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Motivations

Intra/Cross document coreference resolution 
require the definition of complex features, i.e.

syntactic/semantic structures
For pronoun resolution

Preference factors: Subject, Object, First-Mention, 
Definite NP
Constraint factors: C-commanding,…

For non-pronoun 
Predicative Structure, Appositive Structure



Motivations (2)

How to represent such structures in the learning 
algorithm?
How to combine different features ?
How to select the relevant ones?
Kernel methods allows us to

represent structures in terms of substructures (high 
dimensional feature spaces)
define implicit and abstract feature spaces

Support Vector Machines “select” the relevant 
features

Automatic Feature engineering side-effect



Support Vector Machines
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SVM Classification Function and 
the Kernel Trick

From the primal form
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SVM Classification Function and 
the Kernel Trick

From the primal form

To the dual form

where l is the number of training examples
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SVM Classification Function and 
the Kernel Trick

From the primal form

To the dual form

where l is the number of training examples
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Flat features (Linear Kernel)

Documents in Information Retrieval are 
represented as word vectors

The dot product            counts the number of 
features in common

This provides a sort of similarity
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Feature Conjunction (polynomial Kernel)

The initial vectors are mapped in a higher space

〈Stock, Market,Downtown〉  〈Stock, Market, 
Downtown, Stock+Market, Downtown+Market, 
Stock+Downtown〉

We can efficiently compute the scalar product as
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String Kernel

Given two strings, the number of matches 
between their substrings is evaluated
E.g. Bank and Rank

B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,..
R, a , n , k, Ra, Ran, Rank, Rk, an, ank, nk,..

String kernel over sentences and texts
Huge space but there are efficient algorithms



Word Sequence Kernel

String kernels where the symbols are words
e.g. “so Bill Gates says that” ⇒
- Bill Gates says that

- Gates says that

- Bill says that

- so Gates says that

- so says that

- …



A Tree Kernel 
[Collins and Duffy, 2002]
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The overall SST fragment set
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Explicit kernel space
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Implicit Representation

[Collins and Duffy, ACL 2002] evaluate ∆ in O(n2):
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Kernels for Co-reference problem:
Syntactic Information

Syntactic knowledge is important 
For pronoun resolution

Subject, Object, First-Mention, 
Definite NP, C-commanding,…?

For non-pronoun 
Predicative Structure, Appositive Structure …

Source of syntactic knowledge: Parse Tree:
How to utilize such knowledge…



Previous Works on Syntactic knowledge

Define a set of syntactic features extracted from 
parse trees

whether a candidate is a subject NP
whether a candidate is an object NP
whether a candidate is c-commanding the anaphor
….

Limitations
Manually design a set of syntactic features
By linguistic intuition
Completeness, Effectiveness?



Incorporate structured syntactic 
knowledge – main idea

Use parse tree directly as a feature
Employ a tree kernel to compare the similarity of the 
tree features in two instances
Learn a SVM classifier



Syntactic Tree feature

Subtree that covers both anaphor and antecedent 
candidate

⇒ syntactic relations between anaphor & candidate (subject, 
object, c-commanding, predicate structure)
Include the nodes in path between anaphor and candidate, 
as well as their first_level children

–“the man in the room saw him”
– inst(“the man”, “him”)



Context Sequence Feature

A word sequence representing the mention 
expression and its context

Create a sequence for a mention

–“Even so, Bill Gates says that he just doesn’t understand our 
infatuation with thin client versions of Word  ”

– (so)(,) (Bill)(Gates)(says)(that)



Composite Kernel

different kernels for different features
Poly Kernel: for baseline flat features
Tree Kernel : for syntax trees
Sequence Kernel: for word sequences

A composite kernel for all kinds of features
Composite Kernel = 
TreeK*PolyK+PolyK+SeqenceK



Results for pronoun resolution

MUC-6 ACE-02-BNews

R P F R P F

All attribute value 
features

64.3 63.1 63.7 58.9 68.1 63.1

+Syntactic Tree
+ Word Sequence

65.2 80.1 71.9 65.6 69.7 67.6



Results for over-all coreference 
Resolution using SVMs

MUC-6 ACE02-BNews

R P F R P F
BaseFeature SVMs 61.5 67.2 64.2 54.8 66.1 59.9
BaseFeature + 
Syntax Tree 63.4 67.5 65.4 56.6 66.0 60.9

BaseFeature+Synta
xTree + Word 
Sequences

64.4 67.8 66.0 57.1 65.4 61.0

All Sources of 
Knowledge 60.1 76.2 67.2 60.0 65.4 63.0



Conclusions

SVMs and Kernel methods are powerful tools to 
design intra/cross doc coreference systems
SVMs allows for

better exploit attribute/vector features
the use of syntactic structures
the use of word sequence context

The results show noticeable improvement over 
the baseline



Thank you
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