Support Vector Machines and Kernel Methods for Co-Reference Resolution

Alessandro Moschitti and Xiaofeng Yang

2007 Summer Workshop on Human Language Technology Center for Language and Speech Processing John Hopkins University Baltimore, Agust 22, 2007

Outline

- Motivations
- Support Vector Machines
- Kernel Methods
 - Polynomial Kernel
 - Sequence Kernels
 - Tree kernels
- Kernels for Co-reference problem
 - An effective syntactic structure
 - Mention context via word sequences
- Experiments
- Conclusions

Motivations

- Intra/Cross document coreference resolution require the definition of complex features, i.e.
 - syntactic/semantic structures
- For pronoun resolution
 - Preference factors: Subject, Object, First-Mention, Definite NP
 - Constraint factors: C-commanding,...
- For non-pronoun
 - Predicative Structure, Appositive Structure

Motivations (2)

- How to represent such structures in the learning algorithm?
- How to combine different features ?
- How to select the relevant ones?
- Kernel methods allows us to
 - represent structures in terms of substructures (high dimensional feature spaces)
 - define implicit and abstract feature spaces
- Support Vector Machines "select" the relevant features
 - Automatic Feature engineering side-effect

Support Vector Machines

SVM Classification Function and the Kernel Trick

From the primal form

$$f(\vec{x}) = \operatorname{sgn}(\vec{x} \cdot \vec{w} + b)$$

SVM Classification Function and the Kernel Trick

From the primal form

$$f(\vec{x}) = \operatorname{sgn}(\vec{x} \cdot \vec{w} + b)$$

To the dual form

$$f(\vec{x}) = \operatorname{sgn}\left(\sum_{i=1..\ell} y_i \alpha_i \vec{x}_i \cdot \vec{x} + b\right) =$$

where ℓ is the number of training examples

SVM Classification Function and the Kernel Trick

From the primal form

$$f(\vec{x}) = \operatorname{sgn}(\vec{x} \cdot \vec{w} + b)$$

To the dual form

$$f(\vec{x}) = \operatorname{sgn}\left(\sum_{i=1..\ell} y_i \alpha_i \vec{x}_i \cdot \vec{x} + b\right) =$$

$$\operatorname{sgn}\left(\sum_{i=1..\ell} y_i \alpha_i \phi(o_i) \cdot \phi(o) + b\right) = \operatorname{sgn}\left(\sum_{i=1..\ell} y_i \alpha_i k(o_i, o) + b\right)$$

where ℓ is the number of training examples

Flat features (Linear Kernel)

- **Documents in Information Retrieval are** represented as word vectors $\vec{x} = (0, ..., 1, ..., 0, ..., 0, ..., 1, ..., 0, ..., 0, ..., 1, ..., 0, ..., 1, ..., 0, ..., 1)$ buy acquisition stocks sell market • The dot product $\vec{\chi} \cdot \vec{z}$ counts the number of features in common
 - This provides a sort of similarity

Feature Conjunction (polynomial Kernel)

The initial vectors are mapped in a higher space

$$\Phi: \langle x_1, x_2, x_3 \rangle \rightarrow \langle x_1, x_2, x_3, x_1 x_2, x_1 x_3, x_2 x_3 \rangle$$

$$\Phi: \langle z_1, z_2, z_3 \rangle \rightarrow \langle z_1, z_2, z_3, z_1 z_2, z_1 z_3, z_2 z_3 \rangle$$

- ▲ (Stock, Market, Downtown) → (Stock, Market, Downtown, Stock+Market, Downtown+Market, Stock+Downtown)
- We can efficiently compute the scalar product as $K_{Poly}(\langle x_1, x_2, x_3 \rangle, \langle z_1, z_2, z_3 \rangle) = \Phi(\langle x_1, x_2, x_3 \rangle) \cdot \Phi(\langle z_1, z_2, z_3 \rangle) = (\langle x_1, x_2, x_3 \rangle \cdot \langle z_1, z_2, z_3 \rangle + 1)^2$

String Kernel

- Given two strings, the number of matches between their substrings is evaluated
- E.g. Bank and Rank
 - B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,..
 - R, a, n, k, Ra, Ran, Rank, Rk, an, ank, nk,...
- String kernel over sentences and texts
- Huge space but there are efficient algorithms

Word Sequence Kernel

String kernels where the symbols are words

- e.g. "so **Bill Gates** says that" \Rightarrow
 - Bill Gates says that
 - Gates says that
 - Bill says that
 - so Gates says that
 - so says that
 - ...

A Tree Kernel [Collins and Duffy, 2002]

The overall SST fragment set

• Given another vector \vec{z} ,

• $\vec{x} \cdot \vec{z}$ counts the number of common substructures

Implicit Representation

$$\vec{x} \cdot \vec{z} = \phi(T_x) \cdot \phi(T_z) = K(T_x, T_z) =$$
$$= \sum_{n_x \in T_x} \sum_{n_z \in T_z} \Delta(n_x, n_z)$$

• [Collins and Duffy, ACL 2002] evaluate Δ in O(n²):

$$\Delta(n_x, n_z) = 0, \text{ if the productions are different else}$$

$$\Delta(n_x, n_z) = 1, \text{ if pre-terminals else}$$

$$\Delta(n_x, n_z) = \prod_{j=1}^{nc(n_x)} (1 + \Delta(ch(n_x, j), ch(n_z, j)))$$

Kernels for Co-reference problem: Syntactic Information

- Syntactic knowledge is important
 - For pronoun resolution
 - Subject, Object, First-Mention, Definite NP, C-commanding,...?
 - For non-pronoun
 - Predicative Structure, Appositive Structure ...
- Source of syntactic knowledge: Parse Tree:
 - How to utilize such knowledge…

Previous Works on Syntactic knowledge

- Define a set of syntactic features extracted from parse trees
 - whether a candidate is a subject NP
 - whether a candidate is an object NP
 - whether a candidate is c-commanding the anaphor
 -
- Limitations
 - Manually design a set of syntactic features
 - By linguistic intuition
 - Completeness, Effectiveness?

Incorporate structured syntactic knowledge – main idea

- Use parse tree directly as a feature
- Employ a tree kernel to compare the similarity of the tree features in two instances
- Learn a SVM classifier

Syntactic Tree feature

- Subtree that covers both anaphor and antecedent candidate
- ⇒ syntactic relations between anaphor & candidate (subject, object, c-commanding, predicate structure)
- Include the nodes in path between anaphor and candidate, as well as their first_level children
- *—"the man* in the room saw *him"—* inst("the man", "him")

Context Sequence Feature

- A word sequence representing the mention expression and its context
 - Create a sequence for a mention

–"Even so, **Bill Gates** says that he just doesn't understand our infatuation with thin client versions of Word "

-(so)(,) (**Bill**)(**Gates**)(says)(that)

Composite Kernel

different kernels for different features

- Poly Kernel: for baseline flat features
- Tree Kernel : for syntax trees
- Sequence Kernel: for word sequences
- A composite kernel for all kinds of features
- Composite Kernel =

TreeK*PolyK+PolyK+SeqenceK

Results for pronoun resolution

	MUC-6			ACE-02-BNews		
	R	Р	F	R	Р	F
All attribute value features	64.3	63.1	63.7	58.9	68.1	63.1
+Syntactic Tree + Word Sequence	65.2	80.1	71.9	65.6	69.7	67.6

Results for over-all coreference Resolution using SVMs

	MUC-6			ACE02-BNews		
	R	Р	F	R	Р	F
BaseFeature SVMs	61.5	67.2	64.2	54.8	66.1	59.9
BaseFeature + Syntax Tree	63.4	67.5	65.4	56.6	66.0	60.9
BaseFeature+Synta xTree + Word Sequences	64.4	67.8	66.0	57.1	65.4	61.0
All Sources of Knowledge	60.1	76.2	67.2	60.0	65.4	63.0

Conclusions

- SVMs and Kernel methods are powerful tools to design intra/cross doc coreference systems
- SVMs allows for
 - better exploit attribute/vector features
 - the use of syntactic structures
 - the use of word sequence context
- The results show noticeable improvement over the baseline

Thank you