides the action verbs we are interested in. The results also
show that the relaxed bigram has no impact on the performance of action clas-
si�cation. By examining the details of trained chain CRF model, we �nd that
the value of α is usually very small so the di�erence between the frequencies of
action bigram and those of relaxed action bigram has little impact on the action
classi�cation performance.
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Single Shot Action Recognition using STIP (SVM) 0.42
previous + Tool + Hand Feature 0.47
Single Shot Joint CRF Model (STIP+Tool+co-occurrence of verb
and tool)

0.51

Sequence Model CRF with temporal constraints extracted from
transcripts (bigram)

0.52

Previous with relaxed bigram 0.52
Sequence Model CRF with temporal constraints extracted from
online instructions (bigram)

0.53

Previous relaxed bigram 0.53

Table 8.1: Overall action classi�cation accuracy for the Sprout TV Handcraft
Show dataset.

8.4 Summary and Future Work

In this chapter, we have described a method to integrate the temporal knowledge
extracted from transcripts and online instructions with the single shot model
and showed that the additional temporal knowledge is really helpful on action
classi�cation in the real video episodes that contain multiple actions.

The chain CRF model described in this chapter is a general model to in-
corporate any meaningful temporal constraints. Because of the limited size of
Sprout TV Handcraft Show dataset, we only explore the relationship between
adjacent nodes. Given a larger dataset, we can explore temporal relationship
beyond adjacent nodes. We will further investigate this issue in the future.

92



Bibliography

[1] Cmu quality of life grand challenge kitchen dataset.
http://kitchen.cs.cmu.edu.

[2] J. K. Aggarwal and Q. Cai. Human motion analysis: A review. Computer
Vision and Image Understanding, 73:90�102, 1999.

[3] S. Ali, A. Basharat, and M. Shah. Chaotic invariants for human action
recognition. In Proc. International Conference on Computer Vision, 2007.

[4] J. Allen. Natural Language Understanding. Addison Wesley, 2nd edition,
1994.

[5] S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines
for multiple-instance learning. In Advances in Neural Information Process-
ing Systems 15, pages 561�568. MIT Press, 2003.

[6] M. Baroni and S. Vegnaduzzo. Identifying subjective adjectives through
web-based mutual information. In Proceedings of KONVENS-04, 7th Ger-
man Conference on Natural Language Processing, pages 17�24, 2004.

[7] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recogni-
tion using shape contexts. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 24(4):509�522, 2002.

[8] T. L. Berg, A. C. Berg, J. Edwards, M. Maire, R. White, Y. W. Teh,
E. Learned-Miller, and D. A. Forsyth. Names and faces. in submission,
2010.

[9] T. L. Berg, A. C. Berg, and J. Shih. Attribute discovery and characteri-
zation from noisy web data. In Proc. European Conference on Computer
Vision, 2010.

[10] A. Bissacco, A. Chiuso, Y. Ma, and S. Soatto. Recognition of human gaits.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition,
volume 2, pages 52�58, 2001.

[11] A. Bissacco, A. Chiuso, and S. Soatto. Classi�cation and recognition of
dynamical models: The role of phase, independent components, kernels and

93



optimal transport. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(11):1958�1972, 2007.

[12] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary
region segmentation of objects in n-d images. In Computer Vision, 2001.
ICCV 2001. Proceedings. Eighth IEEE International Conference on, vol-
ume 1, pages 105�112 vol.1, 2001.

[13] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimiza-
tion via graph cuts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(11):1222�1239, 2001.

[14] T. Brox and J. Malik. Large displacement optical �ow: Descriptor matching
in variational motion estimation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 99(PrePrints), 2010.

[15] A. Budanitsky and G. Hirst. Evaluating wordnet-based measures of lexical
semantic relatedness. Comput. Linguist., 32(1):13�47, 2006.

[16] R. Chaudhry, A. Ravichandran, G. Hager, and R. Vidal. Histograms of ori-
ented optical �ow and binet-cauchy kernels on nonlinear dynamical systems
for the recognition of human actions. In IEEE Conference on Computer
Vision and Pattern Recognition, 2009.

[17] R. Chaudhry and R. Vidal. Recognition of visual dynamical processes:
Theory, kernels and experimental evaluation. Technical Report 09-01, De-
partment of Computer Science, Johns Hopkins University, 2009.

[18] R. Chaudry, A. Ravichandran, G. Hager, and R. Vidal. Histograms of ori-
ented optical �ow and binet-cauchy kernels on nonlinear dynamical systems
for the recognition of human actions. In IEEE International Conference on
Computer Vision and Pattern Recognition, 2009.

[19] R. L. Cilibrasi and P. M. Vitanyi. The google similarity distance. IEEE
Trans. Knowledge and Data Engineering, 19(3):370�383, 2007.

[20] T. Cour, C. Jordan, E. Miltsakaki, and B. Taskar. Movie/script: Alignment
and parsing of video and text transcription. In ECCV, 2008.

[21] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and C. Bray. Visual
categorization with bags of keypoints. In Workshop on Statistical Learning
in Computer Vision, ECCV, pages 1�22, 2004.

[22] O. G. Cula and K. J. Dana. 3d texture recognition using bidirectional
feature histograms. Int. J. Comput. Vision, 59(1):33�60, 2004.

[23] N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-
tion. In Proc. of IEEE CVPR, pages 886�893, 2005.

[24] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior recognition
via sparse spatio-temporal features. In VS-PETS, October 2005.

94



[25] R. Dror, A. Willsky, and E. Adelson. Statistical characterization of real-
world illumination. Journal of Vision, 4:821�837, 2004.

[26] A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing action at a distance.
In Proc. International Conference on Computer Vision, pages 726�733,
2003.

[27] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by
their attributes. In Proc. IEEE Conference on Computer Vision and Pat-
tern Recognition, 2009.

[28] C. Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books,
1998.

[29] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object
detection with discriminatively trained part based models. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2010.

[30] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for ob-
ject recognition. International Journal of Computer Vision, 61(1):55�79,
January 2005.

[31] V. Ferrari and A. Zisserman. Learning visual attributes. In Advances in
Neural Information Processing Systems, Dec. 2007.

[32] J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local infor-
mation into information extraction systems by gibbs sampling. In Proceed-
ings of the 43rd Meeting of the Association for Computational Linguistics,
pages 363�370, 2005.

[33] D. M. Gavrila. The visual analysis of human movement: A survey. Com-
puter Vision and Image Understanding, 73:82�98, 1999.

[34] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri. Actions as
space-time shapes. IEEE Trans. PAMI, 29(12):2247�2253, 2007.

[35] I. Habernal and M. Konopík. Active tags for semantic analysis. In TSD
'08: Proceedings of the 11th international conference on Text, Speech and
Dialogue, pages 69�76, 2008.

[36] N. �kizler and D. A. Forsyth. Searching for complex human activities with
no visual examples. International Journal of Computer Vision, 80(3):337�
357, 2008.

[37] O. Jenkins, G. Gonzalez, and M. Loper. Interactive human pose and action
recognition using dynamical motion primitives. In International Journal of
Humanoid Robotics, volume 4, pages 365�385, 2007.

[38] L. Jie, B. Caputo, and V. Ferrari. Who's doing what: Joint modeling of
names and verbs for simultaneous face and pose annotation. In NIPS, 2009.

95



[39] T. Kitani, Y. Eriguchi, and M. Hara. Pattern matching in the TEXTRACT
information extraction system. In Proceedings of the 15th conference on
Computational linguistics, pages 1064�1070, Morristown, NJ, USA, 1994.
Association for Computational Linguistics.

[40] D. Klein and C. D. Manning. Accurate unlexicalized parsing. In Proceedings
of the 41st Meeting of the Association for Computational Linguistics, pages
423�430, 2003.

[41] D. Klein and C. D. Manning. Advances in Neural Information Processing
Systems 15 (NIPS 2002), chapter Fast Exact Inference with a Factored
Model for Natural Language Parsing, pages 3�10. MIT Press, 2003.

[42] P. Kohli, L. Ladicky, and P. H. S. Torr. Robust higher order potentials
for enforcing label consistency. International Journal of Computer Vision,
82(3):302�324, 2009.

[43] N. Kumar, A. Berg, P. Belhumeur, and S. Nayar. Attribute and simile clas-
si�ers for face veri�cation. In Proc. International Conference on Computer
Vision, 2009.

[44] J. La�erty, A. McCallum, and F. Pereira. Conditional random �elds: Prob-
abilistic models for segmenting and labeling sequence data. In ICML, 2001.

[45] J. La�erty, A. McCallum, and F. Pereira. Conditional random �elds: Prob-
abilistic models for segmenting and labeling sequence data. In Proceedings
of ICML-01, pages 282�289, 2001.

[46] J. La�erty, A. McCallum, and F. Pereira. Conditional random �elds: Prob-
abilistic models for segmenting and labeling sequence data. In In Proceed-
ings of ICML, pages 282�289, 2001.

[47] C. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen ob-
ject classes by between-class attribute transfer. In Proc. IEEE Conference
on Computer Vision and Pattern Recognition, 2009.

[48] I. Laptev. On space-time interest points. International Journal of Com-
puter Vision, 64(2-3):107�123, 2005.

[49] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic
human actions from movies. In CVPR, 2008.

[50] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic
human actions from movies. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, 2008.

[51] T. Leung and J. Malik. Representing and recognizing the visual appear-
ance of materials using three-dimensional textons. Int. J. Comput. Vision,
43(1):29�44, 2001.

96



[52] J. Li and J. Wang. Automatic linguistic indexing of pictures by a statistical
modeling approach. Transactions on PAMI, 25(10), 2003.

[53] P. Liang, M. I. Jordan, and D. Klein. Learning semantic correspondences
with less supervision. In ACL-IJCNLP '09: Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing of the AFNLP: Volume
1, pages 91�99, Morristown, NJ, USA, 2009. Association for Computational
Linguistics.

[54] R. Lienhart. Reliable transition detection in videos: A survey and prac-
titioner's guide. International Journal of Image and Graphics (IJIG),
1(3):469�486, 2001.

[55] D. Lin. Dependency-based evaluation of MINIPAR. In Workshop on the
Evaluation of Parsing Systems, Granada, Spain, May 1998.

[56] D. Lin and P. Pantel. DIRT - Discovery of Inference Rules from Text. In
Proceedings of ACM Conference on Knowledge Discovery and Data Mining,
pages 323�328, San Francicso, CA, 2001.

[57] H. Liu. Montylingua: An end-to-end natural language processor with com-
mon sense. Available at: web.media.mit.edu/ hugo/montylingua, 2004.

[58] H. Liu and P. Singh. Conceptnet - a practical commonsense reasoning
tool-kit. BT Technology Journal, 22(4):211�226, Oct 2004.

[59] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2), 2004.

[60] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91�110, 2004.

[61] O. Maron and T. Lozano-Pérez. A framework for multiple instance learning.
In Adv. in Neural Information Processing Systems, 1998.

[62] M. Marszalek, I. Laptev, and C. Schmid. Actions in context. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition, 2009.

[63] R. Messing, C. Pal, and H. Kautz. Activity recognition using the veloc-
ity histories of tracked keypoints. In Proc. International Conference on
Computer Vision, 2009.

[64] G. A. Miller. Wordnet - about us. http://wordnet.princeton.edu, 2009.
WordNet. Princeton University.

[65] T. B. Moeslund and E. Granum. A survey of computer vision-based human
motion capture. Computer Vision and Image Understanding, 81:231�268,
2001.

97



[66] T. B. Moeslund, A. Hilton, and V. Krüger. A survey of advances in vision-
based human motion capture and analysis. Computer Vision and Image
Understanding, 104:90�126, 2006.

[67] R. Navigli. Word sense disambiguation: A survey. ACM Comput. Surv.,
41(2):1�69, 2009.

[68] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree.
In Proc. of IEEE CVPR, pages 2161�2168, 2006.

[69] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic
representation of the spatial envelope. International Journal of Computer
Vision, 42(3):145�175, May 2001.

[70] S. J. Osher and R. P. Fedkiw. Level Set Methods and Dynamic Implicit
Surfaces. Springer, 1 edition, October 2002.

[71] C. Papageorgiou and T. Poggio. A trainable system for object detection.
International Journal of Computer Vision, 38(1):15�33, 2000.

[72] H. Poon and P. Domingos. Unsupervised semantic parsing. In Proceed-
ings of the 2009 Conference on Empirical Methods in Natural Language
Processing. ACL, 2009.

[73] D. Ramanan, D. A. Forsyth, and A. Zisserman. Tracking people and rec-
ognizing their activities. In CVPR, 2005.

[74] M. Raptis and S. Soatto. Tracklet descriptors for action modeling and video
analaysis. In Proc. European Conference on Computer Vision, 2010.

[75] A. Ravichandran, R. Chaudhry, and R. Vidal. View-invariant dynamic
texture recognition using a bag of dynamical systems. In Proc. IEEE Con-
ference on Computer Vision and Pattern Recognition, 2009.

[76] P. Resnik. Using information content to evaluate semantic similarity in a
taxonomy. In Proceedings of IJCAI-95, pages 448�453, Montreal, Canada.

[77] C. Rother, V. Kolmogorov, and A. Blake. "grabcut": interactive foreground
extraction using iterated graph cuts. ACM Trans. Graph., 23(3):309�314,
2004.

[78] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: A local
svm approach. In Proc. International Conference on Pattern Recognition,
2004.

[79] J. Shi and J. Malik. Normalized cuts and image segmentation. In CVPR'97,
page 731, Washington, DC, USA, 1997. IEEE Computer Society.

[80] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi. Textonboost for
image understanding: Multi-class object recognition and segmentation by
jointly modeling texture, layout, and context. International Journal of
Computer Vision, 81(1):2�23, 2009.

98



[81] J. Sivic and A. Zisserman. E�cient visual search of videos cast as text
retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence,
31(4):591�606, 2009.

[82] R. Socher and L. Fei-Fei. Connecting modalities: Semi-supervised segmen-
tation and annotation of images using unaligned text corpora. In IEEE
Computer Vision and Pattern Recognition (CVPR), 2010.

[83] D. Tran and A. Sorokin. Human activity recognition with metric learning.
In Proc. European Conference on Computer Vision, 2008.

[84] J. van de Weijer, C. Schmid, J. Verbeek, and D. Larlus. Learning color
names for real-world applications. Trans. Img. Proc., 18(7):1512�1523,
2009.

[85] M. Varma and A. Zisserman. A statistical approach to texture classi�cation
from single images. International Journal of Computer Vision: Special
Issue on Texture Analysis and Synthesis, 62(1�2):61�81, April 2005.

[86] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of
computer vision algorithms. http://www.vlfeat.org/, 2008.

[87] P. Viola and M. Jones. Robust real-time object detection. International
Journal of Computer Vision, 57(2):137�154, 2004.

[88] H. Wang, M. M. Ullah, A. Klaeser, I. Laptev, and C. Schmid. Evaluation
of local spatio-temporal features for action recognition. In British Machine
Vision Conference, 2009.

[89] J. Wang, K. Markert, and M. Everingham. Learning models for object
recognition from natural language descriptions. In Proc. British Machine
Vision Conference, 2009.

[90] G. Willems, T. Tuytelaars, and L. J. V. Gool. An e�cient dense and scale-
invariant spatio-temporal interest point detector. In European Conference
on Computer Vision, 2008.

[91] J. M. Winn and J. Shotton. The layout consistent random �eld for recog-
nizing and segmenting partially occluded objects. In CVPR, pages 37�44.
IEEE Computer Society, 2006.

[92] Y. Xu, H. Ji, and C. Fermüller. Viewpoint invariant texture description
using fractal analysis. Int. J. Comput. Vision, 83(1):85�100, 2009.

[93] B. Yao and L. Fei-Fei. Modeling mutual context of object and human
pose in human-object interaction activities. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition, 2010.

[94] A. Yilmaz and M. Shah. Actions sketch: A novel action representation.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition,
pages 984�989, 2005.

99

http://www.vlfeat.org/


[95] P. Yin, A. Criminisi, J. Winn, and I. A. Essa. Bilayer segmentation of
webcam videos using tree-based classi�ers. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 99(PrePrints), 2010.

[96] Y. Zhai and M. Shah. Video scene segmentation using markov chain monte
carlo. In IEEE Transactions on Multimedia, 8 (2006).

[97] J. Zhang, S. Lazebnik, and C. Schmid. Local features and kernels for
classi�cation of texture and object categories: a comprehensive study. In-
ternational Journal of Computer Vision, 73, 2007.

[98] G. Zwieg and P. Nguyen. A segmental crf approach to large vocabulary
continuous speech recognition. In Proceedings of ASRU, 2009.

100


	Summary
	Motivation
	Related work
	Our approach
	Contributions

	I Natural Language Processing 
	Information Extraction from Text
	Introduction
	Corpora
	PBS Sprouts Crafts
	Crafts from the Web

	Primary Linguistic Tools
	Probabilistic Parser
	Adapting a Named Entity Recognizer (NER)

	Algorithms
	Related and Previous Work
	Phrase-Based Extraction
	Seed Words + Phrase-Based Extraction
	CRF + Seed Words + Phrase-Based Extraction

	Adapting a CRF NER
	Partitioning of Data
	Fully Supervised Training
	Semi-Supervised Training
	Simulated Web-Crawling
	Diagnostic Testing on Sprouts Shows
	Additional Benefits of the NER

	Results on Sprouts Shows
	Phrase-Based Extraction
	Seed Words + Phrase-Base Extraction
	CRF + Seed Words + Phrase-Based Extraction

	Future Work
	Conclusions

	Extraction of Domain Knowledge
	Co-occurrence Matrices
	Wikipedia Matrix
	Method
	WordNet
	Challenges
	Results

	ConceptNet
	Method
	Challenges
	Results

	Web Matrix
	Previous Work
	Method
	Modifications
	Results
	Discussion



	II Computer Vision
	Action Recognition
	Introduction
	Prior Work
	Contributions

	Supervised approaches
	Global Histograms of Oriented Optical Flow
	Local Spatial-Temporal Interest Points
	Local Histograms of Oriented Optical Flow

	Unsupervised approach
	Diverse Density algorithm for MIL

	Summary and Future Directions

	Object Detection
	Introduction
	Related Work
	Discriminatively Trained Part Based Models
	Overview
	Models
	Training models
	Features

	Results
	Object Class Selection
	Training
	Experiments


	Attribute based descriptions
	Motivation
	Overview of the approach
	Related work
	Tool segmentation
	Conditional Random Fields (CRF)
	Segmenting Hands and Flow
	Detecting Tools
	Evaluation of tool localization

	Computing attributes 
	Experiments

	Discussion


	III Joint Modeling of Text and Visual Features
	Single Shot Action and Tool Recognition
	Introduction
	Independent modeling
	Joint action-tool modeling
	Action-Tool Conditional Random Field
	Results
	Independent modeling
	Joint modeling

	Conclusion and Future Work

	Temporal Modelling of Action Sequences 
	Introduction
	Method
	Experimental Results
	Summary and Future Work



