
Support Vector Machines and Kernel
Methods for Co-Reference Resolution

2007 Summer Workshop on Human Language Technology
Center for Language and Speech Processing

John Hopkins University
Baltimore, Agust 22, 2007

Alessandro Moschitti and Xiaofeng Yang

Outline
Motivations
Support Vector Machines
Kernel Methods

Polynomial Kernel
Sequence Kernels
Tree kernels

Kernels for Co-reference problem
An effective syntactic structure
Mention context via word sequences

Experiments
Conclusions

Motivations

Intra/Cross document coreference resolution
require the definition of complex features, i.e.

syntactic/semantic structures
For pronoun resolution

Preference factors: Subject, Object, First-Mention,
Definite NP
Constraint factors: C-commanding,…

For non-pronoun
Predicative Structure, Appositive Structure

Motivations (2)

How to represent such structures in the learning
algorithm?
How to combine different features ?
How to select the relevant ones?
Kernel methods allows us to

represent structures in terms of substructures (high
dimensional feature spaces)
define implicit and abstract feature spaces

Support Vector Machines “select” the relevant
features

Automatic Feature engineering side-effect

Support Vector Machines

Var1

Var2kbxw −=+⋅


kbxw =+⋅


0=+⋅ bxw 

kk

w

The margin is equal to
2 k
w

We need to solve

 negative is if ,
 positive is if ,

||||
2

max

xkbxw
xkbxw

w
k







−≤+⋅
+≥+⋅

SVM Classification Function and
the Kernel Trick

From the primal form

)sgn()(bwxxf +⋅=


SVM Classification Function and
the Kernel Trick

From the primal form

To the dual form

where l is the number of training examples

)sgn()(bwxxf +⋅=


=







+⋅= ∑

=

bxxyxf
i

iii




..1
sgn)(α

SVM Classification Function and
the Kernel Trick

From the primal form

To the dual form

where l is the number of training examples

)sgn()(bwxxf +⋅=


=







+⋅= ∑

=

bxxyxf
i

iii




..1
sgn)(α









+=








+⋅ ∑∑

==

bookybooy
i

iii
i

iii),(sgn)()(sgn
.1.1  ..

αφφα

Flat features (Linear Kernel)

Documents in Information Retrieval are
represented as word vectors

The dot product counts the number of
features in common

This provides a sort of similarity

market sell stocksn acquisitiobuy
..,1)..,1,..,0, ..,0,..,1,..,0, ..,0,..,1,..,0, ..,0,..,1,..,0, 0,(=x

zx 
⋅

Feature Conjunction (polynomial Kernel)

The initial vectors are mapped in a higher space

〈Stock, Market,Downtown〉  〈Stock, Market,
Downtown, Stock+Market, Downtown+Market,
Stock+Downtown〉

We can efficiently compute the scalar product as

323121321321 ,,,,,,,: xxxxxxxxxxxx →Φ

() () ()
()2321321

321321321321

1,,,,
,,,,,,,,,
+⋅=

=Φ⋅Φ=

zzzxxx
zzzxxxzzzxxxKPoly

323121321321 ,,,,,,,: zzzzzzzzzzzz →Φ

String Kernel

Given two strings, the number of matches
between their substrings is evaluated
E.g. Bank and Rank

B, a, n, k, Ba, Ban, Bank, Bk, an, ank, nk,..
R, a , n , k, Ra, Ran, Rank, Rk, an, ank, nk,..

String kernel over sentences and texts
Huge space but there are efficient algorithms

Word Sequence Kernel

String kernels where the symbols are words
e.g. “so Bill Gates says that” ⇒
- Bill Gates says that

- Gates says that

- Bill says that

- so Gates says that

- so says that

- …

A Tree Kernel
[Collins and Duffy, 2002]

NP

D N

VP

V

delivers

a talk

NP

D N

VP

V

delivers

a

NP

D N

VP

V

delivers

NP

D N

VP

V NP

VP

V

The overall SST fragment set

NP

D N

a talk

NP

D N

NP

D N

a
D N

a talk

NP

D N
NP

D N

VP

V

delivers

a talk

V

delivers

NP

D N

VP

V

a talk

NP

D N

VP

V

NP

D N

VP

V

a

NP

D

VP

V

 talk

N

a

NP

D N

VP

V

delivers

 talk

NP

D N

VP

V

delivers
NP

D N

VP

V

delivers

NP

VP

V
NP

VP

V

delivers

 talk

Explicit kernel space

zx 
⋅

..,0)..,0,..,1, .,1,.,1,..,0,. ..,0,..,0,..,1, ..,1,..,1,..,0, 0,(=x

Given another vector ,
counts the number of common substructures

NP

D N

a talk

NP

D N

a

NP

D N
NP

D N

VP

V

delivers

a talk

NP

D N

VP

V

a talk

NP

D N

VP

V
 talk

z

Implicit Representation

[Collins and Duffy, ACL 2002] evaluate ∆ in O(n2):

∏
=

∆+=∆

=∆
=∆

)(

1

))),(),,((1(),(

else terminals-pre if ,1),(
elsedifferent are sproduction theif ,0),(

xnnc

j
zxzx

zx

zx

jnchjnchnn

nn
nn

∑∑
∈∈

∆=

==⋅=⋅

zzxx Tn
zx

Tn

zxzx

nn
TTKTTzx

),(
),()()(

φφ

Kernels for Co-reference problem:
Syntactic Information

Syntactic knowledge is important
For pronoun resolution

Subject, Object, First-Mention,
Definite NP, C-commanding,…?

For non-pronoun
Predicative Structure, Appositive Structure …

Source of syntactic knowledge: Parse Tree:
How to utilize such knowledge…

Previous Works on Syntactic knowledge

Define a set of syntactic features extracted from
parse trees

whether a candidate is a subject NP
whether a candidate is an object NP
whether a candidate is c-commanding the anaphor
….

Limitations
Manually design a set of syntactic features
By linguistic intuition
Completeness, Effectiveness?

Incorporate structured syntactic
knowledge – main idea

Use parse tree directly as a feature
Employ a tree kernel to compare the similarity of the
tree features in two instances
Learn a SVM classifier

Syntactic Tree feature

Subtree that covers both anaphor and antecedent
candidate

⇒ syntactic relations between anaphor & candidate (subject,
object, c-commanding, predicate structure)
Include the nodes in path between anaphor and candidate,
as well as their first_level children

–“the man in the room saw him”
– inst(“the man”, “him”)

Context Sequence Feature

A word sequence representing the mention
expression and its context

Create a sequence for a mention

–“Even so, Bill Gates says that he just doesn’t understand our
infatuation with thin client versions of Word ”

– (so)(,) (Bill)(Gates)(says)(that)

Composite Kernel

different kernels for different features
Poly Kernel: for baseline flat features
Tree Kernel : for syntax trees
Sequence Kernel: for word sequences

A composite kernel for all kinds of features
Composite Kernel =
TreeK*PolyK+PolyK+SeqenceK

Results for pronoun resolution

MUC-6 ACE-02-BNews

R P F R P F

All attribute value
features

64.3 63.1 63.7 58.9 68.1 63.1

+Syntactic Tree
+ Word Sequence

65.2 80.1 71.9 65.6 69.7 67.6

Results for over-all coreference
Resolution using SVMs

MUC-6 ACE02-BNews

R P F R P F
BaseFeature SVMs 61.5 67.2 64.2 54.8 66.1 59.9
BaseFeature +
Syntax Tree 63.4 67.5 65.4 56.6 66.0 60.9

BaseFeature+Synta
xTree + Word
Sequences

64.4 67.8 66.0 57.1 65.4 61.0

All Sources of
Knowledge 60.1 76.2 67.2 60.0 65.4 63.0

Conclusions

SVMs and Kernel methods are powerful tools to
design intra/cross doc coreference systems
SVMs allows for

better exploit attribute/vector features
the use of syntactic structures
the use of word sequence context

The results show noticeable improvement over
the baseline

Thank you

	Slide Number 1
	Outline
	Motivations
	Motivations (2)
	Support Vector Machines
	SVM Classification Function and �the Kernel Trick
	SVM Classification Function and �the Kernel Trick
	SVM Classification Function and �the Kernel Trick
	Flat features (Linear Kernel)
	Feature Conjunction (polynomial Kernel)
	String Kernel
	Word Sequence Kernel
	A Tree Kernel �[Collins and Duffy, 2002]
	The overall SST fragment set
	Explicit kernel space
	Implicit Representation
	Kernels for Co-reference problem:� Syntactic Information
	Previous Works on Syntactic knowledge
	Incorporate structured syntactic knowledge – main idea
	Syntactic Tree feature
	Context Sequence Feature
	Composite Kernel
	Results for pronoun resolution
	Results for over-all coreference Resolution using SVMs
	Conclusions
	Slide Number 26

